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Summary. Elastomers are often used in hot and confining environments in which thermomechanical 
properties are important. It appears that published constitutive models for elastomers are mostly limited to 
isothermal conditions. In this study, a thermohyperelastic constitutive model for near-incompressible 
elastomers is formulated in terms of the Helmholtz free energy density ~b. Shear and volume aspects of the 
deformation are decoupled. Thermomechanical coupling occurs mostly as thermal expansion. Criteria for 
thermodynamic stability are derived in compact form. As illustration, a particular expression for ~b is 
presented which represents the thermomechanical counterpart of the conventional two-term incompressible 
Mooney-Rivlin model. It is used to analyze several adiabatic problems in a rubber rod. 
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1 Introduction 

1.1 General 

Elastomers are often used in hot and confining environments, for example seals in automobile 
engines. Thermoelastic properties, described by thermohyperelastic constitutive models, may be 
important  in such applications. In particular, thermal expansion may give rise to high stresses in 

areas of confinement. However,  such behavior appears to have received limited study. For  
example, hyperelastic elements in finite element codes typically are suited only for isothermal 
conditions. The major  thermohyperelastic models known to the authors are Dillon [1] and 
Shapery [2]. Both models involve Helmholtz energy density functions which in essence are series 
expansions in temperature and strain, and in any event do not emphasize near-incompressibility 
or associate thermal effects primarily with volume changes. Also of interest is the strain energy 
density function in the finite element code ABAQUS [3], which also accommodates  thermal 

expansion. 
Here we formulate a thermohyperelastic constitutive model for rubber, considered a near- 

incompressible elastomer. It  is based on the assumption that  temperature dependence is linear 
and its mechanical effect consists purely in thermal expansion. The resulting Helmholtz free 
energy density ~b directly generalizes classical thermoelasticity. Criteria for thermodynamic 
stability are derived in compact  form. Conditions for thermodynamic stability are presented. For  
illustration, a thermohyperelastic counterpart  of the conventional two-term incompressible 
Mooney-Rivlin model is presented, and is used to analyze several adiabatic problems in a rubber  

rod. 
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1.2 Summary of thermohyperelastic model 

The Helmholtz free energy density (per unit mass) introduced in this investigation is as follows: 

ff)(~, T) = ff)~(J1, J2) + ( f3 ( r )  J - 1) 2 + ceT 1 - In ~ ~-o + ff)o. (1) 

The 2nd Piola-Kirchhoff stress and the entropy density are given by: 

off) ~r a = Q ~ = ~ ~ + ~(f3(T)J-- 1)f3(T)JC -1 

Off) c~n(f3(T) J_l)jf4(T)+celn(__~o ) t l -  O T -  

where 

(2) 

(3) 

1 
f(T) = (4) 

1 +  ~ ( T - T o )  

(Without loss of generality it has been tacitly assumed that ~/= 0 when T =  To and ~ = 0.) 
Finally, the (hydrostatic) pressure is given by 

1 
p = -~-  trace (z) = - z ( f 3 ( T ) d  -- 1)f3(T).  (5) 

This model retains many of the features of classical (linear, isotropic, small strain) 
thermoelasticity, to which it reduces in the small strain limit. Classical thermoelasticity is 
summarized in Appendix A. The primary nonlinearities are associated with the purely 
mechanical ("shear") aspects of the behavior, while thermal and thermomechanical effects are 
assumed to be linear. The material parameters e, ~, Ce and ~ are considered to be known material 
constants unaffected by temperature. Purely thermal effects are represented in a linear manner by 
ce. (The thermal conductivity coefficient k can be included if conduction heat transfer is 
considered.) Coupling of the thermal and mechanical fields occurs through simple volumetric 
thermal expansion represented by ~. Temperature rise induces strain, but not stress, in an 
unconstrained body. Finally, as in classical thermoelasticity, if) consists of four terms: a term 
ff)r depending purely on T; a "shear" term ff)~t independent of temperature and volume change (T 
and J); a mixed term ff)c coupling temperature and volume through thermal expansion; and 
a constant term ff)o corresponding to the reference configuration. The model is suited for 
near-incompressible materials involving small volume changes and a linear pressure-volume 
relation through u: in fact it is obtained by retaining the lowest order terms in a Taylor series 
expansion about J - 1 and T = To. The model affords a "smooth" transition from compressible 
to strictly incompressible behavior. Finally, for the sake of illustration, we introduce a particular 
form of gb representing the thermohyperelastic counterpart of the conventional two-term 
incompressible Mooney-Rivlin model: 

. . . .  + ~o. (6) ff)(e, T) = Cl(J1 3) + C2(J2 3) + ~ ~3 ( r )  J 1] 2 + ceT 1 In T 

Criteria for thermodynamic stability of materials described by this model are derived in compact 
form. Finally, using values of C1, C2, ~, z, ce, and Q thought to be typical of natural rubber, 
graphical results are presented for several problems involving adiabatic response of a rubber rod. 
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2 Thermohyperelastic constitutive model 

2.1 Isothermal conditions." compressible elastomers 

Now let 8 denote the Lagrangian strain tensor, and a the 2nd Piola-Kirchhoff stress tensor. We 

also introduce the Cauchy strain tensor C = 25 + I, with invariants I t ,  I2 and I3 = j2. Here J is 

the determinant of the deformation gradient tensor F and represents volume change. Under 

isothermal conditions and assuming isotropy, Q~b may be equated with the strain energy function 

w(It ,  I2, J), which is traditionally used in the rubber literature (e.g., Nicholson and Nelson [4]). 

A well-known example is the two-term incompressible Mooney-Rivlin elastomer: 

w = C 1 ( I 1 - 3 ) + C 2 ( I 2 - 3 ) ,  J = l .  (7) 

More generally, we assume that w = 0 if ~ = 0. 
We now invoke a formulation reviewed by Ogden [5]. Namely, if w is expressed in terms of 

J1 = It~ dz/3, J2 = I2/J4/3 and J, then 

trace (z) (?w 
p . . . . . .  (8 )  

3 (?jr 

in which p is the "true" hydrostatic pressure, and z is the Cauchy stress given by 

F a F  r 

J 
(9) 

The bulk modulus x is defined by 

Op 
= - - - .  ( 1 0 )  

(?J 

For  near-incompressible elastomers, it is assumed that J -  1 is small, for which reason we 

consider a Taylor series through second order in J - 1: 

w = w t  j iTg + a ( J - 1 ) + b ( J - 1 )  2 (11) 

in which ~ is the deviator of the Lagrangian strain tensor, and a and b are as-yet-unknown 

constants. It is easily seen that, with a suitable choice of wl, the small strain case (cf. Appendix 

A with T =  To) is recovered. 
Now, from Eqs. (8), (11), 

p = a + 2b(J - 1). (12) 

But J = 1 implies that p = 0, and hence a = 0. Further, b -- x/2 and hence the bulk modulus is 

a constant. Thus, to lowest order in J - 1, 

74 
w = w a +  } - ( J - - l )  z p = - - x ( J - - 1 ) .  (13) 

For  later purposes we note that w may be rewritten as follows: 

p2 
_ _ .  ( 1 4 )  w = wi  -- p(J -- 1) 2x 
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The invariants of ~/j2/3 are in fact: 

J1 e 
K I = O  K z = J 2 - - ~ -  K 3 = l - - - -  

19 

J1J2 2J13 
+ - -  (15) 

3 27 

These relations can be inverted to furnish J1 and J2 in terms of K 2 and K3. It  follows that any 
function of J1 and J2 can be viewed as a function of~'J2/3 and hence Eq. (13) can be expressed as 
w = wl(Kz ,  K3) q- z(J  -- 1)2/2. 

2.2 Isothermal conditions." incompressible and near incompressible elastomers 

Incompressibili ty implies the constraint J = 1. For  computat ional  methods based on variational 
principles, such as the finite element method,  w may  be augmented as follows: 

r = w(J~, J2) - s - 1) (16) 

in which 2 is a Lagrange multiplier to be selected to render the total potential  energy stationary 
under the incompressibility constraint (Oden [6]). Assuming independent variations of ~ and 2, 
conditions for stationarity are 

~W 
a = as 2 J C - 1  0 = J - 1. (17) 

Now Eq. (8) implies that  

p = 4.  (18) 

Also, for near-incompressible elastomers, Eq. (14) is rewritten as 

w = wa(K2, K3) - p(J - 1) -- - -  
p2 

2~" (19) 

Now p and ~ are regarded as variationally &dependent. The appropriate  variational principle 
(of. Cescotto et al. [7]) has a stat ionary rather than a minimum character. Conditions 
for stationarity are 

~W 
= ~ - p J C  -1 p = - ~ ( J -  1). (20) 

We regard sl = Owl/On as the generalized shear stress. It  depends on the deviator (generalized 
shear component)  of the Lagrangian strain. Further,  recalling the t ransformation (9), it 
corresponds to the deviatoric component  of the Cauchy stress: 

sa = J F - l z d F  - r  Za = z + pl .  (21) 

Further,  by letting :e ~ ~ Eq. (19) affords a continuous transition from compressible to strictly 
incompressible behavior  (cf. Eq. (16)). Finally, it may  be shown that, with a suitable choice of the 
function wl, Eq. (19) reduces to the expression presented by Hermann  et al. [8], for near- 
incompressible linear isotropic elastic materials under small strain. 
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It is of interest to compare  Eq. (16) with a widely quoted expression due to Oden [6]: 

~o = Wo(I1, 12) - 2(13 - 1)/2. This last expression does not imply that  2 = p even though 
11 = J~ and I 2 = J 2  and la = J = 1 a posteriori. For  example, let Wo = C(I1 - 3). The Cauchy 

stress ~ is 

F a F  T 2 C F F  T 
z . . . .  2 J l  (22) 

J J 

and hence 

trace (z) 2CI1 
p = - )~ (23) 

3 3J 

Equation (19) may be compared with the form proposed by Cescotto and Fonder  [7], 

w = wl(I~ - 13 ,  1 2  - 2 1 3 )  - 2 ( 1 3  - l )  - - -  

.~2 

2~" (24) 

Recalling Eq. (8), it may be shown with some effort that, unlike in the present case, 2 in Eq. (24) 
cannot  be equated with p, and wl cannot be regarded as a function of the deviatoric Lagrangian 
strain ~. Further,  as shown in Nicholson [9], the models expressed by Eqs. (22), (24) couple volume 
and shear even in the small strain limit, and thus do not reduce to the classical thermoelasticity. 
Also worthy of note are several finite element codes [3], [10] implementing hyperelastic strain 

energy density functions consistent with Eq. (19). 

2.3 Extension to thermal effects: reduced strain 

A strain energy function w accommodat ing thermal expansion is used in the finite element 
code ABAQUS [3]. Such a function may  be sufficient in applications in which the temperatu-  
re field is known or may  be determined independently of the mechanical field. To accommo-  
date thermomechanical  effects under more general conditions, such as when thermal and 
mechanical fields must be determined using coupled equations, we interpret the strain energy 
density as the Helmholtz free energy density (per unit mass) under isothermal conditions: 

w = 0q5 if T =  To. We now regard q~ as a function of temperature T and a reduced (Cauchy) 
strain CR, which is the actual strain C with thermal expansion effects removed (as described 
below). It  possesses invariants I1R, I2e, and I3R = JR 2. Further, we seek a function q5 having 
the same structure as its classical thermoelastic counterpart  (cf. Appendix A): i.e. 

0 =- ~)M(eR/JR) + ~ C ( J R )  -I- O T ( T )  + ~9o. 

The deformation gradient tensor F is expressed in terms of deformations with respect to the 
initial configuration. The contribution of isotropic thermal expansion is removed as follows: 

E l F R = E F T  -1  F T = 1 -~- ~ ( T -  To) I .  ( 2 5 )  

and the thermal expansion coefficient c~ is considered constant. Clearly, 

1 
CR = f 2 ( T )  C f ( T )  = (26) 

1 +  ~ ( T - - T o )  
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Suppose the deformation consists of simple isotropic thermal expansion. Then 
F = [1 + ~ ( T -  To)/3]/. From this it follows that ~R = 0, ~bM = 0, q~c = 0, a = 0, and p = 0. 

It is straightforward to show that, under small strain, 

1 1 
eR = ~ (CR - - / )  = ~ + ~ [e -- a ( T - -  T0)] I (27) 

where e = trace (~), in agreement with Appendix A. Finally, a simple way to accommodate 
"small" temperature-shear coupling is described in Appendix B. 

2.4 He lmhol t z  f r ee  energy density 

Now, if J1R, J2R and JR 2 denote the invariants of CR/JR 2/3, simple manipulation furnishes 

JR = f 3 ( T )  J J1R = J1 J2R = J2  K2R = K2 K3R = K3 .  (28) 

Note the important result that ~M(eR/JR z/3) = q~u(~/J z/3) = 49M(K2, K3) so that the term ~bM may 
be regarded as independent of temperature and dilatational effects (represented by J). We assume 
that, if ~ = 0, then ~bu = 0 and  O(aM/68 = 0. Continuing, 

(Oc(JR) = (oc(f  3(T) J -- 1) (29) 

so that q~c depends on dilatational effects and temperature. Recalling Eq. (13), the form of Eq. (29) 
for near-incompressible materials is now 

e ( f 3 ( r )  J -- 1) 2 
~c(J~) = 2~ (30) 

The final term being introduced is purely temperature dependent. Recall that the entropy 
r/and the specific heat at constant strain ce are given by 

64 0r 
tl = - ( ~  Ce = T O T "  (31) 

Here Ce is not a constant but depends on T and J through r We now write 

0r 0q~r 
q = tlc(T' J) + tlT(T) tlc - OT tlr = ~3T" (32) 

For similarity to the linear case (Appendix A), and recalling our assumption that nonlinearity is 
due primarily to mechanical effects, we make the simple assumption that 

aq 
T ~ = de, de known constant. (33) 

Hereafter the circumflex will not be displayed. Elementary manipulation serves to establish that 
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Clearly, other assumptions can be made such as a power series in T can be assumed for t/T. 
Combining the foregoing results, the Helmholtz free energy density is 

(oM(Kz, K 3 ) + ~ ( f S ( T )  J 1)2 + c~T [1 In ( ~ o )  ] = - - + 4 0 .  ( 3 5 )  

The 2nd Piola-Kirchhoff stress tensor a, the entropy density t/, and the (true) hydrostatic pressure 
p are given by 

a = o~ -~e + x(f3(T) J - 1) f3 (T)  JC -1 (36) 

= ~ ( f 3 ( T )  J - 1 ) j f 4 ( T ) + c e l n ( - ~ o  ) (37) q 

1 1 
p = - ,  trace (~) = - - -  trace (FaF T) = - z ( / 3 ( T )  J - 1) f3 (T) .  (38) 

3 3J 

Earlier expressions for q~ were proposed by Dillon [1] and Shapery [2], in essence using power 
series. A very simple expression for ~b was studied earlier by the present authors [4]. However, it 
had severe limitations compared to the present expression; for example it did not decouple shear 
and dilatational effects. 

Finally, for computational simulation based on variational principles, for example the finite 
element method, it may be convenient to write 

~bc = - P f - 3 ( T ) ( f 3 ( T ) J  - 1) - P~2 f - 6 ( T ) .  (39) 
Q zxo 

and to assume independent variations of ~ and p (and Tif  thermal equilibrium is considered). 
Computational  aspects of the isothermal counterpart  of this expression are discussed in 

Nicholson [9]. 

2.5 Applications: thermodynamic stability and the adiabatic tangent modulus matrix 

Stability is a concern in modeling behavior of elastomers. For  example several finite element 
codes with hyperelastic elements provide several sample calculations to test for stability [3], [10]. 
The issue of stability and its implementations for finite element computations will be addressed in 
a subsequent study. For  present purposes, we assume that the material model satisfies criteria for 

thermodynamic stability (Callen [11]). 
For  later convenience we invoke the VEC operator (cf. Nicholson [9]): Consider a matrix 

denoted either by a bold upper case letter such as G or its lower case Greek counterpart  7, with 
entries gi~. The vec operator VEC (63 or VEC (y) generates the vector g as follows: 

g = {glt 821 831 812 822 g32 813 823 833} T. (40) 

The Gibbs free energy ~O = c p -  erds/Q depends on T and s. A sufficient condition for 
thermodynamic stability (Callen [ l l  D is that the matrix H below be positive definite, written 
H > 0. In particular, 

daO = -- {drds} H ds 
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where 

1 OCT s 
' a TI] J 1 
1 de [ D-~fl 

1 D-lflT--~D~-I= ~1 I: D-gj0T 1IT/-/'[: D-2J OT-11 

J 

(42) 

in which 

i J] 
1 /~r 

Z 

(43) 

Ce Z = e T "~- flTfl (44) 

D-�89 
fl - ~ -  e (45) 

dn2[ 
Ce' = r -t- I ~ e (46) 

1 ds 
D = -- (47) 

QNT" 

It has been tacitly assumed that the isothermal tangent modulus D is positive definite, and that 
Oc//T+ flTfl > 0. The following Maxwell relations were also used: 

d4s= -D-X dSTdT ~ d?eeT = -01 d4e" (48) 

The condition for thermodynamic stability is satisfied i fH'  > 0. This may be shown to imply that 
flTfl/)~2 < 1, which is equivalent to c / >  0 and D > 0. Now 

, ~  5 
c~ =c~ ~ f ( r )  (7fa(r)  J -- 4) (49) 

and hence ifc e' > O, C e must exceed a value depending on c~, z, Tand J. For small deviations from 
the reference configuration and from To, this becomes Ce > C~2~To/~. 

The condition D > 0 is commonly assumed in isothermal models, in which D depends only on 
5. Here, D also depends on T. We may write D(n, T ) =  DI(~)+ D2(8, T--To) in which 
D(e, O) = Dl(e). Expressions for D1 and D2 based on the work of Nicholson [9] are presented in 
Appendix C, where the stability conditions are discussed further. 

Finally, we note the following expression for the adiabatic tangent modulus matrix D,: 

~s[ T a ~  ~s r 
Do= ~ = D + - -  (50) 

. ~c/ dT e" 

Recalling that elastomers are often poor conductors of heat, this quantity is especially relevant to 
applications in which loads are applied rapidly relative to the time required for heat conduction. 
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3 Application to a rubber rod 

The numerical  results presented in the subsequent paragraphs  assume the following coefficient 

values (Nicholson and Nelson [4], Gent  [12]), which are thought  to be representative of unfilled 

natura l  rubber :  

C1 = 179 kN/m 2 C2 = 15 kN/m 2 

z = 2000 kN/m 2 e = 2.5 x 10-4 /~  

Ce=1960J/kg-~ Q = 9 1 3 k g / m  3. 

We now consider three cases involving a rod of the mater ial  satisfying 

e4) = G(JI - 3) + (J2 - 3) + ~ [ f 3 ( r )  (J - 1)] 2 + o~cer 1 -- in + QqSo (51) 

and 

1 1 3 
ddp = -rtdT + 20 trace (adC) = -rldT + ~ i~_1 aflci (52) 

in which ci = 2i are the principal  values of (7, 2i are the principal  extension ratios, and cq are the 

principal  values of a. The deformation is isotropic in the transverse plane:  c2 = c3. 

I t  follows that  

al 04) 
- 2 (53)  

o~ Oci" 

After some manipulat ion,  

11=Ca+2C2, Iz=2cle2+c2 z, I3=J2=ctc2  z. (54) 

Continuing, 

(11 ) ( 
a , = 2 C l  1 - g ~  13 -1/3 + 2 C 2  1 1 - c , - ~  I3-2/3+zf3(r)( f3(r)J-1)c~ J (55) 

o~x [f3(T)(clc2Z)~/Z_l](clczZ)~/zf4(T,+celn(~o ) (56) q = ~ -  

3.1 Stresses due to temperature increase in a rod of constrained length 

Now cl = i and T =  To (prescribed). The condit ion a2 = 0 serves to determine c2 as a function of 

temperature  T. The result may  be used to furnish o-1 as a function of T - -  To. The results are 

displayed in Fig. 1 using To = 300 ~ 

3.2 Slow isothermal extension of a rubber rod 

Now T =  To. The condit ion a2 = 0 furnishes c2 as a function of cl.  Substi tut ion into a l  furnishes 

the stress o'1 as a function of the strain el = (Cl - 1)/2, as shown in Fig. 2. 
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3.3 Rapid adiabatic expansion of a rubber rod 

N o w  q = 0 an d  a2 = 0. Equa t ions  (55) and  (56) m a y  be used to ob t a in  c2 and  Tas funct ions  of el. 

Then  Eq. (55) is used to ob t a in  the stress o-1 as a funct ion of  the s t ra in  el = (cl - t)/2 unde r  

ad iabat ic  condi t ions .  Assume To = 300 ~ The results are shown in  Fig. 3. 

Appendix A 

Classical thermoelasticity 

We seek to formula te  a therrnohyperelas t ic  model  re ta in ing  the s t ructure  of classical thermoela-  

sticity, which we n o w review. Let  e be the (small) s t ra in  tensor,  with ~r the stress tensor,  T the 
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temperature, To the "initial" temperature, and 0 the mass density. The deviatoric strain tensor ~, 
the volume strain e, and their counterparts s and s for stress, are given by 

e 
= e - , I  e= t r ace (e )  

3 

S 
s = a - - - I  s=trace(cr)  

3 

(A.1) 

where ! is the identity tensor. The constitutive relations of interest are 

s = 2 # ~  s = 3 z [ e - e ( T - T o ) ]  T ~  =ce .  (A.2) 

Here # is the shear modulus, x is the bulk modulus, ce is the specific heat at constant strain, and 
c~ is the volumetric coefficient of thermal expansion, all assumed to be constants. Note the use of 

the reduced volume strain eR = e - c~(T- To), which is the actual volume strain reduced by the 
extent of thermal expansion. The isotropic stress s and the hydrostatic pressure p = - s/3 are 

functions of e~. 
Thermodynamically, the stress tensor ~r and the entropy density t/ are obtained from the 

Helmholtz free energy density using 

1 
dO = - qdT + - trace (ade). (A.3) 

0 

Application of the foregoing constitutive relations furnishes 

0 = 0~, + 0c + 0T + 4o 

0M = -~ trace (~2) 0c = ~ e 2 - z e e  ( T -  To) (A.4) 
0 2O 0 

O r = c e T  1 - 1 n  q = e e l n  + - -  
0 

Clearly, 0M represents "shear" and is independent of temperature Tand the volume strain e. 
Similarly, 0 r  is a pure thermal term, and is not dependent on strain. The remaining term 
0c "couples" the volume strain e to the temperature T. Finally, 0o represents the value of 0 in the 

reference configuration. 

A p p e n d i x  B 

Treatment o f  "small" temperature-shear coupling 

We expect that the primary effect of temperature takes the form of thermal expansion. However, 
it seems quite reasonable to consider that there may be a "small" (compared to the volume) effect 
evident in the "shear" response. A simple way to consider such an effect would be to modify the 

function 0M(K2, Ka) as follows: 

0u(K2, K3, T) = 0~(K2, K3) [1 + ?(T - To)]. (B.1) 



Theory of thermohyperelasticity 

Equations (36) and (37) now become 

a(#M 
a = 0[1 -- 7 ( T -  To)l ~ + z ( f 3 ( T ) J  - 1 ) f 3 ( r ) J C  -1 

~=ez( f3(T)J-1)Jf4(T)+celn(~o)-  ?(#M(K2, K3). 
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(B.2) 

(B.3) 

Appendix C 

Temperature-dependent tangent modulus matrix 

Relations reported by Nicholson [9] under isothermal conditions are readily extended to the 
present model to furnish 

3 3 3 

D = 2  Z E (#ijninff + 2 Z (#iA, 
i=1 j = l  i=I  

ni T Oil 02(# 0(# 

Further, 

n i = i  

A1 = 0  

e = VEC(C) 

ani 
A, = ~e" 

c2 = VEC (C 2) (C.1) 

(c.2) 

n2 = I l i  - c n3 = c2 - I lc  + I2i 
(C.3) 

Az=iiT--19 Aa=l|174 +eiT)+ Ii(iiT--19) 

in which | denotes the Kronecker product of two matrices. 

0(# = C l ( J 1  - -  3) + C2(J2 - -  3) + ~ (f3(T)  J -- 1) 2 + QeeT 1 -- In + 0(#o. (C.4) 

We apply these relation to the near-incompressible counterpart of the two-term incompres- 
sible Mooney-Rivlin material. It follows that 

1 2 
(#1 = ClI3 -~ (#2 = C213 - 3  

(C.5) 
1 * 2 s 

~T3(T) (T3(T) J -- 1) -- ~ C d t S - g  - ~ Cf lg3  -5. 
(#3-  2 ~  

Thus, for the assumed material, 

(#H = ( # ~  = (#1~ = ( # ~  = ( # ~  = (#~r = o 

1 * 
(#31 = (#13 = - 3  C J 3 - ~  

2 5 
(#32 = (#23 = - - ' ~  C213 -~ (C.6) 

3 4 7 10 8 
x f  3(T) I 3 - ~  + C l l l i  3 -3  + C21213-3 (#33- ~ ~ --r 

2~ 7 ~ (#3T= ~ f (T) + ~j f4(T). 
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We now write f3 (T)  = 1 + ga(T) and f 6 ( T )  = 1 + g6(T), and note that g3(0) = g6(0) = 0. 

Some manipulation serves to derive the following compact  expressions: 

Da(~)=2C2AaIa-5+ x 1 -  - ~ C ~ I ~ I 3 - g - - ~ C 2 1 2 1 3 -  A3 

2 4 4 s 
-- ~ CLI3-3 (nln3 r + n3nl r) - ~ C213-3(n2n3 r + n3n2 T) (C.7) 

+ + ~ CIIaI3 -~ + ~-  C2IJ3 -5  n3e3 r 

o2(5,  r -  To) = ~ g0 (r )  g3 ) A3 + ~ g3(r) I3-~n3n3 ~. (c .8)  

Presumably, when T =  To, at strain e the stability condition D = D1 > 0 is satisfied implying 

restrictions on C1, C2, and x. Now suppose T r  To. The condit ion D1 + D2 > 0 now imposes 

restrictions on c~ as welt as on C1, C2, and x. Suppose that, based on test da ta  or  other 

information,  the values C1", C2", ~* and ~* are est imated for a given elastomer. The foregoing 

relations can be used to furnish a computa t ional  assessment of the range of e and T over which 

the stabili ty condit ions are satisfied. 
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