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Summary. This paper suggests the application of the minimum principle of Pontryagin to the solution of an 
optimal control problem for a porous packed bed cooled by a flow of incompressible fluid. The procedure for 
determination of the optimal initial temperature distribution in a one-dimensional packed bed is developed. 
The amount of heat transferred to the fluid phase is utilized as the optimization criterion. It is necessary to 
maximize this amount under the following constraints: (a) a given amount of heat is initially stored in the 
packed bed and (b) a given duration of the process. As the control the initial temperature of the packed bed is 
considered. Qualitative changes in the behavior of the optimal initial temperature distribution take place as 
the duration of the process is increased. 
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specific surface area common to solid and fluid phases, m2/m 3 
specific heat at constant pressure, J k g - 1 K -  1 
fluid-to-solid phase heat transfer coefficient, W m 2K- t 
modified Bessel function of the order v 
dimensionless length of the porous slab 
length of the porous slab, m 
dimensionless time 
time, s 
dimensionless duration of the process 
temperature, K 
reference temperatures, K 
the lower boundary for admissible controls 
the upper boundary for admissible controls 
velocity of the fluid phase, m s-  1 
dimensionless Cartesian coordinate 
Cartesian coordinate, m 

Greek symbols 

8 

21 
0 
Oo 
P 

porosity 
dimensionless temperature of the fluid phase 
dimensionless inlet temperature of the fluid phase 
the Lagrange multiplier 
dimensionless temperature of the solid phase 
dimensionless initial temperature of the solid phase 
density, kg m-3  

Subscripts 

f fluid 
s solid 
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1 I n t r o d u c t i o n  

Optimization problems in heat and mass transfer have recently drawn considerable attention 
[1] - [4]. This is because these problems are interesting from the fundamental point of view and 
also are relevant to many practical applications. 

In this paper we suggest the application of the minimum principle of Pontryagin to the 
solution of an optimal control problem for a porous packed bed cooled by a flow of 
incompressible fluid. Our task is to determine the optimal initial temperature distribution in 
a packed bed to maximize its performance. More precisely, we maximize the amount of heat 
transferred by the packed bed to the fluid for a given duration of the process and for the given 
amount of heat energy initially stored in the packed bed. To the best of the author's knowledge, 
this is the first attempt to calculate the optimal initial temperature distribution in a packed bed. 

Investigation of the transient response of packed beds and their performance has been a subject of 
permanent interest for scientific investigations. This is because of the important applications of 
porous beds, such as the storage of heat energy. Recent works [5]-[9] present numerical solutions for 
non-thermal equilibrium, condensing, forced fluid flow through porous packed beds. In these 
references the two energy equation model is utilized in which the temperature difference between the 
fluid and solid phases is taken into account. Proceeding from this model, [10] analysed the 
temperature difference between the fluid and solid phases and found them to exhibit wave properties. 

2 S t a t e m e n t  o f  the  p r o b l e m  

Most of the analytical studies of these phenomena are concentrated on the Schumann model of 
a packed bed suggested in [11]. In the Schumann model a flow of incompressible fluid through 
a packed bed is considered, and the thermal conduction terms in both the fluid and solid phase 
energy equations are neglected. In the present paper we follow this model and employ the 
following assumptions: 

- The fluid phase is incompressible and the mass flow rate at every cross section of the packed 

bed is constant 
- Thermal, physical, and transport properties are constant 
- The conduction heat transfer is negligible in both the fluid and solid phases 
- Heat transfer and fluid flow are one-dimensional. 

As follows from [12], under these assumptions the equations governing the solid and fluid 
temperature distributions can be presented in the following nondimensional form: 
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Here the dimensionless temperature of the solid phase is defined as 
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and the dimensionless temperature of the fluid phase is defined as 

~(z, t) T s - T1 (3) 
T2-  TI 

where T 1 and T 2 are reference temperatures chosen to suitably normalize the initial and 

boundary conditions. 
The dimensionless time and coordinate in Eqs. (1) are defined as follows: 

h s f a s f t '  
t - -  

( l - e )  p~c,' 

and 

h s f a s f z  t 
z ~ 

~ p f C p f V  

The analytical solutions for Eqs. (1) for different boundary conditions are obtained in [13]- [17]. 
In [18], [19] the solution for the case when the inlet fluid temperature is a function of time and the 
initial temperature of the packed bed is a function of the space variable is obtained. In [18], the 

following initial and boundary conditions are utilized: 

O(z, 0) = 0o(0), (4.1) 

4,(0, t) = r  (4.2) 

Upon simple rearrangement, the solution obtained in [18] can be put into the following form: 

t -- Az 

O(z, t) = exp (--z) S ~bi,(t - Az - ~) exp ( - ~ )  lo[(4zz) 1/21 d~ 
0 

+ exp (Az -- t) Oo(z ) + ~ Oo(z -- 4) exp (-- ~) I1[{4~(t - Az)} t/z] d~ (5) 
0 

r t) = exp (Az - t) i Oo(z - ~) exp ( - 4 )  Io[{4~(t - Az)} 1/2] d~ 
0 

+ exp ( - z )  ~bin(t  - -  Az) + S ~ i n (  t - -  Az - z) exp ( - z )  I1[(4"~Z) 1/2] dz . 
0 

(6) 

Equations (5), (6) determine the temperatures of the solid and fluid phases at a particular point in 
the porous bed with the position z' (or corresponding dimensionless coordinate z) after this point 
is reached by the temperature front moving from the fluid inlet boundary with a velocity v, i.e. 
when t' > z'/v. In the dimensionless coordinates this condition is t > Az .  Because the thermal 
conductivities of both the solid and fluid phases are neglected, for t < Az the temperature of the 
solid phase at this point equals the initial temperature determined by the function Oo(z ) in 
Eq. (4.1). 

We consider a one-dimensional porous slab of the length/2. The dimensionless length of the 

slab is then defined as 

L - hsfasfE 

s  
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It is assumed that the inlet fluid phase temperature is constant. In this case it is always possible to 
select the reference temperatures, T 1 and T 2, in Eqs. (2) and (3) so that  the dimensionless inlet 
temperature equals zero. This essentially simplifies Eqs. (5) and (6), because in this case the first 
term on the right-hand side of Eq. (5) and the second term on the right-hand side of Eq. (6) are 

equal to zero. 
It  is assumed that the initial packed bed temperature is given by some function of the 

coordinate z, Oo(z ). Consider the following optimal problem. The function Oo(z ) is considered as 
a control. It is assumed that this function is a bounded, piecewise continuous function with 
a minimum value Uml n and a maximum value urn, .. As the optimization criterion the amount  of 
heat energy transferred to the fluid phase is used. It is necessary to maximize this amount  of heat 
under the following constraints: (a) a given amount  of heat energy is stored initially in the packed 

bed and (b) a given duration of the process. 
The mathematical  formulation of this problem is as follows. It is necessary to determine the 

optimal control Oo(z ) that maximizes the following functional: 

t j  

q~(Oo) = ~ ~(L, t) dt ~ max (7) 
AL 

where the function ~b(L, t) is determined by Eq. (6), under the following constraints: 

L 

0o(4) d~ = E = const (8) 
0 

and 

Umin ~ O0(Z ) ~ Umax. (9) 

The lower integration limit in Eq. (7) corresponds to the moment  of time when the fluid front 
reaches the outlet boundary,  and the upper limit corresponds to the duration of cooling. We 

consider the case when ty > AL.  

3 Solution and analysis 

To bring the problem (7)-(9)  to the form of an optimal control problem it is necessary to 
rearrange the functional (7). To accomplish this, Eq. (6) for the function ~b(z, t) is first rearranged 
by the following change of the integration variable: 

= z - 4. (10) 

Then, accounting for the assumption that  the inlet temperature of the fluid phase is zero, Eq. (6) at 
the outlet boundary  z = L c a n  be written as 

z 

~b(L, t) = S 0o(~) exp ( A L +  ~ - L )  exp ( - t )  Io [{4 (L-  ~) (t - AL)} l/z] dg. (11) 
o 

Then, utilizing Eq. (11) and changing the integration order, Eq. (7) can be recast as 

tf L 

4)(00) = ~ ~)(L, t) dt = ~ 0o(r162 dr --, max (12) 
AL 0 
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where 

ku(g) -- exp (AL + ~ - L) 
tf 

AL 

exp ( - t )  I o [{4 (L-  ~) (t - AL)}~/2I dr. 

The functional ~(0o) is the performance functional for our problem. 
The problem given by Eqs. (8), (9), and (12) is an optimal control problem. It  can be solved by 

the minimum principle of Pontryagin considered, for example, in [20] -  [21]. Application of this 
principle leads to the following requirement: 

Oo(z ) [21 - ~(z)] ~ min (13) 

where 21 is the Lagrange multiplier. 
Equation (13), when applied accounting for the constraint (9), makes it possible to determine 

the optimal control, Oo(Z), as 

00(Z ) = Umi n if 21 - W(z) > 0 

Oo(Z ) = Urea x if 21 -- 7~(Z) < O. (14) 

To make use of Eqs. (14) it is necessary to calculate the value of the Lagrange multiplier, 21. To do this, 
transcendental equation (8) needs to be solved accounting for Eq. (14). To solve this problem, first 
a segment that  unequivocally contains the desired value of 21 was selected. Then an algorithm for 
finding a root  of a transcendental equation on a given segment was applied to Eq. (8). 

Figure 1 depicts the optimal controls, Oo(z ), for different durations of the process, ty, for the 
following data: Umin = 0, Urea x = 1, E = L/2, L =  1, A = 0.05. As can be seen in Fig. 1, for a small 
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Fig. 1. The optimal initial temperature 
distributions in the porous slab 
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Fig. 2. The functions 21 - g~(z). For  t s = 25 and for t s = 30 the value of these functions is multiplied by 107 
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Fig. 3. The dependence on the gain in the amount  of the heat energy transferred to the fluid phase when the 
optimal initial temperature distribution is utilized instead of the constant initial temperature of the duration 
of the process 
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duration (t~ = 1) the optimal initial temperature Oo(Z ) takes its minimum value, gmin, in the first 
half of the slab and its maximum value, u . . . .  in the second half of the slab. With an increase in the 
duration (t I = 25) the distribution of the optimal initial temperature becomes more complicated. 
Now, the optimal initial temperature takes its minimum value in the beginning of the slab, then 
its maximum value, then again its minimum value and then again its maximum value. With 
a further increase in the duration (t s = 30) a new change in the distribution occurs: the maximum 
value occurs in the beginning of the slab, then the minimum value and then again the maximum 
value. The corresponding functions 21 - ~(z), which determine these distributions of the 
optimal temperature, are depicted in Fig. 2. 

Thus Fig. 1 shows that with an increase in the duration of cooling the distribution of the 
optimal initial temperature changes not only quantitatively but also qualitatively. To understand 
the reason for these qualitative changes we consider two extreme cases, namely, a very short and 
a very long duration of the process. For a very short duration the temperature front has just 
reached the outlet boundary of the porous slab and the minima-maxima behavior is obviously 
beneficial. Indeed, otherwise after contacting with the hot part of the packed bed the fluid will be 
cooled in the cold part, and the resulting amount of heat transferred to the fluid will be small. For 
a very long duration of the process its duration becomes sufficient to cause a redistribution of the 
temperature in the packed bed and to heat the part of the packed bed which was initially cold. 
This results in moving the part which should be initially at a maximum temperature to the 
beginning of the slab. 

It is interesting to compare the value that the performance functional #(0o) takes on the 
optimal functions, calculated according to Eqs. (14), and on the functions 0o*(Z) - 1/2. These 
functions, 0o*(Z ), correspond to a constant initial temperature distribution in the slab. For 
E = L/2 (this was used to calculate Fig. 1) the functions 0 o*(z) - 1/2 apparently satisfy constraint 
(8). The ratio [#(0o) - ~(0o*)]/#(0o* ) characterizes the gain in the amount of the heat energy 
transferred to the fluid phase when the optimal initial temperature distribution is utilized 
instead of the constant initial temperature. The dependence on this ratio of the duration of 
the process is depicted in Fig. 3. It can be seen that the optimal initial temperature distribution 
makes it possible to considerably improve the discharging characteristics of the packed bed 
(up to approximately 25%) for short durations of the process. The influence of the initial 
temperature on the discharging efficiency quickly decreases with an increase of the duration 
(for t I > 10 it becomes so small that it is hardly visible in Fig. 3). This conclusion agrees with 
the well known property of heat transfer processes to forget initial conditions. The rate at 
which the curve depicted in Fig. 3 tends to zero characterizes the rate at which the process 
forgets its initial conditions. 

4 Conclusions 

(i) A method for the optimization of the initial temperature distribution in a one-dimensional 
porous slab is suggested. As the optimization criterion the amount of heat transferred to the fluid 
phase is utilized. 

(ii) It is shown that with an increase in the duration of the process qualitative changes in the 
optimal temperature distribution take place. For a small duration the optimal initial 
temperature takes its minimum value in the first half of the slab and its maximum value in the 
second half of the slab. With an increase in the duration the distribution of the optimal initial 
temperature becomes more complicated. The optimal initial temperature takes its minimum 
value in the beginning of the slab, then its maximum value, then again its minimum value and 
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then again its maximum value. With  a further increase in the dura t ion  a new change in the 

distr ibution occurs: the maximum value in the beginning of the slab, then the minimum value 

and then again the maximum value. 

(iii) The opt imal  initial temperature  dis tr ibut ion makes it possible to considerably improve 

the discharging characteristics of the packed bed for short  durat ions of the process. The 

influence of the initial temperature  on the discharging efficiency quickly decreases with an 

increase of the duration.  
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