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Summary. Each particle of a continuum is assigned a second order tensor which
is taken as a measure of the deformation of some neighborhood of the particle, and
which is determined by a functional depending on the configurations of that neigh-
borhood. Two invariance restrictions are imposed on the functional whose values
are spatial strain tensors, that is, associated with the deformed configuration. The
first requirement is that a time shift and rigid transformation of the deformed con-
figuration leave the spatial deformation tensor unaltered relative to it. The second
requires that if particles of distinet continua undergo the same deformation, the
corresponding deformation tensors should be the same. For the special case in which
the functional depends on the deformation in the smallest neighborhood of a particle,
the restrictions imply that the deformation tensors associated with the deformed
and reference configurations are isotropic functions of the left and right Cavcmy-
GREEN tensors, respectively.

Zusammentassung. Jedem Teilchen eines Kontinuums wird ein Tensor zwelter
Stufe als Ma8 fir die Deformation einer gewissen Nachbarschaft dieses Teilchen zu-
geordnet, der durch ein Funktional bestimmt wird, das von der Konfiguration dieser
Nachbarschaft abhéngt. Zwei Invarianzbedingungen werden diesemm Funktional,
dessen Werte rdumliche Verzerrungstensoren darstellen, auferlegt, und zwar im
Hinblick auf die deformierte Konfiguration. Die erste Forderung besagt, dall eine
Zeitverschiebung und eine starre Transformation der deformierten Konfiguration
den rdumlichen Verzerrungstensor im Hinblick auf diese ungeéndert lassen. Die
zweite Einschrinkung besagt, daB entsprechende Deformationstensoren von Par-
tikeln verschiedener Kontinua, die dieselbe Verformung erlitten haben, gleich sein
sollen. Im Spezialfall, daB die Funktionale nur von der Deformation in der nédchsten
Umgebung des Partikels abhéingen, beinhalten die Einschrénkungen die Aussage,
daB die mit dem deformierten und dem undeformierten Zustand verkniipften Defor-
mationstensoren nur isotrope Funktionen des linken und des rechten CavcwHy-
GrEEN Tensors sein kdénnen.

1. Introduetion

The concept of strain as a measure of the change of local geometry
of a deforming continuum has a long history dating back to the early
seventeenth century!. Certain of the measures proposed since that time
have met with general acceptance. These measures belong to a class whose
general form satisfies a common set of underlying restrictive conditions
which must logically be imposed upon any rational measure. The inade-
quacy of those measures which have not been found acceptable in general

! See TruespELL and Tourixn [9], § 33A for an account of the history.
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studies of continuum mechanics has been due, we believe, essentially to
an incomplete and insufficient understanding of these restrictive con-
ditions. We remark that the acceptable measures have also been simple
in the sense that only local geometric changes in vanishingly small neigh-
borhoods of a particle are assumed to affect the strain at the particle.
With the recent flourish of research on polar media it would appear that
this restrictive assumption could stand generalization. This possibility of
generalization combined with certain classical, as well as current day?
proposals for measures of strain which are not properly invariant® and
which therefore, within the rational theory of continua, are not generally
applicable, supplies the motivation for this investigation of general meas-
ures of deformation.

In order to develop a structure upon which all realistic measures
of deformation should be built, we shall find it necessary to present those
ideas which are most fundamental and essential to the concept of strain.
Hence, after a brief section on kinematics, we begin in Section 3 with a
general definition of strain at a particle in its motion, based on the intuitive
feeling that it should depend upon the motion of the particles in some
neighborhood of the fixed particle. Certain invariance restrictions which
should be imposed on all realistic measures of strain are then discussed in
Sections 4 and 5. The results obtained are applied to the limiting case
of simple strain in which the neighborhood of a particle, which is assumed
to influence the value of strain at the particle, is taken vanishingly small.
In particular, Section 4 contains a statement of the implications of our
first postulate which says, roughly, that if two motions of a continuum
differ only with respect to when they are initiated, and after being initiated
are related by a continuous time parameter sequence of rigid body trans-
formations, the strains should remain intrinsically unaltered®. In Section 5
we similarly treat our second postulate, which is essentially a requirement
that if particles of materially distinct continua are subjected to intrin-
sically the same local kinematics then intrinsically the strain at these
particles should be the same’. Strain measures which satisfy the two
invariance postulates discussed in Sections 4 and 5 are said to be properly
invariant.

In Section 6, we consider the special case of simple strain for which
the invariance postulates yield a general canonical form. It is shown that
the concept of simple strain is completely characterized by the necessary
and sufficient condition that the strain rate tensor must vanish as a con-

2 The most recent appears to be that of KarNI and REINER [7] in which they
present two measures of strain, in addition to those commonly named after GREEN
and Armansi, which are not properly invariant. :

8 In §§ 3,4 of the present paper, we consider the question of properly invariant
measures of strain.

¢+ This postulate is analogous to the principle of material frame indifference which
is used in modern treatments of constitutive equations in continuum mechanics.
See, e.g., TRUESDELL and NorL [1].

5 This postulate is analogous to the concepts of isotropy and homogeneity in
continuum mechanics. Again see [1].
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sequence of the vanishing of the deformation gradient rate tensor at a
given particle. In other words the neighborhood which influences the
strain at a particle must be arbitrarily small if the strain rate tensor is
assumed to vanish whenever the deformation gradient rate tensor vanishes
at the particle. The possibilities of first and second order simple strain
measures are discussed. Aside from these later results, some of the more
significant general results obtained in Sections 4, 5 and 6 are summarized
at the end of Section 3.

Throughout most of this paper, our central considerations are on
spatial measures of strain®. In Section 7, material strain measures are
introduced and related to the spatial measures, obviating the need for
a detailed independent treatment. Results for the special case of simple
material measures cf strain are then discussed.

Notation. The usual direct notation of matrix caleulus will be employed; bold
face capital letters denote second order tensors and bold face lower case letters denote

vectors or vector fields. Exceptions to this rule are X,, Y, f’;, and various other
subseripted versions of the base letters X and Y. These denote position vectors. The
symbols f, g, b will designate tensor valued funetions. We shall use 1 to denote the

unit matrix and 0 to denote either the null vector or the null tensor. Matrix inversion,
transpose, trace, and determinant are denoted respectively by A-', AT, ¢r A, and
det A. The gradient operator V denotes position gradient. The space-like independent
variables with respect to which the gradient is intended will be stated explicitly
as arguments of the function to which V is applied. For example, Vb (x), denotes
the matrix of partial derivatives of b with respect to x while Vb (X) denotes the
matrix of partial derivatives of b with respect to X. Finally, light faced capital letters

X, Y, 22, ¥ denote material particles, and %, 8’%, and various subscripted forms of
these symbols denote neighborhoods.

2. Kinematics

The motion of a continuous medium or body is completely specified
by an invertible functional relation between its particles X and their
positions in space X as time / progresses;

x =y (X, ). (2.1)

Equation (2.1) is rendered useful for the derivation of certain concepts
in continuum mechanics by introducing a method of naming or labeling
the particles. This is conveniently accomplished by a one-to-one mapping
of the particles X of the body into a region of three-dimensional Evcripean
space called a reference configuration r. Hence, we write ‘

X, = r (X), (2.2)
which denotes the position. X, occupied by particle X in reference con-
figuration r. We write the motion, referred to r, as?

X =y (7 (Xy), £) = x Xy, £). (2.3)

¢ See Section 3 for this definition.

” No confusion should arise by using the same symbol i to represent the motion
both in the form (2.1) and in the form (2.3), referring it to r.
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Several choices of reference configurations are presently used in con-
tinuum mechanics. A reference configuration which is often employed
is one associated with some previous state (e.g. undeformed, if it exists)
of the body. Although we do not use such an assumption here, it may be
convenient to think of r in this manner.

Let Y be a particle in some neighborhood % (X) of X. The localization
of the motion % at X in N (X) is defined by

XX(Y:t):X(Y9t)—X(X’t)7 YE%(X): (2.4)

and represents the motion of particle Y relative to the motion of X. We
observe that

xx (X, 1) = 0. (2.5)

It will be convenient to express this localization in terms of the posi-
tion of Y relative to the position of X in reference configuration r. Toward
this end, and analogous to (2.2) the position of ¥ in r is given by

Y, =r(Y). (2.6)
Hence the position of Y relative to X in r becomes
ry(Y)=rY)—rX)=Y, — X, (2.7)

Employing the notation 4Y, to denote this relative position vector in r,
we have

AY, =rx (Y), AXy=rx(X)=0. (2.8)
In the mapping (2.8) of ¥ — AY, for fixed X, the neighborhood % (X)
in reference configuration r is mapped into a neighborhood of the null

vector 0. We will denote this neighborhood by % (0), and designate it
as a neighborhood of the null vector in reference configuration r. Accord-

ingly,

YeR(X) =AY, e % (0). (2.9)
Finally, by the inversion of (2.8), it follows from the localization (2.4) that
xx (Y, 8) = xx (tx™ (AYy), £) = xx (4Yy, 1), (2.10)

in which the neighborhoods of definition are related by (2.9). Since ¥ = X
corresponds to 4Y, = 0, we obtain, in view of (2.5)

xx (0, ) = 0. (2.11)

We shall refer to yx (4Yy, ¢), AY, € N, (0), as the localization of the
motion ¥ at 0 in 9% (0). As in (2.3) we have used the same symbol ¥ x
to represent the localized motion at X independently of whether it is
expressed in terms of neighboring particles or in terms of the relative
position vector of neighboring particles in reference configuration r.

The deformation gradient ¥ at X in the motion (2.1) is defined relative
to a particular reference configuration. For the reference configuration r
it is given by the non-singular tensor

F (X, 1) = Vy (Xp, 8). (2.12)
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It follows from (2.4), (2.6), (2.7), (2.8) and (2.10) that the deformation
gradient may also be calculated from the localization through

F X, 0) = Vux (AYr )] av,—0 = Vxx (0, 0). (2.13)

The displacement u of X in the motion (2.1) is defined as the position
vector of X at time ¢ relative to its position in a reference configuration.
For reference configuration r we can either consider u at X as a function
of (X, ) or as a function of (x, #) and with the aid of (2.3) write accord-

ingly

u(Xy, t) =X t) — X, (2.14)
u(xt) =x— yx (1) (2.15)
Then, the displacement gradients at X are defined through
P (X, §) = Vu (X, t), (2.16)
and
M, &) =Vu(x,i), (2.17)
while chain differentiation, together with (2.12) provides the relation
P=MF (2.18)
Using (2.14) and (2.16) it follows that P and F are directly related through
' P=F—1, (2.19)
while with the aid of (2.18) we similarly reach
M=1-F" (2.20)
3. Strain

We consider the strain at a particle X in a continuum as a kinematical
concept which is defined intuitively so as to represent a measure of the
change in geometry of a neighborhood of X as a consequence of deformation.
The strain at a given time is a quantity which will then be determined
through the comparison of the neighborhood of the particle at that time
with some standard neighborhood. Moreover, the strain measure should
depend on the size of the neighborhood of X in which the change of
geometry is being considered. We call the neighborhood of a particle
which determines, through its local deformation, the value of the strain,
the neighborhood of influence.

Because of the directional nature of the local geometric changes, it
seems most natural that the strain should be defined as a tensorial quantity.
For convenience we shall define strain as a second order tensor; the
generalization of our approach to higher order tensors should be clear
from the context. Therefore, the strain tensor D at (X, t) in the motion ¥,
is supposed to be determined through the second order tensor valued
functional relation

DX, 0 =fe(x(Y,0); X), YeNR(X), (3.1)
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where to be deterministic, I‘ must satisfy
Jr(x® (Y, 0: X) = fr (x® (Y, 0); X), (3.2)

provided
xO (Y, 8 = x® (Y,8) for YeN(X), (3.3)

while St (X) represents the neighborhood of influence. f; is a tensor valued

functional which assigns to each local deformation of X in 9 (X) the value
of the strain at X, the form which may depend on ¢, and, in general, on
the particular continuum under consideration.

The “relative’” quality of strain is implicit in the fundamental equations
(3.1) if we recall that particles are assigned (reference) positions in some
particular reference configuration, which can be taken as a comparison
configuration. This is made more explicit if, in addition to (3.2) and (3.3),
we further qualify the definition of strain by the normalizing assumption
which recognizes that when a continuum is subject to a rigid motion from
a particular reference configuration for all time ¢ it is intrinsically un-
disturbed relative to this reference configuration and which therefore
asserts that its strain is zero. We shall return to this requirement later
in Section 6.

In the present formulation, it is to be noted that we allow explicit
dependence on the particle X in f;, which admits the possibility that even

though the motion of the neighborhoods of influence of two distinct
pal’clcles may be the same at time ¢, the strain at these two particles could
be different.

For definiteness, we shall consider D (X, {) as a spatial strain measure
in the sense that in a fixed coordinate system its components are defined
relative to the base vectors at the (current) position x of X at time f.
By way of two invariance restrictions, postulated for all realistic measures
of strain, we shall show the following necessary propositions concerning
the strain functional:

(1) The form of ft is independent of time; f,; f

(2) The strain functional f is homogeneous and thus does not depend
explicitly on the particle X;

S (Y, 0; X) =f(x(Y.1), YeR(X).
(3) The strain functional f is form invariant under changes of continua.

(4) The strain at X depen?is only on the localization of the motion at X;
FRT0) =F(xx (Y,0, YeR(X)

In addition to these particular conclusions, mathematical statements
of the two invariance postulates, when reduced by conclusions (1)—(4)
above will remain as fundamental restrictive conditions on the formation
of any realistic strain measure in the class covered by (3.1). These con-
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ditions include the implication that the strain functional must be an
isotropic functional of the localization.

In the limit as the neighborhood of influence N (X) is taken arbitrarily
small we call the resulting strain measure simple. For a simple strain
measure the restrictions imposed by the invariance postulates lead to
the following additional coneclusions;

(5) The strain tensor D must be symmetric; D = D7.

(6) The strain tensor D must be an isotropic tenscr valued function
of the left CavcHY-GREEN tensorS.

4. Invarianee Condition of Frame Indifference

In this section we present the first invariance restriction which we
believe all realistic measures of strain should be required to satisfy. This
restriction is analogous to the principle of material frame indifference which
TruesDELL and NorL have discussed in [1].

Associated with the motion y of a continuum, consider a motion ¥’
which is equivalent to % in the sense that the material is deformed in
all respects concerning time changes of infernal geometry the same as in
the motion x. However, the motion ' can be initiated at a different time
than the motion % and can be such that it appears to a fixed observer
different from the motion y by at most a continuous time parameter
sequence of rigid orientations. Hence,

X’ (X, t/) — Q () x (X,t) 4 e (), t'=1t—a, (4.1)

where a is an arbitrary scalar representing a shift in time ¢, where ¢ (¢)
is an arbitrary vector valued function of time representing rigid trans-
lation of the motion ¥ compared to the motion y, and where Q (f)
represents an arbitrary time dependent proper orthogonal transformation
which accounts for the rigid rotation of the motion ¥ relative to the
motion ¥ ;

QOQTH =0T Q@) =1, detQ()=1. (4.2)
Roughly, the position of X in motion y at time {, and the position of X

in motion ¥’ at a time unit earlier differ by a rigid body transformation.
The strain at (X, ') in the motion y’ is given, analogous to (3.1), by

D (X, ) :ﬁﬁr (X (Y., t); X), YeR(X). (4.3)
We propose the following postulate concerning its relation to the strain
D (X, ¢) in the motion ¥.

Postulate 1. In the equivalent motions ' of (4.1) and % of (2.1) of the
same continuum the corresponding spatial strain tensors D’ and D are related
by the tensor transformation law

DX, t)=0Q @)D (X, QT (). (4.4)

8 The left CAUucHY-GREEN strain tensor is defined in (6.14).
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This postulate makes precise the general feeling that in two motions of
a continuum which differ only in time of occurence and by orientations
in space the respective strain fields should appear intrinsically indistinguish-
able. For this reason, Postulate I could be considered a postulate of
observer invariance.

As is apparent from (3.1), and (4.1)—(4.4), the foregoing postulate
places restrictions on the form of the strain functional as well as on the
manner in which the strain at X can depend on the motion in 9 (X).
These restrictions are of the same form as those considered by TrRUuESDELL
and Norr [1]° in their discussion of stress-deformation constitutive
equations. Therefore, we shall not include the details here, but only mention
that in a series of three special choices for the quantities Q (), a, and ¢ ()
consisting of first, Q (t) =1, a = 0, ¢ (f) = — % (X, ¢) at X fixed, second,
Q@t)y=1, a=1t, c(t) =0, and last, § ({) any proper orthogonal trans-
form, a = 0, e (f) = 0, it follows, respectively, that fhe sirain af X depends
on the motion i N (X) through its localization (2.4),

D (X, 8) = fi (xx (Y, 1); X), Y eR(X), (4.5)
the form of the strain functional fi is independent of time
DX, 1) =fxx (¥, 1); X), Y eR(X), (4.6)

and that the strain functional f satisfies the invariance condition

FQ@Wxx (Y, 0); X) =Q ) f(xx (¥, 0); X) QT (1), YeNR(X), (47)

for arbitrary transformations Q (t) which meet (4.2). We observe that the
condition of determinism stated in ( . ), (3. ) becomes

provided
xx® (Y, 8) = xx®@ (¥, 8) for YeN(X). (4.9)

The above results are independent of the choice of reference configura-
tion. If we introduce the reference configuration r, it is possible, and also
convenient, to express the strain D (X, f) in terms of the localization of
the motion at 0 in %, (0) as given in (2.10). Thus, (4.6) becomes

D (X, 1) = f (xx (AYr, )5 X),  4Y, &% (0), (4.10)

where the notation f, indicates that the form of the strain functional

may depend on the particular reference configuration chosen. (4.10) dif-
fers from (4.6) in that the functional now depends on the values of the
localization in 9, (0) rather than in the neighborhood of influence N (X)
as in (4.6). Since the domains of definition of the localization are related
by (2.8), (2.9), we will call R, (0) the neighborhood of influence in reference
configuration r. In addition to (4.10) there are equations analogous to

® See §26. Also see the earlier work of Norwn [2].
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(4.8), (4.9) expressing the property of determinism which we shall not
repeat here. The invariance condition (4.7) trivially becomes

f?‘ (Q (f) xx (4Y,, ty; X =Q( i x (AYr, 8); QT (4.11)
AYV € N (0),
for all @ (¢) which satisfy (4.2).
In the special case where the neighborhood of influence M (X) is

vanishingly small, we obtain from (2.9) the result that 9, (0) is also vanish-
ingly small, and with the aid of (2.11) and (2.13), we reach

2 (AY, ) = [Vyx (0,0] Ay = F (X, ) 4Y,, AY, €Ny (0). (4.12)
In this case, (4.10) and (4.12) imply the simple strain measure
= Jr (F (Xr, 1); X), (4.13)
while the invariance condition (4.11) becomes

fr Q XT: £); ): Q(t)ir( XT7 )s QT (4'14)

for all Q (¢ Wthh meet (4.2).

Postulate I has been fully exploited and its implications are exhibited
n (4.10) and (4.11). In the case of a simple strain measure, where the
neighborhood of influence of the localized motion at X on the strain at
(X, t) is vanishingly small, the results of Postulate I are given in (4.13)
and (4.14). We remark that similar results can also be generated for the
cases where the neighborhood M (X) is considered large enough to include
second and higher deformation gradients. These investigations could be
relevant to obtaining measures of strain for multipolar continua.

5. Invariance Condition on the Definition of Strain

In order to describe our second postulate of invariance, it is convenient
to refer motions to reference configurations. For reasons of comparison

we introduce two reference configurations r and T each of which may
be used to locate either particles X, Y, ..., of one continuum € or par-

ticles )A(, v , ..., of a second continuum €. We remark that the two
continua © and G could be the same, in which case we write € = € and

interpret X, Y, )2, I/}, ..., as different particles of this common material.
When it is essential to do so, we shall explicitly distinguish the case

€ = €. Otherwise, in the following discussion, this particular case should
not be considered in any way as being special.
Analogous to (2.2) we may write

X7 =T (X), (5.1)

where X7 denotes the position of particle X in reference configuration T.
We will have occasion to consider the position of the same particle in

both reference configurations r and T. The position of a particle X in
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reference configuration r, of Xinf,of YinF, ..., etc., are given respec-
tively by X, =r(X), Xp =7 (X), Y2 =F (Y), ..., etc. Hence, in the
spirit of (2.7), the position of Y relative to X in T is given by
() =1(F) -1 &) =Y —-X;. (5.2)
Analogous to (2.8), we shall use the notation AY; to denote this relative
position vector in T ;
AY: =T (), Tz (X)=0. (5.3)
Denoting by R (X) a neighborhood of particle X, it follows that
Yeh (X) = AY;: e Ry (0), (5.4)
where F7 (0) is a neighborhood of the null vector in ¥, which corresponds
to the image of N (X) under the mapping (5.2) and (5.3).
In a similar fashion A Y, will denote the position vector of ¥ relative
to X in the reference configuration r. Then, from (2.8) and (2.9) we have

AV, =13 (¥), rpX) =0, (5.5)
and

TeR ) = a¥. e % (0), (5.6)
where ¥, (0) is a neighborhood of the null vector in r corresponding to
the image of R (X) under the mapping (5.5).

The motion (2.1), when considered relative to ¥, will be denoted ¥,
so that similar to (2.3) we may with the aid of (5.1} write
x =¥ (X7, 8). (5.7)
Hence, to the localization of the motion y at Xin % (X )} we can associate
through (5.3), (5.4) and in a manner analogous to (2.10), the localization
of the motion ¥ at 0 in RN (0);

x2 (¥, 0) = %2 (4 V7,9, (5.8)
where ¥ = X corresponds, through (5.3), to AY7 = 0, which implies
Xz (0,1) = 0. (5.9)

Similarly, we can also associate through (5.5), (5.6) the localization of
the motion % at 0 in 53}7 (0);

x2 (¥, 8) = x2 (4Y,, 1), (5.10)
where ¥ = X corresponds, through (5.5), to AY, = 0, which implies
xz (0,8 = 0. (5.11)
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It is now straightforward to express the strain at (X, £) in terms of
the localization of the motion at 0 in &, (0) using (5.10), (5.6) and (4.6)

rewritten in terms of X and ¥ e 9 (X ) in just the same manner as (4.10)
was expressed using (2.10), (2.9) and (4.6). Hence in the special case

€ =& we have
D(X,0)=fr(xz (AT, 0; X),  4Y,e % (0), (5.12)

whereas if the two continua are not the same, € =+ @ and the functicnal
f¢ should be replaced by a different functional fr distinctive of the con-
tinuum §. In this development, if we replace the localization (5.10), (5.6)
by the localization (5.8), (5.4) at 0 in %r( ), then we have essentially
introduced the reference configuration ¥, and, provided € = @, the strain
ab (X, t) takes the form

DX, 0 =fr(xze (AYe0); %), aYrefiz ), (5.13)

with again f; being replaced by f:; for the continuum € when € + G.

Since (5.12):and (5.13) represent the strain at the same particle X in the
same continuum at time ¢, we obtain a general relation between the strain
functionals® f, and f; ;

Jr(xz (4Y,, 1) =fr (X2 (4Y7,1); X), (5.14)

provided the localizations (5.8) and (5.10) of the motion X, associated with
these reference configurations satisfy

xz (AYr, ) = 3z (4¥7, 1), (5.15)
where, from (5.3)—(5.6),
AY; = Fp (g2 (4Y,)) =hz (4Y,), (5.16)
with
AY, ey (0) = AY; e Rz (0). (5.17)

It is through the mapping (5.16) that we may consider the neighborhood
of influence 52; (0) in T to be the image of the neighborhood of influence
R, (0) in T.

With a view toward a statement of our second invariance postulate,
we now assume that a common reference configuration r of continua €

and € is given and consider a special choice of a second reference con-

10 Tt is understood that if the two continua € and € are distinet then fr and fr
are to be replaced in (5.14) by the functionals fr and f" respectively, which are

appropriate to the continuum 8.
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figuration T for €. Let X and X denote two arbitrarily chosen, but fixed,
particles of continua € and iy respectively, and associate with each particle
Y e % (X) a particle Vet (22 ) such that the distances between X and Y

of €, and X and ¥ of € in the reference configuration r are equal;
|AY, | = 4Y,]. (5.18)

Hence, the mapping of A4Y, e % (0) > AV, e %Ry (0) is a rigid rotation
with possible reflection

AY, =HAY,, HHT =HTH=1. (5.19)

From the above, it follows that the neighborhoods 0, (0) and R (0) of
the null vector in reference configuration r induced by (2.9) and (5.6)
are congiuent.

We now choose a second reference configuration T for € in such a way

that the positions of its particles X and Y in this reference configuration
coincide respectively with the positions of particles X and Y of € in r.
Then

f(;: = X, SA{; =Y, (5.20)
which, by subtracting the two equations, yields
AV~ = AY, (5.21)
with the implication, through (2.9) and (5.4), that
fr (0) = Ry (0). (5.22)

Thus, T is related to r through a rigid transformation with possible re-

reflection which equivalently carries a neighborhood of X, for € in 1,
into coincidence with a neighborhood of X, for € in r.
From (5.19) and (5.21) it follows that

AY, = H AY>. (5.23)

This equation relates the relative positions of particles X and ¥ of € in

the two reference configurations r and t, and, by inversion, represents
a special choice of the function hg in the mapping (5.16),

AY; = HT AY,. (5.24)

With the aid of (5.21) and (5.13), we may now express the strain at
(X,t) for € =G as |
D (X, 0) = f (X2 (AYr,0; X),  AY, €% (0), (5.25)

where the functional f; is to be replaced byj’; if the two continua € and

€ are distinct. This brings us to the following
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Postulate II. If the reference configuration T of € is chosen relative to

the reference configuration T of € and € as implied in (5.18)—(5.20), then
the strain at (X, t) in € due to the localization of a motion at 0 in Ny (0),

and the strain at (5( 1) in € due to the same localization at 0 in RNp (0), are
equal.

Roughly, this postulate expresses the feeling that the strain at a particle
should depend on its local kinematics in some neighborhood of influence,
and, in addition, that if the neighborhoods of any two particles in materially
distinet continua coincide in their reference configurations and also at
time £, then the strain at time ¢ of these two particles should be the same.

A mathematical statement of this postulate can be constructed from
(4.10) and (5.25) and reads for arbitrary € and g,

Jr (ux (AY5 0); X) =F7 (x (AY, 85 X), AV, €%y (0),  (5.26)
provided
(a) Xx =Xz =% (5.27a)
where ¥ denotes an arbitrary function, and
(b) T satisfies (5.18)—(5.20) relative to r. (5.27Db)

A first consequence of Postulate II is the proposition that the strain
Sfunctional of a continuum does not depend explicitly on the particle,

fr (xx (4Yy, 1); X) = fr (xx (4Yr, 1)) (5.28)

To see this we need only consider in (5.19) the identity transformation
H = 1. Then (5.21), (5.23) yield 4Y, = A¥; = AY,. This together with
(5.14), (5.15), and letting xx = Yx = X, implies for arbitrary € and Y

f, (4Y,, 1); X) = fA X (AY, 8; X), AY,eR (0),  (5.29)

for arbitrary y. We remark that in the case € = g, j;« and f;‘ are replaced
by the functionals f, and f; respectively. Hence, with the special assumption

€ =G, (5.26) and (5.27a) imply

Jr (X (A, 8); X) = f7 (X (AY7, 8); X), AY,eN (0),  (5.30)
and (5.29) and (5.30) yleld

Fr @AY 0); X) = fr (X (AY,, 0); X), AV, €M (0),  (5.31)

whatever the functional form of . Since this states that f, is independent
of X, (5.28) follows. B

1t An equivalent statement is that the strain functional is said to be homogeneous.

Acta Mech. VIf4 20
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A further consequence of Postulate II follows if we take account of
(5.27a) and reduce (5.26) and (5.29) by means of the proposition above
to the respective forms

Jr (X AV ) = J7 (X (4Y5, ),

and (5.32)
Jr (6 (AY,, 0)) = Jr (X (4Y,, 1),

for AY, e Ny (0), and for arbitrary functions x. Hence, equating the left
hand sides above we arrive at the proposition that strain functionals are
Jorm invariant under changes of material,

=7 (5.33)
We note that it follows from the first of (5.32) together with (5.33) that
Jr (X (4Y:, 9) Zf__? (x (4Yr, 1)),  AYre Ry (0), (5.34)

for arbitrary ¥.
Now, recall the condition (5.27b) of Postulate II which requires that

r and T be so related that the relation (5.16) between AY, and AY; has
the special form (5.24). Then (5.14), reexpressed using (5.34), the first
consequence of Postulate 1I, and (5.13) supplemented by (5.24), yields
the general invariance restriction'?

Jr e (Y5 0] = fr [X2 (4¥7, 1)), (5.352)
provided
xz (A¥r, 1) = Xz (4V3, ), (5.35D)
and
AY; = HT AY,, 4Y,e % (0), (5.35¢)

for arbitrary constant orthogonal transformations H.
In the special case where the neighborhood of influence % (X) is
vanishingly small, then, as remarked earlier, (2.9) implies that 9, (0)

is vanishingly small. This, in turn, through (5.22), also yields N (0)
vanishingly small. Thus, through (5.23), (5.4) and (5.6) we also have

R, (0) vanishingly small. With reference to (5.9) and (5.11), these remarks
imply that in addition to the approximation (4.12), we also have

x2 AV )= [Vxz 0,014, =F X, 0) aY,, 4V, e (0), (5.36)
Xz (AY7, )= [V¥z (0,0] 4¥: = F Xy, 1) a¥7, AV ep(0), (5.37)

where
F X, t) =Vy X, t) = Vxz (0,0, (5.38)

12 A Jess precise equivalent statement of this result is that the strain functional
is said to be isotropic.
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¥ (X;, ) = Vi (X5, 1) = V3 (0, 0), (5.39)

are deformation gradients of the motions % and ¥, respectively. The
equivalence of the deformation gradients to the gradients of the locali-
zations as stated in (5.38) and (5.39) follow in the same manner as in the
analogous situation (2.13). The approximations (5.36) and (5.37) imply
that (5.12) and (5.13) reduce to simple strain measures, depending only
on the deformation gradients, analogous to the manner in which (4.10)
reduced to (4.13). In terms of these simple strain measures, (5.35a—c),
reduce to

Jr X 0] = 7 TF (X7, ), (5.40)

where
¥ X, t)=F Xz, ) HT, (5.41)

for arbitrary orthogonal H. Together, (5.40) and (5.41) yield the invariance
condition

e (B) = (T ), (5.42)

where F is an arbitrary deformation gradient tensor, and where H cor-
responds to an arbitrary orthogonal transformation.

This completes our general discussion of the restrictions which Postu-
late II places on all realistic measures of strain. The conclusion (5.42)
is valid for simple strain measures. Again we remark that further results
could be generated for the situation in which the neighborhood of influence
9 (X) is considered large enough to include second and higher deformation
gradients in the strain functional.

6. Simple Strain

For a simple strain measure we have shown in Sections 4 and 5 that
at (X, )",

D () = f (F (), (6.1)
where i satisfies -
S@QOF @) =Q@)f(F @) QT (@) (6.2)
for arbitrary proper orthogonal tensors @ (¢), while
SE@) =fF@)H (6.3)

for arbitrary constant orthogonal tensors H.
We shall return later to discuss the consequences of these functional
equations. Rather, as a first objective in this section we show that a neces-

13 ' We omit explicit mention of the material particle or reference configuration
here and, whenever possible, in the remainder of this paper, as we shall now consider
these two quantities fixed. It should be recalled, however, that in general the form
of f depends on the choice of reference configuration, that F depends on the position
of the particle in its reference configuration, and that D is being evaluated at the
particle in question.

20*
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sary and sufficient condition for a strain measure to be “simple”, is satis-
faction of the implication

F@#)=0=D(¢ =0. (6.4)

Roughly, this states that the assumption of a finite non-zero neighborhood
of influence in the definition of strain is inconsistent with the impli-
cation (6.4).

Clearly, if the strain measure is simple it follows from (6.1) that (6.4)
is satisfied. Our object here is to show that the converse is also true. To
this end, with fixed reference configuration r and particle X, choose a
fized time ¢ and associate with the arbitrary localization ¥ x at 0 in %, (0)
the constant tensor

F=TF() = Vyx (0,0, (6.5)

which is calculated as in (2.13). Now consider the homogeneous deformation
whose localization at 0 in 0%, (0) is defined by

xxt (4Y;) =F A4Y,, AY, e N, (0). (6.6)
This localization has the property that
Vyxt (4Y,) = Vyx (0,¢) =F. (6.7)

In the present context, a theorem recently proved by GURTIN [12]" shows
that for fixed r and X, there exists a motion %* and a time {* whose
localization satisfies the requirements

(a) xx* (4Yy, %) = xx* (4Yy),
(b) xx* (4Yy, ) = xx (4Yy, 1), (6.8)
(c) Vyxx*(0,s) = 0 at each time s,

for AY, e N, (0). The strain associated with this localization is given at
each time s by the functional f (xx* (4Yy, s)) for 4Y, € N (0). In view

of (6.8¢), the conjecture (6.4) implies that

”j;ir (xx* (4Yy, 8)) = 0. (6.9)
Hence, by integration and application of (6.8a, b) we obtain
o (et (AX) = fr (xx (AY5, 8). (6.10)
Finally, by defining the function A, thru
i»,« (A) =:fr (A 4Yy), AYre N, (0), (6.11)

for all constant second order tensors A, we reach, with the aid of (6.6),
(6.10), (6.11), the result

Fr (x (AY,, 0) = by (B),  AY, € Ry (0). (6.12)

1% See Lemma 2, p. 343.
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Thus, recalling that the left hand side of (6.12) represents the strain
measure D (¢) for fixed X, we are led to conclude that the strain measure
must be simple, which completes the proof.

We turn now to discuss the functional equations (6.2), and (6.3). The
solution to these equations has been given previously in several papers
and treastise’s on continuum mechanics [1, 2, 3, 4, 5]. Therefore, we
merely remark that the polar decomposition’® of F (t), along with (6.1)
and (6.3) yields the existence of a funetion g such that

D () = g (B (1)), (6.13)

lec

where B (£), the left CaucHY-GREEN strain tensor, is defined by
B (t) = F (t) FT (). (6.14)

Moreover, (6.2) states that through g, the sirain D ({) must be an isotropic
tensor valued function of B (¢), - '

g@QOBEHAT ) = Q) g ®B®) QAT (), (6.15)
and, therefore, admits the representationl®
D) =g®B({) = a1+ a B()+ o« B (), (6.16)

where o; (2 = 0, 1, 2) are scalar valued functions of the three principal
invariants of B (¢), defined by

Ip—trB, (6.17)
ITp = 4 [(tr B)? — tr B?], (6.18)
IITp — det B. (6.19)

Along with this representation we observe!® that for simple strain the
strain tensor D (t) must be symmetric,

D (t) = DT (t). (6.20)

Further, since B~ () is an isotropic tensor valued function of B (f) and
vice-versa, we could equally well have used B~ (!) everywhere in place
of B (!) above, without loss of generality.

Karxnt and Rriner [7] have called a strain measure nt™ order if it
is an n'™ order polynomial in the displacement gradients. In this sense,

15 See, eg., Hatmos [11], § 83.

16 The method used by SErRIN [6], § 59, to deduce this representation does not
a priori require g to be a symmetric function, but merely that its argument B be

symmetric. The symmetry of B is obvious from (6.14).

We remark that although this representation is valid in all cases, there are
examples of simple strain measures which are more conveniently left in their irrational
or trancendental forms. For example, see HENCKY’s logarithmic measure discussed
in TRUEsDELL [10], §§ 16, 17. Other examples and related remarks are given in [9],.
§§ 32, 33, along with a historical account of the theory of strain in § 33A.



202 R. L. Fospick and A.S. WINEMAN:

both B (t) and B! () are second order, as it follows from (6.14) and
(2.19) that

B(@)=1-+P@) +PT@)+P@EPTO), (6.21)
and from (6.14) and (2.20) that
B-1(f) =1 — M () — MT (£) + MT () M (). (6.22)

Hence, from (6.16)—(6.19) we see that fhere exisis no properly invariant
first order measure of simple strain aside from a constant isotropic tensor'?.
Further, it follows that the most general properly imvariant second order
measure of simple strain must be of the form

D () = [oge + ot tr B ()] 1 + o B (0), (6.23)

where oy, 0o, %o are constants, and where for B (f) we may substitute
(6.21). We remark that an expression similar to (6.23) may also be written
where B () is replaced by B~ (f) of (6.22).

If a body is subjected to a rigid motion (relative to its reference con-
figuration) it is usual to refer to the body as being unstrained (relative
to its reference configuration). Neglecting the possibility of residual strain,
this suggests the requirement that

D (&) = 0 if and only if ¥ is rigid's. (6.24)

Due to the well known result® that ¥ is rigid if and only if B () =1
for all ¢, it follows from (6.24) that

D () = 0 if and only if B (t) =1, for all ¢. (6.25)

This condition rules out the possibility of a constant isotropic tensor as
a first order simple strain measure, and implies the necessary and suf-
ficient conditions

ap *= 0, ogo + Bap + oy = 0, (6.26)
on the coefficients appearing in (6.23).
One of the most common second order simple strain measures cor-

. 1 .
responds to the choice oy = 0 and ayg = 5. In this case,

D) =B —1)— 5 [P@O)+PT@H) +POPT )], (6.27)

_2_

which Karnt and ReiNer [7] denote as the GREEX (final) strain tensor.

17 Only in the limit of infinitesimal deformation gradients is it possible to approx-
imate the strain by a first order measure. This measure will not, however, be properly
invariant.

1 Here, ) denotes the motion relative to the reference configuration as given
in (2.3).

13 This follows from (6.14) and (2.12), and can be found in MicmaL [8].
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When B (f) is replaced by B-'(f) in (6.23), and we choose the corre-
t

. 1
sponding ay; = 0 and oy = — 5 then

D (1) =3 (1 — B (1) =3 [M @)+ MT () — MT (1) M (1)], (6.28)

which is denoted as the Armans: (final) strain tensor? in the above
referenced work of KARNI and REINER.

Finally, we remark that the analysis given here, and, in particular,
the result (6.23), does not admit new second order spatial strain measures
of the form proposed by Karxt and REINER [7]; their strain measures
are physically not acceptable due essentially to our Postulate I of observer
invariance.

7. Material Strain Measure

All of the work in the preceeding sections of this paper was concerned
with a spatial measure of strain, D (X, {). We could equally well have
considered a material strain measure D, (X, f) also defined through (3.1),
(3.2), (8.3) but differing in interpretation from D (X, ¢) in the sense that
~in the same fixed coordinate system its components are calculated relative
to base vectors at the position X, of X in reference configuration r. Rather
than formulate Postulates I, II and then reach independently all of the
foregoing results in terms of D, (X, ¢), it is sufficient to relate D, (X, ¢)
to D (X, t) by means of the motion relative to r given in (2.3). Then the
results for D, are immediate. The motion (2.3) acts as a change of co-
ordinate system with regard to the tensor transformation D, <> D. Hence,
the deformation gradient tensor (2.12) serves as the transformation matrix
and we have at (X, ),

D = FD, Fr. (1.1)

With the relation (7.1), it is straightforward to transform all previous
results of Sections 4, 5, and 6 from D to D,. We shall not dwell on this
here, except to briefly mention some of the main results concerning simple
strain considered in Section 6. From (6.16) and (7.1) we can construct
the most general material measure of simple strain. Hence we have

D, (1) = F (0) {1 + o B (1) - 0, B2 (0} [FT (9] (7.2)
which may be written as
Dy (t) = Bo L 4 4, C (6) + B C2 (), (7.3)
where C (¢), the right CaAUvcHY-GREEN sirain tensor, is defined by
CO)=Fr@)F @), (7.4)

and where §; (¢ = 0, 1, 2) are scalar valued functions of the three prin-
cipal invariants of C (f) (which, because of the forms of (6.14) and (7.4)

20 See also TrRUEsSDELL and TourpIiN [9], § 31, where this strain tensor is attri-
buted to Armawnst and HawmEL.
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are the same as the principal invariants of B (¢} given in (6.17)—(6.19)).
To obtain (7.3), substitute for B (¢) in (7.2) the definition (6.14), use (7.4),
and apply the CavyLevy-HaMILTON equation

IIIgCt=C2— IoC+ I 1. (7.5)

Hence, the most general material measure of simple strain must be an isolropic
tensor valued function of C (¢). Further, since ' () is an isotropic tensor
valued function of C (¢), and vice-versa, we can, without loss of generality,
replace C (¢) by C1(f) in (7.3), where the scalar coefficients are under-
stood to be different.

By (2.19), (2.20) and (7.4),
C{)=1-P(@)+PT@)+PTE)P (), (7.6)

and

C2()=1—M(@) — M7T(t) - M ¢t) M7 (). (7.7)

Hence, similar to the procedure used in Section 6, we conclude that fke
most general properly invariant second order malerial measure of strain
must be of the form

Dy () = [Bog + Bor tr C ()11 4 B4, C (8), (7.8)

where Bog, Pors Pro ore constants. A similar equation holds for C (¢) replaced
by €1 (t). Application of the restriction (6.24) results in the necessary
and sufficient conditions

Bio £ 0. Boo+ 31+ Pro=0. (7.9)

. . 1 . .
The particular choice fo; = 0 fy, = 5 yields the well known material
measure of simple strain®

D, () =+ (€() —1) =5 [P () - PTO+PTOPQO] (7.10)

designated as GREEN (initial) in the previously referenced work of KarNI
and REINER. When C (¢) is replaced by €' (f) in (7.8), and we choose the

analogous coefficients f, = 0 and B,y = — %, it follows that

D, () =3 (L — 61 (1) =5 DL + M7 () — M) M7 (9], (7.11)

which corresponds to the Armawsr (initial) strain tensor in the work of
KarNT and REINER.

Finally, we remark that (7.8) does not admit new second order material
strain tensors of the form which were proposed by Karnt and REINER.
This is due essentially to the fact that their proposed measures are not
properly invariant.

21 TruespELL and Tourin [9], § 31, attribute this strain tensor to GREEN and
ST. VENANT.
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