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Summary. The uni-axial strain loading of a rubber rod struck head-on by a planar shock wave is studied 
experimentally and numerically. A physical model capable of describing the rubber response to its collision 
with the incident shock wave is proposed. This model takes into account the rubber compressibility and the 
friction forces developed in the contact surface between the rubber and its surrounding rigid wails. The good 
agreement that exists between experiments and their numerical simulations verifies the validity of the 
proposed physical model and the accuracy of the numerical scheme used for the numerical simulations. It is 
found that for the considered loading mode, i.e., uni-axial strain loading, no shock waves exists in the rubber 
rod. The stresses measured/calculated in the rod result from compression wave motion (with constant 
velocity) in it. It is also found that the friction developed between the rubber rod and its bordering rigid walls 
plays an important role in damping the intensity of the wave propagating in the rubber due to its collision 
with the incident shock wave. The larger is the friction, the larger is the stress damping rate in the rubber. 

1 Introduction 

Head-on  reflection of shock waves from a rigid, s ta t ionary wall is well known and documented 

[1], [2]. In  such cases, the head-on reflection phenomenon is characterized by a zero flow velocity 

behind the reflected shock wave. In nature,  however, head-on reflection of normal  shock waves 

from non-rigid boundar ies  can occur. Cases in which one finds shock wave reflection from, and 

p ropaga t ion  into, a non-rigid medium appear  in many  engineering problems. Some examples 

are: reflection of blast  waves from rubber-coated bodies that  can be found on a batt le ground;  

shock-wave reflection from and penetra t ion into live-tissue such as the case of l i thotherapy;  and 

the interact ion of shock waves with foams used for pressure amplification. I t  is therefore of 

interest to unders tand better the head-on collision of p lanar  shock waves with such boundaries.  

A detailed derivat ion of a physical  model  capable of describing shock wave reflection from and 

propaga t ion  into a rubber  rod was given recently in Mazor  et al. [3]. In this paper  three different 

modes for the rubber  loading by the incident shock wave are studied, namely, 

(a) Uni-axial  stress compression. The rubber- rod  movement  is limited only at its rear end, 

along the x-axis, where it is a t tached to a rigid boundary.  The rubber  is free to expand along the 

y- and z-axes, and its leading surface is free to move along the x-axis (see Fig. la). In  this case 

~y = a z = 0 and ey = e z r 0. 
(b) Bi-axial stress compression. The rubber- rod  movements  are limited at its rear surface, 

along the x-axis, as well as along the y-axis (due to its a t tachment  to rigid boundar ies  at these 

locations, see Fig. lb). The rubber  is free to expand along the z-axis and its leading surface can 

move along the x-axis. In  this case ~ = 0 and ey = 0. 
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Fig, 1. Illustration of three different modes for applying a shock wave-induced compressive load: a uni-axial 
stress loading, b bi-axial stress loading, c uni-axial strain loading 

(c) Uni-axial  strain compression. The rubber  rod movements  along the y- and z-axes and its 

rear surface movement  along the x-axis are limited by rigid walls (see Fig. lc). Therefore, 

excluding its rear surface, it can move only along the x-axis. In  this case ey = e z = 0 yand a x, 

cry and a z ~ 0. 

A detailed derivat ion of the conservation and complementary  equations describing the wave 

propaga t ion  and flow propert ies  in the gas and in the rubber  are given in Mazor  et al. [3]. These 

equations are set up assuming that  the rubber  is incompressible and there is no friction between 

the rubber  peripheral  surfaces and the shock tube walls. While these assumptions are perfectly 

valid for the case of a uni-axial  stress loading, and are reasonable for the case of a bi-axial  stress 

loading (when lubricant  is added between the rubber  rod and the shock tube windows), they are 

highly questionable for the case of a uni-axial strain loading. In Mazor  et al. [3] a compar ison 

between experimental  results and numerical  simulations is made only for the bi-axial stress 
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loading case. It is therefore the purpose of the present paper to extend the physical model and 
its numerical solutions to cover the case of a uni-axial strain compression. The proposed physical 
model includes both the rubber compressibility and friction effects, since they play an important 
role during the rubber loading by the incident shock wave and its response to this loading. 

2 Theoretical background 

Assuming that the gaseous phase is an inviscid and thermally non-conductive ideal gas, i.e., its 
equation of state is P = ~R T and its internal energy is given by e = C v T, Mazor et al. [3] write the 
conservation equations for the gaseous and the solid phases using Lagrangian approach (see 
Eqs. (39) to (48) in their paper). In developing the governing equations for the solid phase (rubber) 
they assume that: 

(a) The rubber is an isotropic elastic medium and changes in its internal energy are negligibly 
small. 

(b) Body forces (gravity) and friction forces acting on the external surfaces of the rubber rod 
are negligibly small. 

(c) Stresses developed in the rubber rod are uniformly distributed along any cross- 
sectional area perpendicular to the x-axis so that the rubber's cross-sectional area remains planar 
throughout the deformation process. 

(d) The rubber is assumed to be incompressible. 
For the present case, i.e., a uni-axial strain loading (see Fig. 1 c) assumptions (b) and (d) are 

unacceptable. Therefore, one must include friction forces and the rubber compressibility in the 
conservation equations. The only two equations to be effected by relaxing these two, unrealistic, 
assumptions are Eqs. (44) and (47) in [3]. Accounting for the rubber compressibility alters Eq. (44) 

in [3] to 

0 [  OS(h. t) ] 
& Q~(h,, t) ~ A~(hr, t) = O. (2.1) 

Accounting for friction in the development of the conservation equations is manifested in one 
modification only: Consider a rubber rod element having a rectangular cross section of H by W, 
where H is its height and W is its width. The friction force exerted on its peripheral surfaces by the 
shock tube walls is 

Ffriction ~ -  2(H + W)AS#O-, sign (U~)= [ ~ #  v l 1 - v  o-x sign (U~) A,AS, (2.2) 

where AS, Fr = 2(H + W), and A, = HW are elemental axial length, perimeter, and cross- 
sectional area of the element, respectively, # and v are the friction coefficient and the Poisson 
ratio, respectively, o-, is the normal stress acting on the element surfaces; in the present case, 
o-, = o-y, and Eq. (35) in [3] is used for its evaluation. Defining a frictional force per unit volume as 

F r 
as = ~ # 1 - v o-x sign (Ur), (2.3) 
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then, the rubber conservation of momentum, Eq. (47) in [3], is replaced by 

8Ur 8a~ af (2.4) 
8t - Aro 8hr Or" 

In Eqs. (2.2) and (2.3) the function sign (x) is the sign operator which can take on values of + 1 
or - 1 depending upon the sign of the argument x. It should be noted that unlike Eqs. (39) to (48) 
in [3], which are expressed in a nondimensional form, Eqs. (2.1) through (2.4) are expressed in 
a dimensional form. 

3 The numerical scheme 

For the numerical solution, the conservation equations were transformed to finite difference 
equations. In order to handle discontinuities, like shock waves, the artificial viscosity concept is 
used. Implementation of this concept effects equations describing conservation of momentum 
and energy in the gaseous phase and conservation of momentum in the rubber; therefore these 
equations are written as follows: 
The equation of conservation of momentum for the gaseous phase reads 

a 
(Po + q.), (3.1) 

at ah o 

and the equation of conservation of energy in the gaseous phase takes the form 

Cv o~r~ = - [Po + qo] oV~ (3.2) & & ' 

where the artificial viscosity pressure term qs includes both linear (see Landschoff [4]) and 
quadratic (see yon Neumann and Richtmeyer [5]) terms; it is added only to compressed material 
elements. Specifically 

8U~ (au~  2 , for 8U~ 
qg = qL + qs = --aLAXQoC -~x + aNZAx2Q~ \ Ox J ~ x  < O, 

that is 

qo = - A x o o  -~x aLC -- aNeAx ax J" (3.3) 

From mass conservation in the gaseous phase and the definition of the gas velocity, one obtains 
8uo/ax = 1 / v  o dVo/dt. This leads to the following expression for the gaseous phase: 

1 dVg F Ax dVg~ 
qo = - A h o  LaLC - aN 2 --v0 ~ - j ,  (3.4) 

where c is the local speed of sound and Ah o = QoAx, ac and aN are constants (here az = 0.6 and 
aN = 1.5). 

It should be noted that Eq. (3.1) is written for a unit cross-section area and therefore A 0 is 
dropped. The same is done, subsequently, for the rubber conservation of momentum. Writing the 
partial differential equation describing conservation of momentum in the gaseous phase in 



Loading of a rubber rod 95 

a central finite difference form results in the following discretized expression: 

( U I  
. + i  At 

. , i  = (U~ - ~oo [(Po)['+ 1/2 + (qa)~'+l/2 - (Po)7-1/2 - (qo)~-i/2]. (3.5) 

The gas pressure P can be expressed in terms of temperature Tand specific volume Vusing the 
equation of state for an ideal gas. When this is inserted in Eq. (3.2) the following semi-implicit 

discretized form for the gas energy equation is obtained: 

1 (7 - 1) AVo) To" qo 
[TIn+l 2ggn -- ~ A Vg 
t*oJ~+ 1/2 = , (3.6) 

- i---A) 
1 + 2Vg.+ 1 

where AV o = Vo "+l - V0" and ? is the gas specific heat ratio. 
The conservation of momentum for the rubber, Eq. (2.4), should be replaced by 

[Gx(hr, t) + qr] -- - -  (3.7) 
~t ~?h, 0r' 

where the artificial viscosity pressure term for rubber, q,  is similar to that of the gas (see Eq. (3.3)). 
The discretized form of Eq. (3.7) is similar to that of the gas. The conservation of mass is satisfied 

automatically in the present Lagrangian method. 
For calculating the movement of the interface separating the gas and the rubber a mixed 

element is used; half gas and half rubber. The momentum equation for the mixed element, in 

discretized form, is 

(~_~o+ @)AUI_At [(~'+qr)~+i/2--(P~176 ' (3.8) 

where U S is the interface velocity. 

4 Resu l t s  and d i scuss ion  

Experiments were conducted in the shock tube of the Ernst Mach Institute, Freiburg, Germany. 
This shock tube has an inner diameter of 20 cm. The driver section is 180 cm long, the driven 
section is 888 cm long, and the test section is located about 721 cm downstream of the 
diaphragm. A schematic description of this tube is shown in Fig. 2. Cellulose acetate sheets were 
used as diaphragms for separating between the two sections. This was proven to be an excellent 
diaphragm material, since it is brittle when stretched and has a high breaking velocity. The shock 
tube has a test section equipped with plane, parallel windows of high optical quality glass. The 
optical field of view is 200 m m x  l l0  mm and its depth is 40 mm. It is designed for using 
'two-dimensional' models. During experiments the gas flow and the rubber behaviour were 
monitored by pressure measurements using Kistler 606 pressure transducers. Unlike in the 
previous study [3], in the present experiments the rubber displacements, due to its uni-axial strain 
loading by the incident shock wave, were very small and could not be detected by high-speed 
shadowgraph photography. Therefore, other means for measuring the rubber's displacement 
have to be employed. In the first set of experiments the uni-axial strain loading of 
a 40 x 40 x 100 mm rubber specimen was achieved by placing it inside the shock tube test 
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Fig. 2. Schematic description of the EMI shock tube used for studying the head-on collision of a planar 
shock wave with a rubber rod. All dimensions are in millimeters 
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Fig. 3. The rubber rod positioning inside the shock tube test section. MK i (i = 1, 2, 3, 4, 5, 6) indicate the 
location of piezoelectric pressure transducers used for pressure measurements 

section as shown in Fig. 3. The chemical composi t ion of the rubber  rod used is: na tura l  rubber  

SMR 100.0 gr, stearine 2.0 gr, zinc oxide 5.0 gr, carbon black Haf  10.0 gr, ant ioxidant  224b 2.0 gr, 

sulfur 2.75 gr, CBS 1.00 gr, T M T D  0.10 gr. This composi t ion ensured good elasticity. F rom static 

load testing it is found that  the rubber  specimen's elasticity constant  is G = 9.317 bar;  the rubber  

Poisson's  ratio used in the present computat ions  is 0.495. 

Results obtained for this geometry are reported in Ben-Dor et al. [6]. Poor  agreement is found 

between experimentally obtained pressures (stresses) in the rubber  and the appropr ia te  

numerical  simulations, for details see Fig. 3 in Ben-Dot  et al. [6]. The main reason for the 

obtained discrepancy between experimental  and nmnerical  results is the use of pressure gauges 

(MK 1, M K  2 and M K  5 shown in Fig. 2 in [6]) made for pressure measurements in gases to 
measure pressure (stresses) in the rubber  rod. 
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To confirm the validity of the above explanation regarding the discrepancy between 
experimental and numerical results obtained for pressures in the rubber  rod, a different 
experimental approach was undertaken. In the new experiments the same rubber specimen that  
was reported in [6] was used. It was rotated 90 degrees relative to its original position (see Fig. 4). 
Now the length of the rubber  is significantly shorter while the walls bounding it are positioned 
further away relative to the case reported in [6]. In the new setting a provision is made for an air 
cushion between the rubber  rear surface and the shock tube end-wall. Using this provision results 
in the Kistler gauges (MK 2, 3, 4 shown in Fig. 4) measuring pressures in the air pocket  and not in 
the rubber  as was done before. Such measurements should be accurate, since it is within the 
specifications of the used gauges. In the first experiment, conducted with the rubber  rod setting as 
shown in Fig. 4, the width of the air cushion was taken as 51 = 1 mm. The initial conditions were: 

Ms = 1.40, Po = 0.993 bar, and To = 23.3~ In such a case pressure transducers M K  2, M K  3, 
and M K  4 were supposed to read pressures in the gas only. However, as can be seen from the 
experimental readings shown in Fig. 5, it is quite probable  that  a momentary  contact between the 
rubber  rear surface and the pressure transducers took place; see the pressure peaks in Fig. 5. It  
should be noted that, while there are discrepancies in the pressure amplitudes between 
experimental findings and numerical predictions (Fig. 5), the time variations are very similar. The 
pressure discontinuity in the air pocket, shown in the numerical results at t -~ 0.9 ms, is due to the 
following reason: Once the transmitted compression wave, in the rubber, reaches the rubber  rear 
surface it is reflected back as a rarefaction wave, since this surface is a free surface. At that time the 
rubber  rear surface starts moving into the air cushion and thereby compresses the air there. This 
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Fig. 4. An alternative positioning of the rubber rod inside the shock tube test section. Also shown is the 
electro-optical displacement measuring device alignment relative to the shock tube test section. MK i (i = l, 
2, 3, 4, 5, 6) are pressure transducers 
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compression continues as long as the rubber's rear surface moves further into the air cushion. 

After some time, depending on the size of the air cushion and the strength of the incident shock 

wave, a situation is reached when the pressure inside the air cushion is equal to the stress 

prevailing at the rubber rear end (after a few reflections in the rubber). When this happens, the 

reflected wave from the rubber rear surface is a compression wave. The pressure plateau shown at 

0.8 < t < 0.9 ms (see numerical results in Fig. 5) and the pressure discontinuity at about  

t = 0.9 ms manifest the shift from a reflected rarefaction wave to a reflected compression wave, 

due to the pressure buildup in the air cushion. At about 1 ms, the rubber rod starts moving away 

from the air cushion, and the air pressure declines accordingly. As could be expected good 

agreement exists between experimental (pressures measured by gauge M K  1 in Fig. 4) and 

numerical results for the static pressure ahead of the rubber specimen, see Fig. 6. The 

displacement of the rubber specimen frontal surface was too small to be measured from plain 

photography. To avoid potential contacts between the rubber rear surface and the pressure 

transducers located at the end wall of the air cushion and to enable measurements of the rubber 

displacement due to its loading by the incident shock wave, the width of the air cushion was 

extended. 
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Fig. $. Pressure variations with time at the location of pressure transducer MK 2 (shown in Fig. 4). Initial 
conditions are: 61 = 1 mm,/~2 = 19 ram, Po = 0.993 bar, T o = 23.3~ and M s = 1.40.  Experimental 
results, - - - numerical results 
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Fig. 6. Pressure variations with time at the location of pressure transducer MK 1 (shown in Fig. 4). Initial 
conditions are: 61 = 1 mm, ~f z = 19 ram, Po = 0.993 bar, T O = 23.3~ and M s = 1.40.  Experimental 
results, - - - numerical results 
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In the following results, in addition to pressure measurements, the rubber displacement was 
also recorded using an electro-optical displacement measuring device. Its positioning relative to 

the shock tube test section is shown in Fig. 4 and a schematic description of the electro-optical 

unit is given in Fig. 7. This device measures the displacement of a black and white edge in normal 
direction. The light beam reflected from the black and white edge is focused by a lens into 

a photo-cathode of an image converter (see Fig. 7). Tile electron image is reflected within the 

photo-cathode to a diaphragm having a small hole. At the beginning of each test an adjustment is 

made to ensure that the measuring beam passes exactly through the hole in the diaphragm. When 

the black and white lines are displaced, a control circuit displaces the electron image in such 
a way that a chosen point of the edge always falls on the diaphragm's hole. The current in the 

control circuit is proport ional  to the edge displacement; it represents the measuring signal. The 

rise time of the signal (from 0 to 63%) is less than l#s.  This optical device can measure 

displacements to within _+ 0.03 mm. 

In Fig. 8 experimental and numerical results for static pressure ahead of the rubber specimen 

(i.e., measured by gauge M K  1 of Fig. 4) are shown. In the present case Ms = 1.56, fit = 15 mm, 

62 = 5 mm, Po = 0.983 bar, and To = 21.4~ Good  agreement exists between the two results 
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Fig. 7. Schematic illustration of the electro-optical displacement measuring device 
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Fig. 8. Pressure variations with time at the location of pressure transducer MK 1 (shown in Fig. 4). Initial 
conditions are: 5~ = 15 ram, 32 = 5 ram, Po = 0.983 bar, T o = 21.4~ and M s = 1.56.  Experimental 
results, - - - numerical results 
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regarding the pressure j ump  across the incident shock wave. As for the pressure behind the shock 

wave reflected from the rubber  frontal surface, one can observe that  (see Fig. 8): (i) a higher peak 

is registered experimentally in comparison with the numerical  predictions and (ii) the 

experimental  findings suggest the existence of pressure pulses (weak shocks) behind the 

shock-wave reflected from the rubber 's  frontal surface. These pressure pulses are the result of 

shock reflection from the rubber  holder in the channel produced between the rubber  specimen 

and the shock tube floor and ceiling (see Fig. 4). This addi t ional  flow, in the narrow channel 

generated between the rubber  specimen and the shock tube walls, is not  included in our 

numerical  solution. It is, however, quite clear that  the average pressure readings at the place 

where pressure transducer M K  1 is positioned, agree very well with our numerical  predictions. 

The measured and calculated displacements of the rubber rear surface are shown, for the 

previously ment ioned conditions, in Fig. 9. Very good agreement exists between the two results. 

The displacement measurements reach saturat ion at t =~ 1.1 ms, because for achieving high 

resolution the measuring signal was addi t ional ly  increased. At t ~ 1.1 ms, in Fig. 9, the upper  

limit of the transient  recorder was reached. The measured and calculated pressures acting on the 
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Fig. 9. Displacement of the rubber rod rear surface versus time. Initial conditions are: 61 = 15 mm, 
S a = 5 mm, Po = 0.983 bar, T o = 21.4 ~ and M s = 1.56. - -  Experimental results - - - numerical 
results 
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Fig. 10. Pressure variations with time at the location of pressure transducer MK 2 (shown in Fig. 4). Initial 
conditions are: c~ 1 -- 15 ram, ~2 = 5 ram, Po = 0.983 bar, T O = 21.4~ and M s = 1 .56 .  Experimental 
results, - - - numerical results 
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steel wall of the air  cushion (gauge M K  2, in Fig. 4) are shown in Fig. 10 for the condit ions 

specified previously. The measurements reach saturat ion at t ~ 1.62 ms due to the reason just  

explained. I t  is apparent  from Fig. 10 that  good  agreement exists between experimental  and 

numerical  results. The agreement is definitely superior to that  repor ted previously (see [6]). 

Another  set of results is shown in Figs. 1 1 - 1 3 .  They were obtained for M s  = 1.54, 

Po = 0.99 bar, To = 22.8~ 51 = 5 ram, and 62 = 15 ram. It  is apparent  from Fig. 11 that  a very 

good agreement exists between the measured and calculated pressures ahead of the rubber  

(pressure gauge M K  i in Fig. 4). The experimental  and numerical  results for the displacement of 

the rubber  rear surface are shown in Fig. 12. Again a very good agreement is found between the 

two results, up to the point  where the recorder reading the experimental  da ta  reaches saturation. 

A compar ison between numerical  and experimental  results for the pressure in the air cushion, 

where pressure gauge M K  2 is placed, is shown in Fig. 13. A good agreement is found between the 

two results. F o r  all the numerical  results shown so far, a friction coefficient of # = 0.04 is used. 

Based upon the agreement between the two sets of results shown in Figs. 8 through 13, it can be 

stated with confidence that  the proposed  physical  model  and its numerical  s imulat ion describe 
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Fig. 11. Pressure variations with time at the location of pressure transducer MK 1 (shown in Fig. 4). Initial 
conditions are: 51 = 5 mm, 6 z = 15 mm, Po = 0.99 bar, T o = 22.8 ~ and M s = 1.54. - -  Experimental 
results, -- - - numerical results 
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Fig. 12. Displacement of the rubber rod rear surface versus time. Initial conditions are: c~ 1 = 5 mm, 
5 z = 15 mm, Po = 0.99 bar, T O = 22.8~ and M s = 1 .54 .  Experimental results, - - - numerical 
results 
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Fig. 13. Pressure variations with time at the 
location of pressure transducer MK 2 (shown 
in Fig. 4). Initial condition are: cS 1 = 5 ram, 
~2 = 15 ram, Po = 0.99 bar, T o = 22.8~ and 
M s = 1.54.  Experimental results, - - - 
numerical results 

the uni-axial strain loading case satisfactorily. To assess the role played by friction developed 

between the rubber rod and the shock tube walls, this physical model is simulated numerically for 
three different friction coefficients, i.e., # -- 0, 0.04, and 0.09. All cases are simulated for the 

geometry shown in Fig. 3, M s  = 1.507, Po = 0.983 bar, and To = 21.2 ~ C. For  the rubber we take 
G = 9.317 bar, ~'o = 1.007 g/cm 3, and v = 0.495. The obtained results for pressures in the gas 

and in the rubber are shown in Fig. 14. At time t = 0, marked as line No. 1 in Fig. 14, the incident 

shock wave is shown prior to its head-on collision with the rubber rod. The gas ahead of the 
shock wave and the rubber specimen are still experiencing the initial pressure, i.e., 

Po = 0.983 bar. 76.1 #s later, the lines marked as No. 2 in Fig. 14, show the reflected and the 
transmitted waves. The one on the left is the shock wave reflected from the rubber frontal surface 

and the one on the right is the transmitted wave in the rubber. As time progresses both waves 

propagate further into the gas and into the rubber, respectively. It is apparent from Fig. 14 that 

the friction force has a significant effect on the strength of the transmitted wave, in the rubber, but 

not on its propagation velocity. As expected, it has no effect on the reflected shock wave in the 
gas. For  the case in which no friction is included (ff = 0), the strengths of both the reflected and 
the transmitted waves are unchanged. Introducing friction, we note a clear weakening of the 

transmitted wave in the rubber. The larger # is, the smaller is the pressure jump across the wave 

(see Fig. 14). How changes in # effect the strength of the transmitted compression wave in the 

rubber, and its propagation velocity, can be seen in Fig. 15. It is clear from this figure that, while 

the velocity of the compression wave is independent of # (the S versus t curve is a straight line for 
all #'s), the post-wave pressure depends strongly upon #. The fact that the wave strength changes 
without any changes in its velocity is an indication that this is a linear wave (compression wave) 

rather than a shock wave. Further discussion of this aspect is given below. The strong damping 
effect of the friction force which develops between the rubber rod and the walls surrounding it is 

also shown in Figs. 16 and 17. In these figures the pressures prevailing at the location of pressure 
transducers M K  2 and M K  5 (of Fig. 3) are calculated for three different friction coefficients, i.e., 

# = 0, 0.04, and 0.09. In Fig. 16 the pressure at the station where gauge M K  2 is located, is shown 
as a function of time. In the ideal case of no-friction (# = 0) the wave motion in the rubber is cyclic 
due to the absence of a damping mechanism. Once friction is introduced the cyclic wave motion is 
destroyed. For  # = 0.04, the first pressure cycle, although reduced in strength, is clearly visible. 

Hence, the pressure jump across the transmitted compression wave in the rubber followed by 
a further jump across the reflected compression wave from the rubber rod rear surface, and the 
pressure reduction across the rarefaction wave reflected first from the rubber rod frontal surface 
and thereafter from its rear surface, are clearly visible in Fig. 16. A further increase in the friction 
coefficient (to # -- 0.09) results in a dramatic damping; now only the pressure jump across the 
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Fig. 14. Numerical results showing the shock waves in the air and the compression 
waves in the rubber rod at different times 

No. 1 2 3 4 5 6 7 

time (~s) 0 76.1 136.7 197,3 255.2 311.9 359.7 

Initial conditions are: Po = 0.983 bar, T o = 21.2~ and M s = 1.507, G = 9.317 bar, 
v = 0.495, Qro = 1.007 g/cm 3 

inc ident  compress ion  wave a n d  across its reflection from the rubbe r  rod rear  surface are noticed�9 

Thereafter  a uniform,  cons t an t  pressure prevails�9 Similar  behavior  is experienced at the rubbe r  

rear  surface, where it is a t tached to a rigid wall  (see Fig. 17). N o w  ( / / =  0.09) on ly  one pressure 

j u m p  is not iced;  n a m e l y  that  existing beh ind  the reflected compress ion  wave from the rubber ' s  

surface. As al ready shown before, the la rger / / i s ,  the smaller  is the pressure (stress) in the rubber .  
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Thus, the friction presence causes significant reduction in the pressure (stress) developed in the 
rubber rod and changes the wave pattern by damping. 

It should be noted here that it is not simple to determine the appropriate friction coefficient 
under conditions of the present experiments, i.e., for an extremely fast loading. The value of 
/~ = 0.04 is chosen due to the good agreement obtained between experimental and numerical 
results when this value is used. It is also shown that changes in # have a significant effect on the 
obtained numerical results. 

As is noted in [3] compression waves do not coalesce to a shock wave for the uni-axial strain 
loading case. Therefore, for such a loading, only compression waves exist and they propagate 
with the speed of sound (elastic longitudinal wave). It is also noted there that the highest speed of 
sound (compressive wave) is encountered in the uni-axial strain loading case. The present 
numerical results (e.g., those shown in Figs. 14 through 17) indicate that the waves in the rubber 
propagate with a constant velocity, in the present case it is 305.2 m/s. The rubber particle velocity 
is significantly smaller, in the present case it is 1.46 m/s only. It is possible to calculate these two 
velocities analytically, directly from the conservation and constitutive equations. This computa- 
tion is worth conducting, since it may serve as a further verification of the numerical scheme used. 

Consider an incident shock wave (I.S.W.) in the gas moving to the right (see Fig. 18 a), towards 
a plane AB separating gas and rubber. This shock wave is partially reflected back into the gas, 
and partially transmitted into the rubber. First, consider a rubber element ABA'B' shown in Fig. 
18b. The prevailing conditions at AB and A'B' are shown in Fig. 18b, where crx is the sress 
generated in the rubber by the transmitted compression wave (T.C.W.). D is the speed of 
propagation of the compressive wave in the rubber. Ahead of the compression wave in the rubber 
ambient conditions exist. Up is the particle velocity induced by the compression wave in the 
rubber. From the conservation of mass it follows that 

~ro D = Qr(D - up), (4.1) 

and from the conservation of momentum we find 

~roDUp = ~,~ - -  Po, (4.2) 

where crx is positive for compression. 
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Fig. 18. An illustration showing: in a, an incident 
shock wave in the gas prior to its head-on collision 
with a rubber rod; in b, the reflected shock wave in the 
gas and the transmitted compression wave in the 
rubber shortly after the collision 
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Combining Eqs. (4.1) and (4.2) we obtain 

~ u p ( D  - up) = ~rx - Po,  

or  

(4.3) 

Alternatively, from Eq. (4.1) it follows 

D -  0rup . (4.5) 
~or - ~Go 

From Eqs. (4.4) and (4.5) we have 

~ro _ 1 ~r~ (4.6) 
~r crx - Po" 

Equation (4.6) relates the rubber  densities and pressure (stress) to its particle velocity. In order 
to assess the rubber  particle velocity, an additional, constitutive equation is needed, i.e., the 
rubber 's  stress-strain relation. For  an uni-axial strain loading case we have 

~x =/~(1 - 2x) + Po, (4.7) 

where /~-= E ( 1 -  v ) / ( 1 -  v -  2v2). The rubber 's  non-dimensional extension ratio 2x is 

2x = A S / A S o  = ~Oro/Or SO that  Eq. (4.7) can be rewritten as 

G = / ~ ( 1 - Q r ~  (4.8) 

Substituting ~O~o/Qr from Eq. (4.6) into Eq. (4.8), we obtain 

a ~ - P o  
u p -  ~ /  . (4.9) 

Equation (4.9) relates the particle velocity induced by the incident elastic compression wave 
to the stress intensity G. For  the reflected shock wave (R.S.W.) in the gas, a similar (Up, P)  relation 
can be obtained. It is known from gasdynamics (see Eq. (20) on page 67 in [2]) that: 

Px-P1 
= - . (4.10) 

e-  + 

For  the nomenclature used in Eq. (4.10) see Fig. 18 b. The particle velocity induced by the 
compression wave transmitted through the rubber and the gas velocity behind the reflected 
shock wave (in the gaseous phase) can be found from Eqs. (4.9) and (4.10) using the following 
interface conditions: 

(i) The forces acting on plane AB (Fig. 18 b) due to the gas pressure and by the rubber stress 
are equal. 

(ii) At plane AB the particle velocity of the rubber  is equal to that of the gas. 
For  the initial conditions used to obtain the results shown in Figs. 14 to 17 (M~ = 1.507, 

Po = 0.983 bar, To = 22.2~ G = 9.317 bar, v = 0.495, ~ro = 1.007 g/cm3), up = 1.467 m/s; 

~x-Po 
D = up + - -  (4.4) 

~OrUp 
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which is almost identical with the numerical result up.nu,, = 1.457 5 m/s. Once up is known, D can 

easily be calculated from Eq. (4.1) to yield D = 305.69 m/s. Again, we observe a very good 

agreement with the numerical result D = 305.2 m/s. 

5 Conclusions 

A physical model capable of describing the head-on collision of a planar shock wave with 

a rubber rod, which results in a uni-axial strain loading, is proposed. This model includes the 

rubber's compressibility and the friction force developed between the rubber contact areas with 

its surrounding walls. The proposed physical model is simulated numerically. The good 
agreement between the numerical and experimental results confirms the reliability of the 

proposed model and the accuracy of the numerical scheme used for its simulation. Additional 
support to the accuracy of the present numerical simulation is obtained by comparing the 

analytical and the numerical results for the velocity of the compression wave in the rubber, and 

the rubber's particle velocity. It is demonstrated that the analytical and numerical values for 
these velocities are almost identical. 

It follows from the present experimental and numerical studies that: 
(a) Friction forces play an important  role in the present rubber loading due to its head-on 

collision with a planar shock wave. 

(b) The higher is the friction coefficient, the stronger is the wave damping in the rubber. 
(c) In a uni-axial strain loading only compression and/or rarefaction waves exist in the 

rubber rod but no shock waves. Waves propagate with constant velocity, independent of the 

friction coefficient and of the intensity of the colliding shock wave. 
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