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O p t i m a l  N o n l i n e a r  A p p r o x i m a t i o n  

RONALD A. DEVOKE ~, RALPH HOWARD 2, AND CHARLES 1VIICCHELLI 

We introduce a definition of nonlinear n-widths and then determine the n-widths of the unit 
ball of the Sobolev space W~" in Lq. We prove that in the sense of these widths the manifold 
of splines of fixed degree with n free knots is optimal for approximating functions in these 
Sobolev spaces. 

1. I n t r o d u c t i o n .  There  are many known classes of functions which can be approximated 
by nonlinear families such as rational functions or splines with free knots bet ter  than they 
can be approximated by the elements of linear spaces such as polynomials. Perhaps the 
simplest  example of this is that  functions f with f '  E Lp(fl), Q := [0, 1], 1 </~ < c~ can be 
approximated  in the uai]orm r~orm by piecewise constants with u free knots (1 < p _< oo, 
see [5]) or by rational functions of degree r~ (1 < p < 0% see [9] or [3]) with an error of 
approximat ion O ( u - l ) .  At the same time, polynomials of degree < n or for that  mat te r  
any n dimensional space can not yield an error of approximation better  than O(n-s /2+1/~)  
for 1 < p < 2 (see [6]). The  purpose of the present paper is to discuss in what sense these 
and other  est imates for nonlinear approximation are optimal.  

We begin by discussing which nonlinear families will be considered in our approximation.  
Let X be a Banach space and let M be a mapping from R" into X which associates with 
each a E R" the element M , ( a )  E X.  We shall approximate the elements f E X by the 
elements of.hd~ :=  { M , ( a )  : a 6 R"}. If f E X,  the error of approximation of f is 

(1.1) E(f,M ,)x := o enf I l l  - M , ( a ) l l x .  

More generally for a set K of elements of X,  we have 

(1.2) E(K,A4~)x := sup E(f,dvl~)x. 
/'EK 

We are interested in some sense in the best manifolds ]vl~ of dimension r~ for app- 
proxirnating the elements of K.  Tha t  is, we would like to choose .M,  so that  (1.2) is 
as small  as possible. If  we were to operate in strict analogy with the case of linear ap- 
proximat ion,  we would define the nonlinear r~-width of K as the infimum of (1.2) over all 
manifolds .M~ of dimension n. However, this is too general to be of any use. In fact, this 
width is zero for all K and all separable X.  Indeed, for n = 1, there is a space filling 
manifold (even with M ,  continuous). Namely, let {x~}t~___oo be dense in X and define 
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M,(a) := (a - k)x~+l + (k + 1 - a)xi for k < a < k + 1. Then, M, is continuous and for 
the corresponding manifold . ~ ,  we have (1.2) is zero for all K. 

One possiblility to circumvent the triviality described in the previous paragraph is to 
assume smoothness for the manifold 2r However, it is easy to see that this would exclude 
the classical manifolds such as rational functions and splints with free knots. It turns out 
that a more reasonable approach is to impose conditions on how the approximation by the 
elements of.Ad~ takes place. 

We recall that a quasi-norm [l'U satisfies the usual properties of a norm except that the 
triangle inequality is replaced by; I1[+ 9H < G(Uf[[ + I[9U) with C an absolute constant. We 
say that a mapping a from K into R" is a continuous selection for K if it is continuous in 
the topology of some quasi-norm. We recall that if K is a compact set then all quasi-norms 
are equivalent on K and so we can simply say that ~ is continuous on K. Given such an 
~, for each f E K, M~(~(~)) is an approximation to f from .A~. We define 

(1.3) E(K,a,a~A.)x := sup ]IY - M.(a( / ) ) l l  
IEK 

to be the error of approximation for the set K by the nonlinear method of approximation 
M.(~(.)). To find the "best" nonlinear method for K, we consider all manifolds A4. and 
all continuous selections a and define 

(1.4) d~(K)x := inf E ( K , a , M ~ ) x  

to be the co~ttiauous nonlinear a-width of K. Then d~(K)x is a nondecreasing function 
of a and if K C ~., d , (K)x  < d~(K)x. 

The purpose of the present paper is to determine (asymptotically) d~(K)x for certain 
X~ K. In complete analogy with the linear case, we establish lower bonds for d~(K)x for 
general K and X in w in terms of the Bernstein width of K and then we apply this in w 
Upper bounds for X -= Lq and K a set determined by a smoothness condition in L~ are 
given in w The upper and lower bounds serve to determine the a-widths of these sets. 

Before proceeding to the main results of this paper, we discuss in w some ramifications 
of our defintion. In particular, we examine the condition that the approximation is made 
through a continuous selection ~. 

2. R e m a r k s  on  the  de f in i t ion  of d, .  We want to point out that for certain "good" 
manifolds .M,,  the requirement that the approximation takes place through a continuous 
selection ~ is not an essential restriction. We say that an element M~(a) is a near best 
atJpro.~trnatlott to f with constant ,l, if 

(2.1) IlY - M~(~)llx _< A ~ ( f , M = ) x .  

It is an interesting question to decide for which .AA. ~ X, and/<,  there exists a continuous 
selection a such that M . ( a ( f ) )  is a near best approximation with fixed constant A for all 
f E K. When this is the case, we have 
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(2.2) E(I<,~,Juf ,)x  < X E ( K , . , ~ , ) x .  

For such manifolds, a could be dropped in the definition (1.4) with the resulting quantity 
differing from d~(K)x  by at most the multiplicative constant X. In other words, in this 
case, the selection ~ plays no essential role. On the other hand, a has a taming effect on 
the more bizarre manifolds. We give now some examples where ~ plays no essential role. 

We shall often make use of the following remarks about a metric space Y. We denote by 
B( f ,  rl) the ball centered at f of radius r/. If a collection of balls Bv := B(f~,rl) cover Y 
(or some subset K of Y), then from the paracompactness of Y [7, p.160], there is a locally 
finite collection {U} of open sets which are a refinement of {B,} and which cover Y (or 
K). Locally finite means that for each f 6 Y (or K), there is a ball B( f ,  q), rt > O, which 
intersects at most a finite number of the U. For the covering {U}, there is a partition of 
unity {c~v} subordinate to {U} (see [7, p.171]). That is, the functions c~v are nonnegative, 
continuous and supported on U and Y'].v cw -- 1 on Y (or K).  If for each U, av is a point 
in R ~, then the function 

(2.3) a(/) := ~ ~(/)a~ 
U 

is a continuous function on Y taking values in R ~. Indeed, given any f in Y, we choose 
a ball B := B(f ,  ~/), r />  0, small enough that it intersects at most a finite number of the 
sets U. Then on B, the sum (2.3) involves only a finite number of terms and is therefore 
continuous. 

We first prove that linear manifolds (i.e. M is a linear function) admit a continuous 
near best selection ~. 

T H E O R E M  2.1. If2r is an n-dimensional linear manifold and X is a Banach space, 
then for any e > 0 there exists a continuous selection ~ such that 

(2.4) [If - M~(a(/))llx _< E ( f , M . ) x  + e, 

for all f in X. 

PROOF: Let r />  0 and consider balls B(fv,rl),  l, 6 A, which are a covering for X. Here A 
is some index set. Let {U} be the covering and { a t }  be the partition of unity described 
above. For each U, we choose an f~t from U and let av be such that M~(au) is a best 
approximation to fv.  Then the function ~ of (2.3) is a continuous selection. Now let ] 
be in X and let a0 be such that M,(ao) is a best approximation to f.  If ce~(f) # 0, 
then f and fu are both in U and hence l]f - ful]x < 2r/. Therefore, lieu - M~(av)l lx  < 
]]fv - M,(ao)llx < E +  2,;, where E := E ( f , A A , ) x .  It follows that 

(2.5) I I / -  M~(~)II~ ~ ~ + 4~. 
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Since M ( E  av,~v) = E cmM,~(av), we have 

(2.6) Ill - M.(~(f))llx = I1 ~ ~ v ( / ) [ f  - M ~ ( ~ ) ] l l x  ~ ( ~  + 4~) ~ ( f )  = ~ + 4~. 
U U 

Since r / is  arbitrary, we have proved the theorem. �9 

C O R O L L A R Y  2.2. Under the hypotheses of Theorem 2.1, i l K  is a compact set contained 
in X for which E(K,  f ld , ) x  ~ O, then/'or each ), > 1, ~here is a selection 5, such that 

(2.7) E(K,?~,.M,)x < AE(K,.AA,)x.  

PROOF: We can take e :=  (.~ - 1)E(K, .M,,)x  and apply Theorem 2.1. 

In the case that  X is separable, we have the following strengthening of (2.7). 

T H E O R E M  2.3. If X is a separable Banach space and A4, is a linear manifold, then for 
each A > 1, there is a continuous selection 5. deigned on X such that 

(2.8) I I / -  M~(~(f))[[x ~ AE(f,d%4~)x, f e X. 

PROOF: We use the fact that  for each )t there is a strictly convex norm I1.110 on x which 
satisfies 

(2.9) IlIIl~ ~ Ilfll0 ~ ~11/11~, f e x .  

This follows from the Clarkson renormalization lemma (see e.g. [4, pg. 107]. Now, let 
f E X, and let Mf  be its best approximation from 2r in 11.[[0. Then  the mapping 
s t ---+ M I is well known to be continuous on Z (see e.g. [2, pg. 23]). Now the manifold 
A/In is a translate of a linear space X~; .M~ = go + X , .  We take a basis P l , . . .  ,P,, of 
X ,  and we parametr ize 2r by the coefficients of the Pk, that  is, M(a) := go + ~I, a~ P~ 
for a := (a~). We can write M I = M(5*(f)) where Mf = go + ~ k  ak(f)P~. Then 
5*(f) := (ak(f))  is continuous on X. Indeed, the Euclidean norm of (ak) is equivalent to 
I1 ~ a~Ptllx. Finally, we have 

Ill - M ( a ( f ) ) l l x  ~ IJf - M(5*ff))l[0 = inf I l l -  MH0 -< ~ inf I l l -  Mll ! 
M E2,4 ~ g E2~t ~ 

We can also show that  continuous selections 5. exist for more general manifolds provided 
that  they are sufficiently smooth. Let 2r satisfy 

(2.10) Ollla - bll ~ liMa(a) - M~(b)llx ~ C2;1~ - bll, 

for some norm II.ll on R" and some constants C1, C2 > 0 (independent of a, b). Then if 
f is in X,  the function F(a) := IIf - M~(~)llx is continuous on R~ and F(a) --+ oo as 
Ilall ~ ~ .  Hence, F at tains its minimum and therefore there exists a best approximation 
to f from .ha, .  
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T H E O R E M  2.4. / f X  is a Banach space and .M.  is a manifold satisfying (2.8), then foz 
each e > 0 there is a continuous sdection ?~ on X such that 

(2.11) IIf - M,(f i ( f ) ) I[x  <- C E ( f , M , , ) x  + e 

for a constant C <_ 1 + 2C~C~ 1 . 

PROOF: We let r h E, {U}, {an},  a0 and ~ be as in the proof of Theorem 2.1. From (2.5), 
[ I M . ( a v )  - M.(ao)Ilx < 2E + 4q whenever c~u(f) 5~ O. Ilence, from (2.10), Ila~ - a0ll _< 
C2(2E + 4q) and therefore using the definition of the partition of unity atr, we have 
US(f) - %[[ _ C;1(2E + 4q). Then using the upper inequality in (2.10), [IM,(~(f)) - 
M,(ao)[[x < C?IC2(2E + 4.).  Finally, 

irr- M,(~(f)llx ~ I l l  - M, , . (O,o) l lx  + IIM, , . (~o)  - M,(~(f))l]x 
(1 + 2C~IC-z)E + 4C~1C2q. ,  

To apply Theorem 2.4 to nonlinear n-widths, one would want the constants C1j C2 of 
(2.10) to be independent of n. We cannot show that the manifolds of rational functions or 
free knot splines satisfy conditions like this but we do show later in w that for the compact 
sets of interest to us, we can find a continuous selection satisfying (2.2) for the manifold 
of free knot splines. 

3. A lower b o u n d  for d~. For a quasi-normed linear space Y, we shall denote by 
U(Y) := {y : IlY[[ -< 1} the unit ball of  Y and by O(V(Y)) its boundary. A similar 
definition applies when ]l']] is a semi-norm or even a quasi-semi-norm. The Bernstein 
width of a subset K of the quasi-normed linear space X is 

( 3 . 1 )  b,~(K)x := sup sup{p: pU(X,+O C K} ,  
X~-bl 

with the first sup taken over all n + 1 dimensional linear subspaces of X. It is well known 
that the Bernstein width of K provides a lower bound for the linear n-width of K (see [8, 
p.13]. The following shows (with the same proof) that this remains valid for our definition 
of nonlinear n-width. 

T H E O R E M  3.1. Let X be a normed linear space and let K C X .  Then 

(3.2) d . (K)x  > ~ . (K)x .  

I f  X is a quasi-normed linear space then 

(3.3) d~(K)x  > cob. (K)x  
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for an absolute constant co. 

PROOF: Let p < b,~(K)x and let X , + I  be an rt + 1 dimensional subsapce of X such that  
pU(X,~+t) C K. If .Ad, is any n dimensional manifold and a is any continuous selection 
for K,  we let a ( f )  := a ( f )  - a ( - / ) .  If I['[[ is the quasi-norm involved in the continuity 
of ~, then on X , + I ,  ]].U is equivalent to [[.Ux (the quotient of these two quasi-norms is a 
continuous nonvanishing function on O(U(X))). Thus, a(.f) is a continuous mapping of 
c~(pU(Z,~+l)) into R" and ~ is odd, i.e. 5 ( - f )  = - 5 ( f ) .  Hence, by Borsuk's antipodali ty 
theorem [1], there is an fo in O(pU(X,,+I)) for which a ( f )  = O, i.e. a ( - f o )  = 5(fo). We 
write 2fo = (fo - M,,(~(fo)) - ( - fo  - M,~(a(-fo)) and find 

(3.4) 211f011x <_ Ill0 - M~(~(f0))l lJc + II - f0 - M . ( ~ ( - / 0 ) ) l l x .  

It follows that  one of the two functions )to, - f 0  is approximated by M,  (~(.)) with an error 
>- Iif011~ = p. Therefore ,  d ~ ( K ) x  >__ p and  (3,2) follows. If  II'llx is only a quasi-norm, 
then(3.4) holds with 2 replaced by 2c0 on the left side. [] 

4. L o w e r  b o u n d s  for  w i d t h s  of  s m o o t h n e s s  c lasses .  We shall now apply Theorem 
3.1 to give lower bounds for &,(I<)x for certain sets K which are defined by a smoothness 
condition. The ideas here are well known and have been used previously to provide lower 
bounds for linear widths. We shall consider functions defined on the unit  cube f2 := 
[0, 1] •  x [0, 1] of R ~. We let W~ be the Sobolev space consisting of all functions f which 
have weak derivatives of order < r in L r (all spaces and all norms here and later are over 
~2 unless otherwise indicated). We denote by I.[w; and II.llw; the usual semi-norm and 
norm for W~. 

We can also apply our results to Besov spaces. If r is a positive integer and 0 </~ < oo, 
we let w,(l,t)p := ~ug{l lAi( f , . ) l l~(~(~h)) :  Ih[ <_ t} be the L r modulus of smoothness of 
f .  Here we use the notat ion f2(h) to denote the set of all :~ such that  the line segment 
[x,x + h] C S2 and A~, to denote the r- th  order difference operator with step h. Then,  
for 0 < a < r and 0 < p ,q  <_ 0% we let B~(L~) denote the Besov space consisting of all 
functions [ E L~ for which 

(4.1) I f l .~:(. , ,)  := [ , - ~ , , , , ( f , , ) ~ ] ~ , t , / ,  < ,,o. 

When q = c~, the Lq(dt/t) norm is replaced by the Loo norm in (4.1). We obtain  the norm 
for B~(Lp) by adding I[fll~ to (4.1). i t  is well known that  different values of r > cr give 
equivalent semi-norms in (4.1). 

We fix the integer r and let r be a C ~176 (R ~) function which is one on the cube [1/4, 3/4] ~ 
and vanishes outside of f2. Furthermore,  let Co be such that  1 < IID"r < Co, for 
Iv t < r. We consider integers n of the form rt = ra g for some positive integer rn and we let 
@1 ,- .  �9 : @,~ be the part i t ion of ~2 into closed cubes of sidelength 1/ra. Then by applying 
a linear change of variables which takes @j to f2, we obtain functions r  r  with Cj 
supported on Qj and 
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(4.2) m I"l _< IID"r _< C0m ~"t, 0 _< I~1-< ~" 

Let X ,  be the linear span of the functions Cj, j = 1:. . .~ n. 
11 L E M M A  4.1. Let 0 < p ,q  < oo. I f  S = ~ 1  cjqSj, then 

~ ) i/r 

(0 ISlw; "~"~/d " - ' ~ [ c J l  ' , k = 0 , . . . , r ,  
j = l  

(4.3) 

(ii) ISI.~z(~,)  -< C "~ " - '  I~sl" , 0 < ,~ < r 
.i=1 

with the right side replaced by supl<~5 ~ Ic~[ when1~ = oo and with C depending onIy on 
and r 

Here and later ~ means that  the quantities A and B being compared satisfy A <_ cor*st.B 
and B <_ const.A with the constants depending only on r. 

PROOF OF LEMMA 4.1: Part  (i) follows simply from (4.2) and the fact that the r have 
disjoint supports. For (ii), we first observe that because of (4.2), for all x(with all constants 
here and later depending only on r and r 

(4.4) I / , ; ( r  _< Cr, ,~,~(1, ,~'  Ihl ' ) .  

Now for each ~ C a ,  at most r + l  t e r m  are nonzero in the s , m  A;, (S, ~) = E ~ = ,  cj A ;  (r ~) 
Therefore, from (4.4) and HSlder's inequality, we obtain 

II/,;(S)ll; <_ cy : '  Its I'll,~,(r _< c ~  Icj I',,-',,,,,~,(,,," Ihl', 1)" 
j = l  j= l  

because Qj has measure 1/a.  Taking a sup over [hi _< t gives 

j = l  

and (4.3)(ii) follows simply from th i s . "  

T H E O R E M  4.2. Let X = L~, 1 <_ q < oo. I rKs , ,  := {f  : ]f lw; <_ 1}, 1 _<p < q, 
r = 1~ . . . ,  then 

(4.5) d,(K,,,)x >_ Cn -'/~ 
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Z[ K~ .... : =  " I f  : Ifl.~:(.~,) <_ 1}, o~ > 0 andO < p , o -  <_ oo and p < q < co, then 

(4.6) d.(z<, .... )= > c , - - / ~ .  

The constants C depend only on r. 

PROOF: Consider  first I<~,, and  n = rn d. Let ~ and  X ,  be as above. I f S  E X , ,  t hen  by 
(4.3) and  Hhlder 's  inequal i ty  

IS lw <_ c, , ' / '  , , -*~l~J] '  <_c,, ' / '  , ,- '  I~jl' <_Co,,'/'llSll,. 
j = l  j = l  

Thus ,  for p = Co'r , - ' /~ ,  we have pU(X,~) C K,, ,  and Theo rem 3.1 says d,,- l ( K, , ,  )x  > p. 
Since d,~(K:~,,)x is mono tone  in t,, this establ ishes this  es t imate  for all a.  A similar 
a rgumen t  applies for Kp . . . .  .m 

5. U p p e r  b o u n d s  fo r  d,~(K)x. We shall  prove an upper  bound  and  thereby  de te rmine  
d,~(K)x for the  sets K = I<r,, := U(W~) of the  previous section. We do this  only in the  
case of one space dimension,  f~ = [0, 1], ( the upper  bound  for K~ . . . .  and  higher  d imensions  
requires more subs tan t i a l  ideas).  I t  is well known t h a t  ra t ional  funct ions and  splines wi th  
free knots  provide errors of approx imat ion  which ma tch  the lower bounds  of T h e o r e m  4.2. 
However, we need to check t h a t  these can be achieved wi th  a continuous selection. This  
tu rns  out  to take some care. We shall  use the  manifold  .A4 of piecewise polynomials  of 
degree < r wi th  2n - 1 pieces. Here, we shall  specify n - 1 of the  breakpoin ts  in advance,  
namely,  the  points  k / a ,  k = 1 , . . . ,  r, - 1. The  other  n - 1 breakpoints  are free pa ramete r s .  
Hence .A4 has d imension (2a  - 1)r + n - 1. To paramet r i ze  2v/, we use the  vector a whose 
first r~ - 1 componen t s  0 <_ a_ ,+x _< �9 "" <_ a_ 1 <_ 1 are the  free breakpoints  of the  piecewise 
polynomial  M,,(a). It  will be  convenient  to let lj := a_,~+j, j = 1~.. .  , n  - 1 and  ~0 :=  0, 
~, :=  1. Notice t h a t  we allow equal i ty  in the  t j ;  this  corresponds to a degenerate  interval .  
We let I j ,  j = 0~. . .  , 2a  - 1, be the  2n - 1 intervals  de termined  by all the  b reak  points .  
The  o ther  coordin ta tes  a 0 , . . . ,  a(2,~-x),-z of a denote  the  coefficients of the  polynomials  

Pj which serve to define M,~(a) on I j .  Thus ,  Pj := a,j + a,j+xx + . . .  + a , j+, - lX  "-x, 
j = 0 , . . . , 2 n -  2. 

Our  ma in  resul t  is 

T H E O R E M  5.1. For  X and I"fp,, of Theorem 4.1, we have 

(5.1) d . (K, . . )  = . - '  

PROOF: Because of T heo r em  4.2, we need only prove the  upper  es t imate  d,~(I<r,,)x < 
C n - ' .  Since U(W~) C U ( W { ) ,  we can restr ic t  ourselves to the  case p = 1. We can also 
assume t h a t  q = oo because the  case q < co follows f rom this. We shall define a cont inuous  
selection 5 for I<~,, and  an .a4 which will produce the error of approximat ion  O ( n - ' ) .  
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We first discuss how to continuously select the free breakpoints. For f E I<~,, there is 
an integer 0 < k < n and points rj  := U ( f )  with 0 = :  r0 < rl  < - ' -  < r~ < 1, such that  

/1 
(5.2) If<')(~)ld~ =j/ ,~,  j = L . . . , k  and If<')(~)ld, = 0 +]r -~  

and 0 < 0 <__ 1/n.  We let rj  := 1, j = k + 1 , . . . , n  and r ( ] )  := ( r ~ ( f ) , . . . , r , ( f ) ) .  
Let r I := 1/5n. The Banach space Y := W[ is separable. Hence there are functions 

f l , f 2 , . . ,  in B.~,, such that  the balls Bj := B(fj,rl) (defined by II'll~) are a cover for 
K~,,. We let {U} be the refinement and {av}  be the part i t ion of uni ty described in ~2 
for the sets Bj and the space Y. For each U, we let fu  be in U Cl Kr, ,  and we defined 
~(f) :=  ( Q ( f ) , - - .  , ~ , ( f ) )  :=  ~ u  O~tr(l)r(fv). Then~ is continuous on K~,,. We give some 
of its addit ional properties. 

If g, h are in K. , .  and 119 - hll~ < 4. and ~-~(g) < 1, then 

[ .,-(g) 
i /~  - 4/5~ < Ih<')(~)l d~ < i /n + 4/5,,. 

J 0  

This shows that  for these i, 

(5.3) ~_~(h) < =;(9) ___ ~;+~(h). 

This is also true if r~(g) = 1. Indeed, the left side is clear and if k is as in (5.2) for 9 
then k < i and f01 [h(')(s)[ ds <__ f~ Ig(')(s)[ ds + 4 /5n  = k + 0 + 4/5n. This implies that  
~+~(h) . . . .  = ~ ( h )  = 1 as desired. 

Since our cover is locally finite and ~ ( f )  is a convex combination of the r~(fu),  we have 
~( f )  >_ ri( fv)  for some ftr with ]If - fvllY < q and ~;+l(f)  _< r;+~(fO) for some fo with 
nf - folly < r]. We apply (5.3) to fv  and fO and find 

~,(f~) < ~,(f) < ~;+1(1) --- ~+~(fo) < ~+~(/~). 
Hence, 

_ f , + ~ ( m  if(,)(,)l ds _< 4 / 5 ,  + 2 / .  < 3 / , .  (5.4) f ]~,§ lf<')(s)l ~, < ]If - S~ In~ + 
J 1"i(f) J "ri(fc] ) 

The first n - 1 coordinates of ~(f) are our continuous selection for the free breakpoiuts.  
Let Ij := [aj,bj], j = 1 , . . . , 2 n  - 1 be the intervals which result when the ~j are uni ted 
with the fixed breakpoints.  Then the endpoints aj(f)  and bj(I) vary continuously with f 
in Y. For the interval Ij, we let Pj(f ,  .) be the Taylor polynomial of degree r - 1 of f for 
the midpoint  of I j .  

If g ~ f in the norm of Wl'(f~), then D*g ~ D~f uniformly on f~, for all 0 < z, < r. 
Since the midpoints  of Ij are a continuous function of ] ,  we have that the Pj(9, .) converge 
to the Pj([, .)  as [ [ / -  g[[y --+ O. 
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In summary, we have given a continuous selection ~(f) defined on I<~,,. We now check 
the approximation by M,(~(f)) .  Since ] I j l<  1/n and since by (5.4) 

(5.5) ~, ly(')[ _< 3/,, 

we have from the remainder in Taylor's formula 

t 
(5.6) IlY - PJll~.<~,) _ IZ~l ' -~ ]_ If<')l -< 3n- ' .  

i 

This shows that d,~(K~,,)x < Gin-" when m = (2r* - 1)r + n  - 1. For other values of m, 
this follows from the monotonicity of d,~.l  
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