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1. Introduction 

Let M be a smooth, complete, non-compact Riemannian manifold, and denote 
by A the Laplace-Beltrami operator on L2(M), with sign chosen so that it is a 
positive operator. 

We denote by 2 o the greatest lower bound of the spectrum of A. It is given 
by the variational formula 

Sf. Af 
20 = inf ~t 

s S f  2 
M 

where f runs over smooth functions with compact support on M. 
Actually, writing S f.  Af= ~ rlgradfl[ z, we may weaken the smoothness 

M M 
assumption on f It is standard that we may take f to be uniformly Lipschitz. 

A somewhat more interesting invariant of M, which we denote by 2; s~, is 
the greatest lower bound of the essential spectrum of A, where the essential 
spectrum consists of points of the spectrum of A which are either accumulation 
points of points on the spectrum or which correspond to discrete eigenvalues of 
A with infinite multiplicity. It is classical that if M is compact, the essential spec- 
trum is empty. We also clearly have that 20 =< 2~ s~, and that 2; s~ (M) = liKm 2o(M - K), 

where K runs through all compact subsets of M, see [7] or [-8]. 
The object of this paper is to present estimates for 2; s~. To state our main 

result, we pick a point xosM, and for each r > 0 ,  we denote by B(r) the ball of 
radius r, and V(r) the volume if this ball. Then we set 

#--  lim sup 1 log(V(r)); 
r ~ o o  

# is the exponential growth of M. 
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One checks by a simple use of the triangle inequality that # is independent 
of the choice of xo. Furthermore, under simple geometric assumptions (for 
instance, if the Ricci curvature is bounded below by some negative number), one 
has from standard comparison arguments [2] that # is finite. 

Theorem 1. If the volume of M is infinite, then 2eo~<�88 ~z. 

Theorem 1 is a rather simple consequence of Agmon's work on exponential 
decay of harmonic functions, a simplified and somewhat disguised account of 
which we present as Theorem 2 below. He related his results to us in connection 
with Corollary 1 below. 

We remark that if M has finite volume, then trivially 2 o =0. Theorem 1 leaves 
open the possibility that, for finite volume, M may have discrete spectrum. Such M 
have been constructed in [8]. 

We also remark that/~ is a rather simple invariant of the metric, and is readily 
computable in many cases. Furthermore, it is easily estimated in terms of the 
curvature of M, by the standard comparison theorems [2]. In addition, if 
M arises as the Riemannian universal cover of a compact manifold M', then 
a lemma of Milnor [10] allows one to compute # in terms of group theory and 
simple geometric properties of M' (see Corollary 5 below). 

Theorem 1 gives a sharp estimate when M is a simply connected rank 1 
symmetric space of non-compact type. This can be verified by looking at standard 
tables computing these constants - see, for example, [1]. A conceptual explanation 
of why this inequality is sharp is given in Corollary 2 below, where we interpret 
Theorem 1 as an "isoperimetric inequality" of a rather special sort. 

We also present some estimates for 2~ ~ from below, under some geometrically 
restrictive assumptions. The basic techniques for these lower estimates are, first 
of all, the decomposition principle of Donnelly-Li [8], and, secondly, the lower 
estimate of Cheeger [5]. Taken together with Theorem 1, these allow one to 
compute 2~ s~ under quite general circumstances. 

On the other hand, Theorem 1 may easily fail to be sharp. For instance, 
let z~ be an amenable (for instance, solvable) group with exponential growth. Such 
groups are easily constructed, and one such group is given in [10]. Then if M o 
is any compact manifold with 7cl(Mo)=rc, and M is the Riemannian universal 
cover of M0, a lemma of Milnor [10] insures that #>0 ,  while the theorem of [4] 
provides that , ~ = 0 .  The obstruction to the inequality of Theorem 1 being 
sharp is that in general the "distance spheres" of M need not be the most efficient 
candidates for isoperimetric inequalities in M. 

The problem of estimating 2 o and 2; ~ for non-compact manifolds has been 
considered by Pinsky [11, 12] for surfaces, and by Cheng [6] and Donnelly and 
Li ([7] and [8]) for general manifolds. We recover their estimates for 2; ~ here 
by using the Comparison Theorem [2] to estimates for 2; ~ here by using the 
Comparison Theorem [2] to estimate/~, with the exception that, when M is a 
surface, [11] and [12] contain estimates of 2~ '~ in terms of the behavior of the 
metric in a sector of M. We do not pursue this question here. 

See also [14] for related results. 
See [4] for an interpretation of )~o in terms of random walks. 
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In w 2 below we present the proof of Theorem 1. w 3 is then devoted to an 
assortment of consequences of Theorem 1, some of which have been indicated 
above. 

It is a great pleasure to acknowledge the help of Shmuel Agmon, who called 
my attention to what is here Theorem 2, and to thank Carlos Berenstein for his 
help and encouragement. 

2. Proof of Theorem 1 

Theorem 1 will follow from: 

Theorem 2. Let K be a compact (possibly empty) subset of M, and 2 o ( M - K ) =  
the greatest lower bound of the spectrum of A on L2(M- K), with Dirichlet boundary 
conditions on ~K. 

Let p (x)= p (x, Xo) denote the distance from a fixed point x o aM. I f  

for some ~ satisfying 0 < c~ < 1/2o ( M -  K) e _  2~o(X) d x  < ~ ' 

M - K  

then 

I e 2 ~ p ( X ) d x < o o "  

M - K  

Proof of Theorem 1 from Theorem 2. We first remark that if 2 e > # ,  then 

e- z =,(x) dx ~ ~ [ V(r) - V(r - 1)] e- 2 ~t(v- 1) 
M r= l  

= ~ V(r)e-2~[e2~-l] 
v=l  

where the last expression is easily seen to be finite, by comparison with a geometric 
series, using the fact that 2 ~ >/~. 

We now conclude from Theorem 2 that if 2c~>/~ and c~<]~20(M-K), we 
have ~ eZ~P(X)dx<oo. But this is clearly impossible, since M - K  has infinite 

M - K  

volume. 
Therefore, there is no such c~, and we have shown 2 0 ( M - K ) < � 8 8  2. Taking 

the limit over arbitrarily large K, we see that :ess ~ 1 z -~o ~ #  , proving Theorem 1. 

Proof of Theorem 2. For convenience, we may multiply the metric by a constant 
to assume 2 o ( M -  K)=  1, since if 2 0 ( M - K ) =  0, there is nothing to prove. 

We consider a test function f (x )=e h(x).)~(x), where we assume Z(x) has 
compact support in M - K .  Then 

]]gradfjl2= ~ e2h(x)[lldh.z+dgll2]>>_ ~ f2. 
M - K  M - - K  M - K  

Thus 

f 2 [ 1 - I l g r a d h [ I 2 ] -  <_ ~ eZh[2x �9 (dh, dx)+ [Igradzl[ 2] 
M - K  M - K  

< ~ e2h[2Z �9 [Igradh[I IIgradzH+llgradzll2]. 
M - K  
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We now suppose iigradhii ~0:< t, and, for some increasing sequence K~ of 
compact subsets of M -  K such that ~ K~ = M - K ,  we set 

)(i(x)= 0 if x ~ ( M - K ) - K i  

= lp (x ,M-K~)  if O<=p(x,M-K~)<=d 

= 1 if p(x, M-K~)>d 

where d is fixed for the discussion. 
Then [Igrad )~ill _-< 1/d, and grad 0~i) is supported in a neighborhood Be(OKi) 

of radius d about ~K i . Thus 

f 2 [ l _ o e z ] <  (2 1 )  
M - K  = -~'Ji--~ S e2h 

Ba(OKi) 

Taking limits as i~oo,  and assuming that .[ e 2h is integrable, we get 
M--K 

( i  1 )  "[ e2~* 
M - K  

Under the assumption 5 e-e=P(~<~176 we may set 
M - K  

h~(x) = min D p (x), - e p ( x ) + j ] .  

Note that, for each j, ![grad hill <e,  and e 2h~ is integrable for all j. Note also 
that hj increases pointwise to h=c~p(x). Thus, for j sufficiently large, we have 

, e~, , , [ l_~Z]<(2 1)  M-K : "dq--dg "[ e2=P(X) 
Bd(gK) 

SO 

eZhJ-< (const) 
M - K  

where (const) is a finite constant independent ofj. Taking the limit asj-~ oo gives 

S 
M - K  

which is the conclusion of Theorem 2. 

3. Examples and Consequences 

We now turn to some consequences of Theorem 1. 

Corollary 1. I f  M has subexponential growth, then 2~r - - 0. 

Proof The condition that M has subexponentiat growth is precisely the condition 
that # = 0. 
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we  remark that this result was proved in [3] under some technical assump- 
tions on M. 

To give the next corollary, we introduce the isoperimetric constant h, foltowhag 
Cheeger [5]: 

area (N) 
h=inf  

~ vol OntN)' 

where N runs over nit compact ( n -  1)-dimensional submanifotds of M dividing 
M into two components, and int(N) denotes the bom~ded component. 

Corollary 2. h < u. Furth~more, equality holds i f  the ratio ~ tends to h as r-~ c~, . . . .  ( )  

where S(r) denotes ti~e surface area of the distance sphere of radius r. In this case, 
J~0~ e s s ~ l  2 

Proof The inequality holds since, according to Cheeger's inequality [53, we have 
20 ~�88 2, and �88 is an upper bound for 20 by Theorem 1, 

An alternate proof of this inequality is obtained by noting that S(r)= V'(r). 
yt 

Thus the dift?rential inequality V'(r)->h integrates to give V(r)>_>-(const).e h', 
establishing the inequality. V(r) - 

S(r) 
On the other hand. an inequMity of the form v~7~-~ h + ~ for r sufficiently large 

vtr) 
gives ,u ~ h + s, establishing the second statement. 

The Nird statement is then obvious. 
We may extend th.is notion in the fol!owing way: ff K is any smooth, compact 

submanifotd of M, of the same dimenNon as M, we set 

h~ - . area0N) 
~- 1hi  . . . . . .  7~  

N vol (int (N)) 

where N runs over compact submanifolds ofM - K dividing M -  K into a compact 
component, int(N), which does not meet OK, and other components containing 
OK and the unbounded part of M. 

According to Cheeger [5] again, �88 2 represents a lower bound to the 
spectrum of the Laplacian on M -  K with Dirichtet boundary conditions on 0K, 
while according to the Decomposition PrinciNe of DonneIly and Li [8], the 
essential spectrum of the Laplacian of M agrees with the essential, spectrum of 
the Laplacian of M - K  with Dirichlet boundary conditions on 8K. Setting h es~ 
to be the supremum of h ~ for all K, we get 

Corollary 3. �88 2 ~2~ ~ ~�88 

tn gerleral, it is about as hard to estimate h and h ~s as it is to estimate ,~ and 
2; ~, The follov~4mg device provkies an important exception: 

Assume that ~br some point xe~M. the exponential map exp: T~o(M)-~M 
is a diffeomorphism; in particular, M is diffeomorphic m IR". Denote by 0 the 
function oI~ T~(M)~_ IR" such that 0-dx~ A ... A dx~ is the induced volume form. 
o n  %(M). 
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Lemma. t f  ~r >O , then h ~>J i~a(x!nf ,>~r (x  ). 

Proof (see Yau's proof [t3] of McKean's Theorem [9]). It is well-known that 

, 1 ~ 0 . ( n - 1 )  ?T*-V--. 

in0  
For any K, if~ ~r > c on M - K ,  we may integrate the above expression over 

int (N) to get 
Ar> c vol (int (N)). 

int(N) 

On the other hand, by Stokes' Theorem, 

I" Ar=[ *dr<area(N) 
~nt(N ~) N 

where the inequality comes from l*drt < 1. Letting K be arbitrarily large establishes 
the lemma. 

Corollary 4. Under the assumptions of the Lemma, we have 

l ( l im 100 ~2 .~s~<t /lira 100 \2 inf - - - ( x ) ,  <_ - ;% =~  ( sup - ~ - ( x ) } .  

ProoJ; The left-hand inequality follows from the Lemma, together with Corollary 3, 
The right-hand side follows from the obvious inequality 

1 00 

r ~ o o  d ( . ,  >=r 

t t  is an easy matter to construct examples where both sides agree, giving a 
sharp computation of 2; ~. We note also that it is standard to deduce the condi- 

1 ~30. 
tions of the Lemma as well as bounds for - ~  ~rom curvature conditions on M 

O.r 
via the Comparison Theorem [2]. 

We remark that the lower bound of Corollary 4 may be proved equally well 
from the integration-by-parts argument of [11]. 

To state our final corollary, let Mo be a compact manifold, and M its universal 
cover. We pick a fundamental domain F for the action of ~q(M0) on M - we may 
think of F as arising from "cutting M o open' ,  and then lifting this cut-open Mo 
to M. 

Then {g-F: gerq(Mo) } is a tiling of M. Let g~ . . . . .  gk denote the finitely many 
elements of rq(Mo) such that g~. F adjoins F. It is clear that g~,..., gk generate 
rq(Mo)~ and that if gi~ {g~ ....  , gk}, then gF ~ ~ {g~ . . . . .  gk}- 

For each e, let N(e) denote the maximal number of translates of F which meet 
a ball of radius ~. 

Corollary 5. 2 ~  < 1  (N(e) tog(lr t)) 2. 
\ 2 5  
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Proof According to Theorem 1, it suffices to show that 

# <_ ~(e). l o g ( k -  1). 

We first remark that the exponential growth of 7rl(Mo), computed with 
respect to the generators gl, --., gk, is at most l o g ( k -  1), as can be seen by noting 
that there are at most (k ) - (k -1 )" -  1 distinct words in gl . . . .  , gk of length n. 

The remainder of the proof of Corollary 5 now mimics the argument of Milnor 
[10]. We claim that if xoeF is fixed, and g ~ r l ( M  ) is given, then 

where ~'(g) is the length of g in the word metric given by gl . . . .  , gk. 

Butjoiningxotog(xo)byaminimalgeodesic,,wecover7by[d(x~176 
balls of radius ~. Each one of these balls meets at most N(~) copies of F. We may 
write g =  [ Ig i ,  where we introduce one gi whenever we cross from one copy of F 
to another, which establishes our claim. 

The estimate p< [N(~!~. l o g ( k - l ) n o w  follows from the definitions, since 
\ 2 e l  

given ~ > O, we may find r sufficiently large so that 

V(r) < vol (F). ~= (g: d(xo, g (Xo)) < r + D) 

(N(E)] + 6)(r +D)+~(~ ) ]  < vol(F).  ~= (g:#(g) < \27-8 ! [(1 

N(E) log ( k -  1 ) (1 ~ 6) r 
=< vol (F). (const) e 2e 

D is the diameter of M, so that letting 6 ~ 0 and r--* oo gives # < ~ )  where 

�9 l o g ( k -  1), as desired. 
We remark that as e--, 0, N(e) remains bounded, and as e--, o% N@) grows 

exponentially in ~ if M has exponential growth. It appears that an optimal value of 
would seem to be at about half the injectivity radius of M o . For  this value of 5, 

N(e) measures how many fundamental domains meet at a vertex of F, together 
with how small the various faces of F are. 

The formula o f  Corollary 5 gives qualitative expression to the tbllowing 
principle: if M is a fixed space with 2o(M)>0, and if M o is a compact quotient 
of M by a groups of isometries, and if the injectivity radius of M o is large, then M o 
must be "complicated",  e.g., the fundamental group of M o is large. 

We will make this principle more precise at a later opportunity�9 
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