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Summary. The heat transfer characteristics of a second-order fluid over a continuous stretching 
surface with internal heat generation or absorption is analyzed. Two cases are studied, namely (i) 
the sheet with prescribed surface temperature (PST-case) and (if) the sheet with prescribed wall heat 
flux (PHF-case). The soIution and heat transfer characteristics are obtained in terms of Kummer's 
functions. For large values of Prandtl number a uniform approximation is given in terms of parabolic 

cylinder functions with a boundary layer of width ]/1/Pr in both the PST and PHF eases. It  is also 
shown that no boundary layer type solution exists for small Prandtl number. 

1 Introduction 

In  many engineering processes, boundary layer behavior occurs for a flow over a moving 

continuous solid surface. Manufacturing processes that involve extrusion of a material and 

heat-treated materials that  travel between feed and wind-up rollers or on conveyer belts 
are examples that  exhibit the characteristics of flow over a moving continuous surface. 

Sakiadis [1] initiated the study of these applications by considering the boundary layer 

flow over a continuous solid surface moving with constant speed. This flow is quite different 

than the boundary layer flow over a semi-infinite flat plate due to the entrainment of the 

ambient fluid. This problem was extended by Erickson et al. [2] to the case where the 
transverse velocity at the moving surface is nonzero with heat and mass transfer in the 

boundary layer accounted for. 

These investigations address the problem of a polymer sheet extruded continuously 

from a dye. I t  is often implicitly assumed that the sheet is inextensible but it may be 

necessary to consider a stretching plastic sheet. This was noted by McCormack and Crane 
[3]. Danberg and Fansler [4] investigated the non-similar solution for the boundary layer 
flow past a wall that  is stretched with a velocity proportional to the distance along the wall. 

Gupta and Gupta [5] analyzed the heat and mass transfer corresponding to the similarity 

solution for the boundary layer over a stretching sheet subject to suction or blowing. 

Recently, Chen and Char [6] investigated the effects of power law surface temperature 
and power law surface heat flux variation on the heat transfer characteristics of a con- 

tinuous, linearly stretching sheet subject to suction or blowing. 
All of the above investigators restricted their analysis to flows of a Newtonian fluid. 

However, recently non-Newtonian fluids have become of interest in industry. For example, 
Fox et al. [7] used both exact and approximate methods to study the laminar boundary 

layer on an inextensib]e continuous flat surface moving with a constant velocity in its own 
plane in a non-Newtonian fluid characterized by a power law model (Oswald-de Waele 
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fluid). This power law model has some limitations as it does not exhibit any elastic prop- 
erties such as normal stress differences in shear flow. In  certain polymer processing 
applications, flow of a viscoelastic fluid over a stretct~ing sheet is important.  For this 
reason, l~ajagopal et al. [8] studied the flow behavior of a viscoelastic fluid over a stretching 
sheet and gave an approximate solution for the flow. They considered an incompressible 
second-order fluid whose constitutive equation is based on the assumption of gradually 
fading memory suggested by Coleman and Noll [9] as 

T = - - P I  + ttA1 + oqA2 + o~sA1 ~, (1) 

where T is the stress tensor, P is the pressure,/~, ~i, ~ are material constants with c~ < 0 

and A1 and A2 defined as 

A1 = (grad v) + (grad v) T, (2) 

d 
A2 = ~-~ A1 + A1 �9 grad v + (grad v) T �9 A1. (3) 

This model is applicable to some dilute polymer solutions (such as: (i) the 5.4 percent 
solution of polyisobutylene in eetane (see Markovitz and Coleman [10]); and (ii) the 
0.83 percent solution of ammonium alginate in water (see Aerivos [11])) at  low rates of 
shear. P~ecently, Troyt  eL al. [12] gave the exact solution to the problem of P~aj~gopal 

et al. [8]. 
The present authors motivated by the above analyses have studied heat transfer in a 

second-order fluid over a continuous stretching surface with power law surface temperature 
and power law surface heat flux including the effect of internal heat generation or ab- 
sorption. A series solution to the energy equation in both cases is given in terms of Kummer  
functions. Several closed form analytical solutions are presented for special values of the 
parameters.  Dilute polymer solutions like 0.83 percent ammonium alginate in water and 
5.4 percent polyisobutylene in octane have approximate Prandt l  number of 440 and 3 
respectively so the asymptotic cases of large and small Prandtl  number  are studied. (Also, 
the Prandtl  number has different values at different temperatures and/or for different 
concentrations, for the same fluid. For further details, see Perry  [14]). Further,  the contri- 
butions of the elastic parameter  m, the Prandtl  number Pr, and heat source/sink parameter  
c~ to heat transfer characteristics are found to be quite significant. 

2 Flow analysis 

Consider the ftow of a second-order fluid obeying (1) past  a fiat sheet coincident with the 
plane y = 0, and the flow confined to the region y > 0. Two equal and opposite forces are 
applied along the x-axis so that  the wall is stretched but the origin stays fixed. The steady 
two-dimensional boundary layer equations for this fluid (see Beard and Walters [13] for 

details) in the usual notation are 

~u av 
--~- + 0Y 0, (4) 

u - ~ + v @ = ~ - - - ; ~ [  ~u + - - - -  + v  (5) 
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where v = #/Q and 2 = -~1/~.  In  deriving these equations it was assumed that  the normal 
stress is of the same order of magnitude as the shear stress, in addition to the usual boundary 
layer approximations. Thus both v and ~ are 0(dg), with (~ the boundary layer thickness. 

The appropriate boundary conditions for the problem are 

u = B x ,  v ~- 0 at y = 0, B > 0, 
(6) 

u - ~ 0  as y - ~ c ~ .  

In  this case, the flow is caused solely by  the stretching of the sheet since the free stream 
velocity is zero. Equations (4) and (5) admit  a similarity solution with 

u = Bx/ ' (~7) ,  ~ -= --  (B~,) 1 /2 / (~ ) ,  (7) 

V = (B /~)  ~/2 Y ,  (8) 

where a prime denotes differentiation with respect to V. Clearly u and v as defined above 
satisfy the continuity Eq. (4). Substituting (7) and (8) in (5) gives 

(1 ' )2  __ / / "  ~_ / ' "  _ ) . 1 1 2 / ' 1 " '  __ (1 ' , ) 2  __ / / i v ] ,  (9) 

where ,~1 = ;~B/v is the elastic parameter.  The boundary conditions (6) become 

/ ' =  1, ]----0 at V = 0  
(10) 

/ ' ~ 0  as ~l-+c~.  

In  1987, Troy et al. [12] obtained the exact solution 

/(V) = (1 -- e - ' n " ) / m ,  m = 1/]/1 - -  ~ 1 ,  (11) 

for the differential equation (9) satisfying boundary conditions (10). This gives the velocity 
components 

U ~ B x e -  m~,  
(12) 

v = - - ( B r )  1/~ (1 -- e - m ' ) / m  

and the dimensionless shear stress at the wall is 

v = (1 -- 21)/"(0) = --(1 -- 21) 1/2. (13) 

3 Heat transfer analysis 

The governing boundary layer equation with internal heat generation or absorption is 

~Cv  U - ~ x  + v = I c - -  + Q ( T  - Too).  ~y2 
(14) 

The thermal boundary conditions depend on the type of heating process being considered. 
We consider two different heating processes, namely, (i) prescribed surface temperature  
and (if) prescribed heat flux. The heat transfer analysis for these two cases is given in 

Sections 3.1 and 3.2. 
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3.1 Prescribed sur/ace temperature (PST-case) 

For  this heat ing process, the boundary  conditions are 

T =  Tw[= Too + A(x/l) r] at  y = 0 ,  (15) 

T- ->T~  as y - > c o ,  

where l is the  characterist ic  length and r is the  t empera tu re  parameter .  Defining the non- 
dimensional  t empera tm 'e  as 

0(~7) = (T - Too)/(Tw -- Too) (16) 

and using relations ( 7 ) -  (8), then  Eq.  (14:) and the boundary  conditions (15) can be wri t ten 
~S 

0" + Pr /O '  -- (Pr  r / '  -- a) 0 = O, (17) 

0 = 1  at  7 = 0 ,  0 - > 0  as ~7-+co,  (18) 

where 

I ( , ~ )  = (1  - e - " ~ ) / m ,  / ' ( 7 )  = e - ' ~  

m = (1 - -  ~1) 1 / g  elastic p a r a m e t e r  (19) 

~r = #Cp/lc, Prand t l  numbe r  

o~ = Qv/kB, heat  source/sink p a r a m e t e r  

and a pr ime denotes differentiat ion with respect  to ~. 
Defining a new var iable  

- P r  
= - -  e - " ~  (20) 

m 2 

and subst i tu t ing the  solution / into Eq.  (17), we get  

@ " +  1 m ~ ~ + r +  ~ - ~ - ~  0 = 0 ,  (21) 

where a pr ime will now denote differentiat ion with  respect  to #. The  bounda ry  conditions 

a r e  n o w  

0 ~ = 1, 0(0-) = 0, (22) 

where 0(0 ) denotes the left hand limit  of 0 at  0. The solution of Eq.  (21) sat isfying bounda ry  
conditions (22) is given in te rms of K u m m e r ' s  funct ion (see [15]): 

M ( l ( a + b ) - - r ,  1 + b ; ~ )  

(23) 
0(~) = \ ~ ]  M ( l  (a + b) _ r, 1 + b; _ a )  

1 {Pr  
where a = P r / m  ~ and b = - -  - 4=a) and  

m \ m  2 
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The  solution (23) in t e rms  of the  ~ var iable  is 

0(~]) : e - ( a + b ) m ~ / 2 "  (24) 

M ( l ( a + b ) - - r , l  +b; - -a)  

The nondimensional  t empe ra tu r e  gradient  derived f rom (24) is 

o ' ( o )  = 

am ( a + b - - 2 r ) ( 1 2  + b ) - i M (  l ( a + b ) - r +  1 , 2 + b ; - a ) -  

+ b ) - r ,  1 + b ;  - a )  --1(a2 + b) mM ( l (a 
(25) 

k 

--  r, 1 +  b; - a )  
I 

and the  local wall heat  f lux can be expressed as 

qw = - ~  = - k A ( B / ~ )  1/~ (x / l )  r 0 ' (0 ) .  
W 

For  several  sets of values of a and b, closed form solutions can be given in t e rms  of elemen- 
t a r y  functions and some of the  interest ing results are presented in Table  1. Also, the  expres-  
sions in (24) and (25) are evalua ted  numerical ly  and some of the qual i ta t ive ly  interest ing 
results are presented in Figs. 1, 2 and 4. 

3.2 Prescribed wall heat flux (PHF-case) 

In  this case the  bounda ry  conditions are 

~T - - I s - -  = qw = D(x/1) s at y = O, ~y 

and 

T - + T o o  as y - - > o o .  (26) 

Defining 

T -- Too - k g(v)  (27) 

and subst i tu t ing the  relat ions (7) and (8) into (14) and (26), we get 

g" § Pr/g' -- (Pr 8]' -- ~ ) g  = 0, (28) 

g'(0) = -- 1, g(ec) = 0, (29) 

where a pr ime denotes differentiat ion with  respect  to ~7, and all o ther  pa rame te r s  are as 
defined in Section 3.1. 
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Table l a. Temperature expressions for various a and b 
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a b 0(~) 

2r 0 

2r-~ 1 1 

a a -- 2r 

a a - -  2 r - - 2  

a a - - 2 r - - 4  

e - t u r n  

~-,~(~ - oxp (-~-~)) (1 - ~-~)-1 

e ~ y(a --  2r, ae-a') 
y(a --  2r, a) 

exp (--m(a -- r -- I) ~ -- a(e -m' -- I)) 

( a ( e - m v - - 1 ! )  exp (--m(a a(1 1 +  Y r ~ )  - ~ - 2 ) ~ +  - ~ - ~ , ) )  

where ~ is the incomplete gamma function 

Table lb .  Temperature gradient expressions for various a and b 

a b 0'(0) 

2r 0 - -mr 

+ 1 1 (m(r -- a) e -a -- mr)l(1 -- e -a) 2r 

Ct Ct-- 2~" 

a a - - 2 r  - - m r - -  me -a 
y(a -- 2r, a) 

a a - - 2 r - - 2  re(r-{- 1) 

(m-7 1) a - - 2 r - -  3 
a a - - 2 r - - 4  m ( r - ~ 2 )  

2 r + 3  

Using t r ans fo rma t ion  (20), we reduce Eq.  (28) and  the  b o u n d a r y  condi t ions (29) to  

~ g " +  1 m 2 $ + s +  ~ - 1  g = 0 ,  (30) 

g ' ( - -a )  = - - m / P r ,  g(O-) = O, (31) 

where p r ime  now denotes  d i f ferent ia t ion  wi th  respect  to  ~. The  solut ion sa t is fying (30) and  

(31) is g iven b y  

111 g ( $ )  = - -  ( a  + b) M (  1 (a + b ) - s ,  1 + b; - - a )  

(1 )?( (; ) 
- - a M '  (a + b) --  s, 1 + b; - a  ~ M (a + b) --  s, 1 + b; 

(32) 

where M ' ( a l ,  ~2 ; z) = a__.~l M ( a l  + 1, ~2 + 1 ; z). 
~2 
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a b g(v) 

(== Pr/m 2) ~ - -  --  4~ 

2 0 

2 s ~ - I  1 

a a -- 2s 

a a - - 2 s  - - 2  

a a - - 2 s  - - 4  

2 

e-rosy(1 - -  exp ( - -ae-mv))  (s @ (a - -  s ) e -a )  -1 

CWms~y(a -- 2s, ae -ra~) 

--1 
- -  (s @ 1) -1 exp ( - - m ( a  - -  s - -  1) ~/ --  a(e -m'l - -  1)) 

where 

C1 = 1 ((a - -  s) y (a  - -  28, a) - -  y (a  - -  2s ~- 1, a)) -~ 

C 2 = s - -  2 ~ 3  

I n  t e rms  of the  var iable /7 ,  t he  so lu t ion  is 

g ( ~ )  = m 

- - a M '  (a + b) - s, 1 + b; - a  

• e-~'(~+b)~/~M ( 2  (a + b ) - - s , l + b ; - - a e - m ~ ) .  (33) 

The wall  t e m p e r a t u r e  Tw is ob ta ined  f rom Eq.  (27) as 

T W - -  T ~  - D(x/l)--~ ( ~ / B )  1/~ g(O) .  (34) 
k 

As in Sect ion 3.1, severa l  closed form solut ions are  der ived  f rom (33) for special  values  of 

t he  p a r a m e t e r s  a and  b. These  are  p resen ted  in Tab le  2. Also,  numer ica l  values  of g(0) for 

severa] values  of t he  p a r a m e t e r s  m ,  c~ and  P r  a re  ca lcu la ted  and p resen ted  in Fig.  3 

4 Asymptotic limit for large Prandtl number 

I n  th is  Sect ion,  we der ive  the  a s y m p t o t i c  resul ts  for large P r a n d t l  n u m b e r  for the  t em-  

pe ra tu re  funct ions  0(~) and g(~), which arise in t he  PST  and  P H F  cases respect ive ly .  

4 . 1  P S T - c a s e  

I n  th is  case the  b o u n d a r y  layer  equa t ion  and  b o u n d a r y  condi t ions  are  

e0" + 1(7) 0' --  (rl '(~) --  ~,) 0 = 0,  

0(0) = 1, 0(oz) = 0, 

(35) 

(36) 
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where e ~ (Pr) -1 and a prime denotes differentiation with respect to ~7. The change of 
variable 

~--1 ) 
0(V) = exp (-S;-~ S(~) r F(,7) ~ f / (~ / )  dr'  (37) 

0 

applied to (35) gives 

Using WKB (Wentzel, Kramers and Brillouin) theory we obtain a uniform approximation 

in the limit of small e (see [16]). The inner solution can be found by sealing ~ by ]/~ in 
Eq. (38) which gives to lowest order 

d2~d~ 2 [ l ~ e - r - t -  1 ] ~ = 0  where ~ =~] /~- .  (39) 

The inner solution is then proportional to D ~-1(~)- For U >~ ]/s the solution is found by 
looking for a solution of the form 

r ~ exp ~- e'fl~(~]) . (40) 

Calculating ri0(U) and fix(}) gives the approximation 

r ~ c(/(~)) -~-~ exp ~ F(~) (41) 

with C determined by matching with the inner solution. The solution (39) and Eq. (41) can 
be combined in the uniform expansion 

O(~)~1/22r+lj~'(1 -t- 2) [}/~-~r+lD_r_i(/~) exp(~F(~?) ). (42) 
/(,7) ! 

From (42) we observe that  there is a boundary layer of width V~. 

4.2 PHF-case 
The analysis in Section 4.1 can be applied to this case as well. The uniform asymptotic 
expression in this ease is 

in the PST-case, the boundary layer is also |/~. As 
V 

5 Asymptotic limit for small Prandtl number 

As in Section 4, we would like to derive an asymptotic approximation for small Prandtl 

number for the temperature functions 0(U) and g(~]). However it is not possible to find 

matched asymptotic expansions in the usual sense. This is evident by considering the exact 

solution with Pr replaced by e. The solution in both cases changes by 0(i) on a length scale 

of order (Pr) -I, which is arbitrarily large for small Pr. 
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Fig. 1. Tempera tu re  profiles for r = t when a P r  = 1 and  b P r  = 2 
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m I 1.1 1.1 1.1 
a 0.2 0.2 0.0 --0.2 

5.1 PST-case 

L e ~ i n g  ~ = P r  i n  (17) g ives  

0 "  + # ( ~ )  0' - -  (~rl ' (~)  --  ~) 0 = 0 .  

T h e  s o l u t i o n  s a t i s f y i n g  (44) a n d  b o u n d a r y  c o n d i t i o n s  

0(0) = 1,  0 ( ~ )  = 0 

(44) 
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is 

(~ - -  r ,  1 q- ~-~ ( o  - -  1 ) ;  - -  e -.'~7 

0(7 ) = e -~ /2m m z (45) 
( r - -  r, 1 +  ~ - ~ ( ~ - -  1); 

where 

= 1 + 1 e2 / �9 (46) 

The  t e rm e -~~200 gives a slow exponent ia l  decay,  which shows the  imposs ib i l i ty  of a bound-  

a r y  layer  t y p e  solution.  

5.2 PHF-case  

Simi la r ly  g(7) is g iven b y  

= - -  a - s , l + ~ - ~ ( ~ -  1); 
g(~) m 

- - - -  ~ - - s ,  1 + - - ( o - -  1)" 
7~ 2 7~, 2 

X e - ~ / 2 m M  \m-- ~ r --  s, 1 + ~-~ (z --  1); ~ e -m~ 

with  a as before in (46). Again,  the  solut ion decays  s lowly due to  the  e -~~ te rm.  

(47) 

6 Di scus s ion  of r e su l t s  

I n  Fig.  1 a, the  t e m p e r a t u r e  d i s t r ibu t ion  0(7 ) is p lo t t ed  for P r  = 1 and  several  sets of values  

of m and  ~. S imi lar  p lots  are  g iven in Fig .  l b  for P r  = 2. F r o m  these  i t  is ev ident  t h a t  the  

t e m p e r a t u r e  increases wi th  an increase in the  viscoelast ic  p a r a m e t e r  m. The t e m p e r a t u r e  

0 '(o) 
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-1.0 

- 1 . 5  

-2.0 

- 2 . 5  
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III 

IV 

1 2 3 4 5 

Fig. 2. Temperature gradient in 
the PST ease for r = 1; curves as 
in Fig. I 

Pr  
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also increases with an increase in the value of the heat source/sink parameter ~. Further- 

more, an increase in the Prandtl  number decreases the temperature at a given point in the 
fluid. This is consistent with the fact that  the thermal boundary layer thickness decreases 

with increasing Prandtl number. 
The wa]l temperature gradient 0'(0) as a function of Pr  for several sets of values of m 

and ~ is shown in Fig. 2. For given values of m and a, the larger the Pr, the larger (in an 

absolute sense) the magnitude of the wall temperature gradient. Also, the wall temperature 
gradient increases in magnitude as m increases. This is true even for the heat source/sink 

parameter a. 
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I I  

I 

I I I  
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1 2 3 4 5 
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F i g .  8.  T e m p e r a t u r e  a t  ~ = 0 i n  t h e  P H F  c a s e  fo r  s = 1 ; c u r v e s  as  in  F i g .  1 
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0 
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0 

r = - 2  

r = - - i  

r= 0 

0 1 2 3 4 5 6 

F i g .  4.  T e m p e r a t u r e  i n  t h e  P S T  c a s e  fo r  r = 2, 0, - - 1 ,  - - 2  a t  m = 1.1 a n d  c~ = 0.2 
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The behavior  of the wall tempera ture  g(0) with changes in m, cr and  Pr  is displayed in  

Fig. 3. From this figure it is seen tha t  the wall t empera ture  decreases rapidly for small  

values of Pr  and  then  decreases slowly for fur ther  increases in the P r a nd t l  number .  Fur ther -  

more, the effects of m and  ~ are to increase the wall t empera ture  g(0). 

I n  Fig. 4 the effect of r, the tempera ture  parameter ,  on the t empera ture  d is t r ibut ion 

for fixed values of m, ~ and  Pr  is shown. When  r > 0, heat  flows from the s t retching sheet 

to the ambien t  medium. The magni tude  of the tempera ture  gradient  increases with r for 

this ease. When  r < 0, the tempera ture  gradient  is now positive and  heat flows into the 

stretching sheet from the ambient  medium. 
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