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CONFORMALLY INVARIANT VARIATIONAL INTEGRALS 

AND THE REMOVABILITY OF ISOLATED SINGULARITIES 

Michael GrHter I 

We analyze the structure of two-dimensional variational 
integrals which are invariant under conformal mappings of 
the parameter domain. This allows us to prove that classi- 
cal solutions of the corresponding Euler equations cannot 
have isolated singularities if their Dirichlet integral is 
finite. 

I. Introduction 

In the calculus of variations one typically considers 

variational problems of the following kind: 

Minimize u~I(u) =f F(x,u(x),Du(x))dx! 

Here ~ c ~ n is an open set and u : R+~N (n,N E ~) is sup- 

posed to vary in some class of functions. If F satisfies 

m11Pl 2 - k O~ F(x,u,p) ~ m21Pl 2 + k ~ 

for constants o< m I zm2, k o~ o, almost all x E ~ and all 

(u,p) E ~ N • ~nN, one calls F an integrand of quadratic 

growth. 

In the following we shall restrict our attention to the 

case n = 2 and N > I. This implies that the Euler equations 

This research was supported by the Sonderforschungsbe- 
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lead to a system of partial differential equations. By a 

fundamental result of Morrey [MCB] minima of such problems 
I 

in H 2 are H61der continuous. However, if n is large enough 

there are examples of discontinuous minima [GM]. So one 

might ask the question: 

Are stationary points of the variational problem, that is 

weak solutions to the corresponding Euler equations, regu- 

lar? An example by Frehse [F] however shows that this is 

not true in general. 

So one is led to consider a narrower class of variational 

integrals. 

Now the geometric origin of many variational problems 

suggests the investigation of those functionals which are 

invariant under conformal mappings of the parameter domai~ 

And in fact it seems to be a reasonable conjecture that 

stationary points of such integrals are regular. For a 

further discussion in this direction the reader is referred 

to the elegant notes by Hildebrandt [H]. 

In this paper we shall try to give supporting evidence to 

this conjecture. 

In section two we analyze the structure of integrands F 

leading to conformally invariant variational integrals. As 

a corollary of Theorem I we show that one can introduce a 

new Riemannian metric on the target space ~N such that the 

variational integral may be considered as an H-surface 

functional. This shows that the conformal invariance 

forces the problem to have a geometric interpretation. In 

particular regularity results for surfaces of bounded mean 

curvature as in [GM4] may be applied. 

In section three we prove the removability of isolated sin- 

gularities of classical solutions to the Euler equations 

provided the Dirichlet integral is finite. The proof is a 

generalization of a method by Sacks and Uhlenbeck [SU], 

where they apply it to harmonic mappings on two-dimensional 

manifolds. An example in [HKW] shows that this result can- 

not be extended to dimensions n ~ 3. 
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The results presented here are taken from [GMI], [GM2], 

[GM3]. Although the conjecture mentioned above still is 

open, we think that our paper may be regarded as a small 

contribution to the problem of solving the regularity 

question. 

Finally let me thank Stefan Hildebrandt for his encourage- 

ment and many fruitful discussions. 

2. The structure of variational integrals which are con- 

formally invariant 

At first let us fix the notation and specify our assump- 

tions. 

Let N (lq and suppose that the function 

F : ]R N • ~2N ~ 

satisfies the inequalities 

(2.1) m11pl2<F(u,p)_ _<m21Pl 2 

for every (u,p) ( z{N• ]R 2N with constants o< m I <_m 2. 

Concerning the regularity of F we assume 

F(-,p) ( C I (~N) , F(u,.) ( C2(]92N) 

for any (u,p) ( ~N • IR2N. 

If ~a ]R 2 is an open set we denote by H~(~,~ N) the well 

known Sobolev space of L2-functions on ~ the distribution 

derivatives of which are also square integrable. 

I 
Assuming that F(u,Du) is measurable for any u (H2(R,~'") 

we may define 

I(u) := f F(U(X),Du(x))dx. 

In the following we shall restrict our attention to varia- 

tional integrals which are conformally invariant. More 

precisely we suppose : 

If ~,~ c ~2 are open and ~ : ~ ~ is a diffeomorphism which 
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is conformal, we have 

I(u) = I(uo 9) 

for any u 6 H 2 

An easy calculation shows that this condition implies for 
any (u,p) (~N• ]R2N and any y ( 

(2.2) F(u,pD~(y)) =~ID%(y) I 2F (u,p), 

where IDg(y) I denotes the euclidean norm of Dg(y). 

Choosing 9(x) = kx, kS o, we get 

F(u, kp) = k 2 F(u,p) 

and using the regularity of F we conclude 

I (u,o)p~p~ (2.3) F(u,p) =~ F i k 
P~P~ 

Here and in the sequel we use the summation convention. 

Setting 

Aik(u) := F (u,o) A ik (A ik" 
~ i k ' = ~)~,~=1,2 

P~P~ 

we have the symmetry relation A ik A ki ~ = ~ and may rewrite the 

integral I as 

= I tvui Aik( I(u) ~ I u) V uk , 

where tB denotes the transpose of the matrix B. We now 

exploit the invariance of F with respect to rotations and 

choose }(x) = S @ x, where @ ( ]-~,~] 

and 

cos @ -sin @) 
S@ = \sin @ cos @ 

Using (2.2), (2.3) and the definition of A ik we get 

i[s Aik ] t(pk) piAik t(pk) =p @ ts@ . 

The symmetry A ik= t(Aki) now implies for i,k= I,..,N 

and u (~{N 

Aik(u) = S@ Aik(u) tS@. 
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Inserting @ = ~/2 we conclude that A ik is of the form 

a ik _b ik 
Aik = ( bik aik) 

where the coefficients satisfy the relations a ik = a ki and 
b ik = _b ki 

We now define Gik and Bik by 

Gik(U) = aik(u), Bik(U) =-bik(u). 

Then G is symmetric, B skew-symmetric and we may once 

again rewrite the variational integral as 

1 
(2.4) I(u)=~f Gik(U) TUl-vuk+Bik(U)det(vui,Tuk). 

The following two special cases of (2.4) are well known. 

(i) The "Dirichlet integral" 

(2.5) I(U) = ~f IVUl 2 

Here Gik(U ) = 6ik and B ~ o. 

(ii) The "H-surfaae functional" 

(2.6) I(U)=~ /IVu]2+Q(u)-(DlUAD2u). 

Here N = 3, Gik(U) = 6ik , 2B12(u ) =Q3(u), 

2B13(u) =-Q2(u), 2B23(u) =Q1(u) and 

divQ (u) = 4H(u). 

Let us now turn to the Euler equations for I. 

From 

D I{F i(u,Du) } + D2{F i(u,Du) } = F i(u,Du) 
p p u 
I 2 

for i=1,...,N we get 

Gik Auk+�89 8iGkl+%kGli}? uk-vu I = 

= I ~{81Bik+~iBkl+~kBli}det(Tuk,Tul); 
and if (G ik) denotes the inverse of (Gik) we arrive at 
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' ' k 

2Aul+ Glm{~iGmk-~mGkl+~kGlm}?U -?u I = 

(2.7) 

= Gim{~IBmk+~mBkl+~kBlm}det(~uk,Tul ) . 

Let us remark that (2.1) implies that G is positive de- 

finite. 

We summarize our observations in 

THEOREM I 

Let F : ~N • ~ satisfy (2.1) and the regularity 

assumptions made above. 

If the variational integral 

I(u) = I F(u,Du) 

is conformally invariant, then F has the form 

(2.8) F(u,p) = Gik(u)pi-pk+Bik(U)det(pi,pk), 

where G is symmetric and positive definite, while B is 

skew-symmetric. 

In addition we have the following proposition, which is 

well known in the cases (2.5), (2.6) mentioned above. 

PROPOSITION I 

Suppose F has the form (2.8) and u is a C2-solution of the 

Euler equations (2.7) of the associated integral I. If 

is defined by (identify (Xl,X2) with the complex number 

z = x1+ix 2) 

g(z)=[Gkl(U)D2ukD2ul-Gkl(U)D1ukD1ul](xl,x 2) 

(2.9) 

+ i[2Gkl(U)D1ukD2ul](xl,x2), 

then Y is a holomorphic function. 

This property will be used in section 3. 

Let us now take a closer look at the case N = 3. We shall 

show that solutions of the Euler equations may be consi- 

dered as solutions to a suitable H-surface equation in a 

certain Riemannian manifold. 
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We consider ~3 equipped with the Riemannian metric (gij) 

defined by 

gij(u) := Gij(u) = F i j(u,o) = F i j(u,o)- 
PlPI P2P2 

As usual we set g := det(gi=)J and (gij)=(gi~)-1 

Then in (2.7) the coefficient of vuk.vu I il nothing else 

i corresponding to (gij) but the Christoffel symbol Fkl 

Defining H by 

(2.10) H(u):=(~iB23(u)+~2B31(u)+~3B12(u))/(4g(u))1/2 

one easily checks that (2.7) is equivalent to 

(2.11) Aui+F~l vuk. Tu I= 2HV~ gik(D1uAD2u) k. 

Thus we have the 

COROLLARY 

Suppose F has the form (2.8) and N = 3. Then one may intro- 

duce a new Riemannian metric on ~3 by setting gij = Gij 

and define H by (2.10) such that the Euler equations 

corresponding to the integral I are (2.11). 

REMARK 

If u is a C2-solution of (2.1 I) with rank Du= 2 and if Y 

defined by (2.9) is identically zero - that is u is con- 

formally parametrized - then u is a surface of mean curva- 

ture H in (m 3 (gi =J)) c.f. [HK] , I �9 

In the general case N ~ 3 one may consider the problem of 

prescribing the mean curvature vector at each point of a 

surface in a Riemannian manifold in terms of the tangent 

plane to the surface, c.f. [GR]. Then the mean curvature 

vector is to be given by a (2,1)-tensor H. 

We define as above a new Riemannian metric on a N by 

gij (u) := Gii (u) 

and a differential 2-form a on a N by 

I i k 
a(u) := ~Bik(U)du du 

Now denote by H the unique (2,1)-tensor such that 
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d~(U,V,W) =<U,2H(V,W)> 

for all tangent vectors U,V,W, where <.,-> denotes the new 

scalar product on ~N . 

Then the functional I can be written as 

I(u) =~f <D1u,D1u> + <D2u,D2u> + 2a(D1u,D2u ) 

and its Euler equations are 

VDIuDIU + VD2uD2U = 2H(DlU,D2u ). 

Here 7 denotes the Levi-Civita connection corresponding 

to <.,.>. 

From (2.7) one sees that an explicit expression for H is 

H i = ~ gij(~iBjk+~jBkl+~kBlj)dukdul 

Thus the results of this section show that considering con- 

formally invariant variational integrals turns out to be 

nothing else but the study of the familiar "H-surface 

funational" in a Riemannian manifold. 

In particular the regularity results of [GM4] for weak 

solutions apply. 

3. Removability of isolated singularities 

We prove the following 

THEOREM 2 

Suppose F has the form (2.8), satisfies (2.1), and G,B 

and their derivatives are bounded and HUlder-eontinuous. 

If ~ c ~2 is open, x 6 ~, u ~ C2(~{x}), Vu ~ L~oc(~),^ and u 

is a solution of the Euler equations (2.7) corresponding to 

the conformally invariant variational integral 

I(u) = f F(U,DU) 

on ~ {x}, then u may be extended to ~ as a C2-solution of 

the Euler equations. 

Before proving this theorem we need a number of estimates 

which will be established in several lemmas. 
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To simplify the notation we sometimes write (2.7) as 

(3.1) AU i=Ai(u,Vu) 

_ikl, , k 1 Aikl C a L ~ . where Ai(u,p)=Aa~ tu)pap~ and 6 (~N)n (~N) 

Most of the following lemmas do not need the special struc- 

ture of (2.7). Therefore it will be sufficient to consider 

(3.1) instead. 

Note that (2.1) implies for any ~,u ~ ~N 

(3.2) m I l~12~Gik(u)~i~k~m21~l 2 

A ikl We denote by A an L'-bound for the coefficients a~ and 

by B =B1(o ) the unit disc in ~2 . 

The spaces H~,L p are defined in the usual way. 

Different constants will sometimes be denoted by the same 

letter C. 

In the first lemma we derive an a-priori inequality. 

LEMMA I 

For any o< p< ~ I and any p~ 1 there exists a constant 

K =K(p,a,p,A) >o such that for every solution u 6 C2(B,~ ~)- 

of (3.1) we have the estimate 

5K[I + IIvull 3 ] llvuIIL4 (3.3) IBvull H (Bp) L4(Ba) (Be) 

PROOF 
oo 

For o< TI < ~2 -< I we choose a cut-off function ~ 6 Cc(B 2) 

which is identically equal to one on B 

Using (3.1) we get on B 

IA(q~u) I _< IIAq~HL~(B)lul + 211V*rIL~(B)Ivul + 

+ AIV(~u) IlvuI+AIIV~IJL-(B )IvulpuB. 

With a constant K I =K I (~2- ml 

llA(#u) iILr(B 2) -<ABI IV(#u) 

+ ~iII lul FvulliTr( B 
T2 

this implies for r > _ I 

IVulIILr(BT2) + 

+ K 111ull~Ir(B 21 
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As #u has compact support in B a well known estimate 
~2 

from potential theory, [MCB] Th. 3.4.2b), implies the 

existence of a number C r> o such that (r> I!) 

ll~UllH2 (B ~ CrlIA (~u) 
r ~2 ) IILr (B~ 2 ) 

Together with the previous inequality this yields 

It~UllH2r(B 21 -<ACrlIIV(~U) IVulllLr(B 2) + 

(3.4) 

+ ~ lCr l l lu l l vu l l l , r (B  2 +~lCrllullH1 
r (B~2) 

Note that (3.4) also holds for u+ c instead of u, 

c= const. , because u+ c satisfies (3.1) with 

Ai(v,p) =Ai(v-c ,p)  ins tead  of A i .  
c 

Consider now u = u-9 u, where 9 u denotes the mean value 
B D 
~2 

of u over the set D. 

In (3.4) we choose TI = (p+~)/2,~2=~ and r=2. By 

H~lder's inequality we have (?~ = ?u) 

II -< Ac211v(~)llL4 tlvullL4 + ~firlH22 ( B )  ( B )  ( B )  

+ AKIC211~HL4 IlVUlIL4 +KIC2H311 1 
(B) (B<~) H 2(Be;) 

By Poincar~' s and H61der's inequality 

max{lluN 4 'Ilull I }~K(~)IIVUlIL4 
L (B) H 2 (B) (B) 

Using the fact that # -= I on B(p+~)/2 we get with a new 

constant K 2 =K 2(~,p-a,A) 

II VUlIH12 -< It'll 2 -< 
(B (p+c)/2) H2 (B (p+c;)/2) 

(3.5) 
-< K2(I+IITUlIL4(B ))IIVUIIL4(B ) 
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{u NOW consider ~=u and, using again Poincar~'s 
B(p+a)/2 

and Sobolev's inequality, we have (V~ = Vu) 

II~ll I _ K(p,p+a)IIVUlIH12 -< 
H2p(B (p+a)/2 ) (B (p+a)/2 ) 

< K K2(I+IIVUlIL4 ) IIVUlIL4(B 
(B<~) a ) 

Using again (3.4) with ~,r=p,~ I = p, ~2 = (p+a)/2 we 

deduce 

II~IIH2 -< ACpll? (~)IIL2P]ITUlIL2 p + 
p(B(p+a)/2) 

+ AK Iepll~IIL2pIIvullL2p+KIcpll~IIH1 -< 
P 

]I]VU;]L 4(Ba) ' _< ~[1+IIvull 4(B ) 

where K =K(p,a,p,A). 

As ~- I on B , this implies (3.3). 
P 

[] 

Using the finiteness of the Dirichlet integral we now 

derive a fundamental estimate. 

LEM24A 2 

There exists 6 = s(A) >o, such that for all solutions 

u 6 C2(B,~ N) of (3.1) satisfying f IVul 2< ~ the following 
B 

is true: 

For any p~ I and o< p< I there is K=K(p,p,~) >o, such 

that 

(3.6) II VUlIHI -< KIIVUIIL2 
p(Bp) (B) 

PROOF 

Because of Lemma I it is sufficient to estimate 

II?UIIL4 in terms of II?U;IL2 (p< a< I). 
(B) (B) 

Let a= (p+ I)/2. We may assume 9 u = o. 
B 
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We use (3.4) with r =~, ml = a, ~2 = I. Now Poincar~'s and 

Sobolev's inequalities yield (4 = nr /(n-r)) 

IILr(B ) -< fly (#u)[IL4 II Iv(~u) I Ivul II ?UlIL2 (B) (B) 

-< CIIVUl;L2(B ) lieU]]H2 ; 
r (B) 

[IUIIH~(B) ~ CIIVUIIL2(B) ; 

liLt (B) VUIIL2 JIUlPL4 -< cIIvull 2 II lul Ivul ~ H (B) (m) L2(B) 

Together with (3.4) we get 

(I -AC4/3C~) I[r (B) 
_< 

(KIC4/3C+AKIC4/3C~)I]VUIIL2(B) 

Choosing ~ <(AC4/3C) -2 and, using the fact that # ~ I on 

Ba, we have shown 

II VUlIL4 S Cll~ull 2 ~ K(A' s) IIVUlIL2 
(Ba) H4/3 (B) (B) 

This implies the desired inequality. [] 

The previous lemma is now used to give a pointwise esti- 

mate of IVul away from the singularity. 

LEMMA 3 

Suppose u E C2(B2~{o}) 
s tvul2< ~- 
B 2 

There exists a constant Co=Co(K), 

X E B~{O} O 

-< C o B2 OI 
(3.7) IVU(Xo) I 

is a solution of (3.1) satisfying 

such that fo r any 
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REMARK 

Here s,K are the constants from Lemma 2 with p= I/2 and 

p=4. 

PROOF. 

For x 6 B~{o} define o 

~(x) :=U(Xo+X([Xol/2)) , x ( B. 

Then ~6 C2(B) is a solution of (3.1) on B. Using the con- 

formal invariance of the Dirichlet integral we get 

s Iv~r 2 !/ Ivur 2 s Ivuf 2 = _< < ~ �9 

B Bix O 2(Xo) B 2 

so that the assumptions of Lemma 2 are satisfied. Together 

with Sobolev's inequality we conclude 

IVY(O) I<-ClIV~IIH~ < CK IIV~IIL2 
(BI/2) (B) 

By the definition of ~ this implies (3.7). [] 

We are now in a position to improve Proposition I. 

LEMMA 4 

Suppose u (C2(B2~{o}) is a solution of (2.7) satisfying 

Ivul2< ~. 
B 2 

Then ~(z) = zY(z), where Y is the function defined in Pro- 

position 1, is holomorphic on B 2. 

PROOF 

We show lim z ~ (z) = o. 
z~o 

By the definition of ~ we have for z # o 

l~(z) I- < 2m 21Vu(x) 12 

Now (3.7) implies 
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Iz �9 (z) I ~ 2m21vu(x) 121xl 2 < 

2 ! ivul2 
(m2C~ B ix I 

The absolute continuity of the integral proves our claim. 

[] 

Using Lemma 4 we now prove a relation which will be essen- 

tial in the proof of Theorem 2. 

PROPOSITION 2. 

Assume the hypotheses of Lemma 4. For any o< r< 2 we have 

(z = r e i~) 

2~ 2~ 
j k r 2 (3.8) f Gjk(U) U0u0d0 = f Gjk (u)u3ukd0r r " 

o o 

PROOF 

We have for Izl = r 

Re[z ~ (z)] = Gjk(U) j k_ r2uJu k u~u0 Gjk(U) r r ' 

and by Lemma 4 

f ~(z)dz = o. 
]zJ=r 

This implies 

im[,zl=rg(Z)dz] =im[i 2~ . 2d0] = o = ~ g(rel0) (re i0) 

2~ 
= f Re[z ~ (z)]dO . 

o 

which proves (3.8). [] 

REMARK 

Note that the following equation holds for I zl = r 

j k r2Gjk(U) VU j Vu k. (3.9) Gjk(U) (r2uJuk+ u@u@) = 

We are now able to give the 
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PROOF of Theorem 2. 

Without loss of generality we may assume ~ =B2(o), x= o 

and 

I I v u j 2 <  s,  
B 2 

where 8 > o will only depend on A(L~-bound for the coeffi- 

cients) and ml,m 2. 

Let us define a comparison function q, which is rotation- 

ally symmetric. 

For that purpose set (m E ~ U{o}) 

1 2~ 
~m=~ f u(2 -m cos ~,2 -m sin ~)d~ ; 

o 

bm is the mean value of u on the circle of radius 2 -m. 

If x E B1~{o} and 2 -m~ JxI~2 -m+1 we define q by 

q(x) :=q(fx I) = a m loglxl +~m , 

where a m= (Zm-1 - Zm )/IOg 2, ~m =m(bm-1 - Zm)+~m " 

Then q is continuous on B~{o}, harmonic for 2 -m< Ixl<2 -m+1 

with boundary values ~m resp. bm-1 

For x with 2-m< Ixl ~ 2 -m+1 we get 

lq(Ixl)-u( )l ~ fq(Ixl)-#m_iJ+f#m_1-u(x)l 

l#m- # m - l l + f # m - l - U ( X )  l " 

The second term can be further estimated by Lemma 3 

lu(x)-bm_11 ~ max lu(x')-u(x") f 
2-mslx, I,Ix,,f~2 -m+1 

2~2 -m max Ivu(x') I 

2-mslx, l~2 -m+1 

2~ max IVu(x') I rx, l 
2-msjx, i~2 -m+1 

-< 28 Co~. 

For the first term the same estimate is true; this implies 
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(3.10) sup lq(Ixl)-u(x)l _< 4v~ Co%/~ . 
o, Ixr_<1 

We denote by A m the annulus B2_m+ I ~ B2_m, as 

q,u E C2(Am ) Green's formula yields 

] IV(q-u) l 2 = I (q-u).~ (q-u)dm I 

- f (q-u) �9 ~ (q-u) . 

Am 

The boundary integral can be written as 

I (q-u) �9 %v (q-u) dml = 

2~ 
= 21-m f (q(21-m)-u(21-mei~)). (q'(21-m)-u r 

o 

2~ 
_ 2 -m f (q(2-m)-u(2-mei~)) q (2-m)-ur(2-mei~))d~ �9 ( ! �9 

o 

(21-mei~))d~ 

Because of our choice of q the integrals containing q' 

vanish. Therefore we end up with 

I IV(q -u) 12 2 -m 2~ = I (q (2-m) -u (2-mei0)) "Ur (2-mei0) d0 
B~B o 

2-m 

2~ 
- f (q(1)-u(ei~)).Ur(ei~)d~ + f (q-u).~u. 

o B~B 
2-m 

This is true because the remaining boundary integrals 

cancel each other in view of the continuity of all functions 

involved, and because q is harmonic on A m . By (3.7) and 

(3.10) we get 

2~ 
12 -m f (q(2-m)-u(2-mei0))-Ur(2-mei0)d0 I _< 

o 

CV~ [ ~ ''IVU]2] I/2 
B 21-m 

SO that this boundary integral vanishes if we let m ~ ~. 

Using (3.1) and (3.10) we may estimate the last integral by 

100 



GRUTE R 

(3.11) I f (q-u)'Aul S CA~ f IVul 2 
B~B B 2im 

Letting m~ | we get the equation 

fIV(q -u) 12 = 2n . I (u(e1~)-q(1))'Ur(e1~)d~ + 
B o 

+ f (q-u) �9 Au. 
B 

Now choose 5<(m1/2m2) and ~< (5/CA) 2. Then (3.11) and 
H@Ider's inequality imply 

1 
(3.12) f IV(q-u)12_ < 2~lu(ei0)-bol2d0 lur(e i~ 12do ~ 

B Lo 

+ 6 flvuf 2 
B 

By (3.2), (3.8) and (3.9) the left hand side can be esti- 
mated by 

f IV (q-u)I 2 
B 

I 
>-~22 fB Gjk(U)V(q-u)J'v(q-u)k = 

I I = mq /B V [Gjk(u) (r2(q-u) J(q-u)k+u3uk]>- 

I 1 j k 
_> --m2 /B V Gjk(U)U0U 0 = 

1{m~ IB V Gjk u~k + 1 I~22 2~ ' k } = f (U)U j f r f G_., (u)u3u d0 dr = 
o o 3~ r r 

1 " ml 
= I Ivuj 2 2-~2 s Gjk(U) VU3"vuk~ 2m2 B 

By Poincar6's inequality we get from (3.12) 

m 1 

(~-22 - 6) BZ jvui 2 -< 
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<- C[ fO lu0(ei0) 12d~ lUr(ei0) 12d0 < 
LO 

2~ 
C f IVu(ei~) 12d0 

o 
m 1 

Introducing 7= (2~2 - 5)/C we have shown 

2~ 
Y f IVuI 2~ ; IVu(eiO) [2d0 . 

B o 

Now all the calculations made above can also be done for 

u(px ) instead of u, o< p~ I; the result is 

2~ 
(3.13) Y f IVU] 2 ~ p2 f iVu(pei~) 12d~ . 

B o 
P 

As is well known, this differential inequality implies for 

s Ivul 2 < JI Ivul 2 
B B 
P 

I Together with Lemma 3 we get for Ixl ~ 

Ivu(x) llxl ~ clxl ~/2[f Ivul2] I/2 
B 

Thus for any x o with IXol ~ I/4 and any r~ �88 we have 

[ IVUl 2 C2 ! r 8 lwlT-2=sC 22~ f PT-Idp=Mp 7 , 

Br~Xo) B (Xo) o 

where M = (2~ e C2)/y 

The Dirichlet-Growth-Theorem now yields the H61der conti- 

nuity of u on BI/4. Using a result of Tomi [T], we now de- 

duce the H61der continuity of the first derivatives of u. 

Now (3.1) can be regarded as an equation with HSlder con- 

tinuous right hand side and fundamental results from po- 

tential theory complete the proof of Theorem 2. [] 
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