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Summary. The heat transfer characteristics of a second-order fluid over a continuous stretching
surface with internal heat generation or absorption is analyzed. Two cases are studied, namely (i)
the sheet with prescribed surface temperature (PST-case) and (ii) the sheet with preseribed wall heat
flux (PHZF-case). The solution and heat transfer characteristics are obtained in terms of Kummer’s
functions. For large values of Prandtl number a uniform approximation is given in terms of parabolic

cylinder functions with a boundary layer of width ]/i_/ﬁ in both the PST and PHF cases. It is also
shown that no boundary layer type solution exists for small Prandtl number.

1 Introduetion

In many engineering processes, boundary layer behavior occurs for a flow over a moving
continuous solid surface. Manufacturing processes that involve extrusion of a material and
heat-treated materials that travel between feed and wind-up rollers or on conveyer belts
are examples that exhibit the characteristics of flow over a moving continuous surface.
Sakiadis [1] initiated the study of these applications by considering the boundary layer
flow over a continuous solid surface moving with constant speed. This flow is quite different
than the boundary layer flow over a semi-infinite flat plate due to the entrainment of the
ambient fluid. This problem was extended by Erickson et al. [2] to the case where the
transverse velocity at the moving surface is nonzero with heat and mass transfer in the
boundary layer accounted for.

These investigations address the problem of a polymer sheet extruded continuously
from a dye. It is often implicitly assumed that the sheet is inextensible but it may be
necessary to consider a stretching plastic sheet. This was noted by McCormack and Crane
[3]. Danberg and Fansler [4] investigated the non-similar solution for the boundary layer
flow past a wall that is stretched with a velocity proportional to the distance along the wall.
Gupta and Gupta [5] analyzed the heat and mass transfer corresponding to the similarity
solution for the boundary layer over a stretching sheet subject to suction or blowing.
Recently, Chen and Char [6] investigated the effects of power law surface temperature
and power law surface heat flux variation on the heat transfer characteristics of a con-
tinuous, linearly stretching sheet subject to suction or blowing.

All of the above investigators restricted their analysis to flows of a Newtonian fluid.
However, recently non-Newtonian fluids have become of interest in industry. For example,
Fox et al. [7] used both exact and approximate methods to study the laminar boundary
layer on an inextensible continuous flat surface moving with a constant velocity in its own
plane in a non-Newtonian fluid characterized by a power law model (Oswald-de Waele
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fluid). This power law model has some limitations as it does not exhibit any elastic prop-
erties such as normal stress differences in shear flow. In certain polymer processing
applications, flow of a viscoelastic fluid over a stretehing sheet is important. For this
reason, Rajagopal et al. [8] studied the flow behavior of a viscoelastic fluid over a stretching
sheet and gave an approximate solution for the flow. They considered an incompressible
second-order fluid whose constitutive equation is based on the assumption of gradually
fading memory suggested by Coleman and Noll [9] as

T = —PI + pA; + x4y + x:4,2, 1)

where T is the stress tensor, P is the pressure, 4, ay, oy are material constants with «; < 0
and A, and A, defined as

A, = (grad v) + (grad v)7, (2)
d T
A, = 7 A + Ay -gradw + (grad o)’ - 4;. (3)

This model is applicable to some dilute polymer solutions (such as: (i) the 5.4 percent
solution of polyisobutylene in cetane (see Markovitz and Coleman [107); and (ii) the
0.83 percent solution of ammonium alginate in water (see Acrivos [11])) at low rates of
shear. Recently, Troyt et al. [12] gave the exact solution to the problem of Rajagopal
et al. [8].

The present anthors motivated by the above analyses have studied heat transfer in a
second-order fluid over a continuous stretching surface with power law surface temperature
and power law surface heat flux including the effect of internal heat generation or ab-
sorption. A series solution to the energy equation in both cases is given in terms of Kummer
functions. Several closed form analytical solutions are presented for special values of the
parameters. Dilute polymer solutions like 0.83 percent ammonium alginate in water and
5.4 percent polyisobutylene in cetane have approximate Prandtl number of 440 and 3
respectively so the asymptotic cases of large and small Prandt]l number are studied. (Also,
the Prandt] number has different values at different temperatures and/or for different
concentrations, for the same fluid. For further details, see Perry [14]). Further, the contri-
butions of the elastic parameter m, the Prandtl number Pr, and heat source/sink parameter
& to heat transfer characteristics are found to be quite significant.

2 Flow analysis

Consider the flow of a second-order fluid obeying (1) past a flat sheet coincident with the
plane y = 0, and the flow confined to the region y > 0. Two equal and opposite forces are
applied along the x-axis so that the wall is stretched but the origin stays fixed. The steady
two-dimensional boundary layer equations for this fluid (see Beard and Walters [13] for
details) in the usual notation are
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where v = u/p and L = —uy/p. In deriving these equations it was assumed that the normal

stress is of the same order of magnitude as the shear stress, in addition to the usual boundary

layer approximations. Thus both » and 4 are 0(42), with ¢ the boundary layer thickness.
The appropriate boundary conditions for the problem are

u = Bx, v=0 at y =0, B> 0,
(6)

>0 as y—o00.

In this case, the flow is caused solely by the stretching of the sheet since the free stream
velocity is zero. Equations (4) and (5) admit a similarity solution with

w = Buf'(n), v= —(B)fx), (7
9 = (B/,,)llzy, (8)

where a prime denotes differentiation with respect to . Clearly u and » as defined above
satisfy the continuity Eq. (4). Substituting (7) and (8) in (5) gives

2= f1" =" = Ml2f 1 — ()2 = ], &)
where 4, = 2B/ is the elastic parameter. The boundary conditions (6) become

f=1, f=0 at =0

(10)
ff—0 as 5n—o0.
In 1987, Troy et al. [12] obtained the exact solution
o) = (1 — e ™)m, m=1/1 =, (11)

for the differential equation (9) satisfying boundary conditions (10). This gives the velocity
components

u = Bxe ™,

(12)
v = —(By)V2 (1 — e~ ™)/m

and the dimensionless shear stress at the wall is

= (1-4)f"0) = —(1— n)Pe. (13)

3 Heat transfer analysis

The governing boundary layer equation with internal heat generation or absorption is

o oT or o

QP(u—a;-l—'U—a-y—):k“a?‘-i‘Q(T—Too)- (14)
The thermal boundary conditions depend on the type of heating process being considered.
We consider two different heating processes, namely, (i) prescribed surface temperature
and (ii) prescribed heat flux. The heat transfer analysis for these two cases is given in
Sections 3.1 and 3.2.
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3.1 Prescribed surface temperature (PST-case)

For this heating process, the boundary conditions are

T="Tyl=Te + Az/l))] at y =0,
(15)
T >T, as y-—>o0,

where { is the characteristic length and r is the temperature parameter. Defining the non-
dimensional temperature as

6(n) = (T — Too)/(Tw — T) (16)

and using relations (7)—(8), then Eq. (14) and the boundary conditions {(15) can be written
as

6" + Prfd’ — (Prrf — )0 =0, (17)
6=1 at =0, 8—>0 as »n—co, (18)
where

fo) = (1 — e ™Nfm,  fn) =™

m = (1 — A4)"V2, elastic parameter

(19)
Pr = uCp/k, Prandtl number
o = Qv/kB, heat source/sink parameter
and a prime denotes differentiation with respect to #.
Defining a new variable
—Pr
£= e (20)
m2
and substituting the solution f into Eq. (17), we get
Pr &
"+ |l— —5 &0+ |r+ —5£&10=0, (21)
m m
where a prime will now denote differentiation with respect to £. The boundary conditions
are now
—Pr
0( 5 ) =1, 6(07) =0, (22)
m

where (0~ ) denotes the left hand limit of 6 at 0. The solution of Eq. (21) satisfying boundary
conditions (22) is given in terms of Kummer’s function (see [15]):

1
e M(—é-<a+b>~r,1+b;s)

)(afb)/-a
br M(—;—(a—l—b)——r,l-i—b;—a)

H(&) = ( (23)

1 [Pr? U2
where a = Pr/m? and b = - (—— — 4:oc) and

m?

Moy, o0g; 2) = E’ (o1)aZ"

n—o {ovg)gm! ’
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The solution (23) in terms of the % variable is

M (—;— (@ +b) —7r, 1 +0b; —aem")

O(n) = e (atvymal2, - (24)
M(E(a—l—b)—r,l—i—b; —a)
The nondimensional temperature gradient derived from (24) is
ﬁ;i(aﬂLb—?r)(l-I-b)”lM(—;—(ava)—r—l-1,2+b; —a) _
6'(0) = -
M= b) —
Eawn
1 1
———2—((L+b)mM<—2—(a+b)—-r,1+b; —a)
(25)

—r, 14+ b; —a)
and the local wall heat flux can be expressed as
orT
aw = —k (=) = —kABp2 @fI) 0°(0).
oy Jw
For several sets of values of ¢ and b, closed form solutions can be given in terms of elemen-
tary functions and some of the interesting results are presented in Table 1. Also, the expres-

sions in (24) and (25) are evaluated numerically and some of the qualitatively interesting
results are presented in Figs. 1, 2 and 4.

3.2 Prescribed wall heat flux (PHF-case)

In this case the boundary conditions are

oT
—k— =qy =D(@/l)’ at y =0,

%y
and
T—+T, as y—>oc. (26)
Defining

D(z/l)s [ » \L2

71, = 2 (E) g0) (1)

and substituting the relations (7) and (8) into (14) and (26), we get
g +Prfg — (Prsf —ax)g=0, (28)
9'(0) = —1,  g(oo) =0, (29)

where a prime denotes differentiation with respect to #, and all other parameters are as
defined in Section 3.1.
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Table 1a. Temperature expressions for various ¢ and b

a b 6(n)
1 /Pr? 1/2
e (1))
m \ m?
2r 0 e~ mm
2r + 1 1 el — exp (—ag™)) (1 — e
o —&
“ o — o o (e — 2r, qe)
yie — 2r, a)
a a—2r —2 exp(wm(a—r—i)n—a(g—mn_1))
. a(e™ — 1) o
@ a—2r—¢ ITW exp (—mia —r —2)n +a(l —e ))

where y is the incomplete gamma function

Table 1h. Temperature gradient expressions for various « and b

a b 0'(0)
2r 0 —mr
2r + 1 1 (m(r —a)e® — mr)/(l — e %)
aa—zr

a a — 2r —mr — Mg — ——

»a — 2r, a)
a a—2r—2 m(r + 1)

HYe —2r — 3

@ a—2r—4 m(r—|—2)—(m+ )a ’

2r 4+ 3

Using transformation (20), we reduce Eq. (28) and the boundary conditions (29) to
" Pr , &
b+ (1-= — &g +(|s+—=¢t)g=0, (30)
m m
g'(—a) = —m/Pr, g9(07) =0, (31)
where prime now denotes differentiation with respect to & The solution satisfying (30) and

(31) is given by

1[1 1
9(5)=;[3(a+b)M(§(a+b)—s,1+b;_a)

1 SN
—aM’(E-(a—l—b)—s,l—i—b; —a)] (—) M(E(a,-i—b)—s,lﬁ-b;f)

a

(32)

where M'(xy, o053 2) = Z—lM(ocl + 1, x5 + 15 2).
2
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Table 2. Temperature expressions for various ¢ and &

a b 9()
L {Pr? 12
== 2 = — — 4
(= Pr/m?) ( ” ( e oc) )
2
2 0 — gmani2
mae
2s + 1 1 e"'””(l — exp (uae*m")) (s + (@ — ) e—")—l
a @ — 28 Cre™y(a — 28, ae~™1)
—1
a a—2s —2 — (s + 1) exp(—m(a~s— 1)n — ale™ — 1))
"
25 — 4 0,144 1 ( 2) 7 + a(l — &™)
— 25 — ————Jexp (— — 5 — a{l — ¢~
o a s (1 + % T3 xp (—m(a — s 7
where
1
C,=—((a —9)yle — 25,0) — pla — 25 + 1, @)}
m

0, — (2~ 2)
_ — — s —
2 m \2s + 3

In terms of the variable #, the solution is
_ L » bhM ! b 1+ 6;
9(77)—7”; —2‘(“'1') —é—(a+)—s, +6; —a

1 -1
_a,M’(E(a+b)—s,1+b; —a)]

1
% e~ matbni2pr (E (@ +0b) —s, 1+ b; —«ue”"”). (33)
The wall temperature Ty is obtained from Eq. (27) as
D(z/l)
1y — 7o = 2 g g(0), 34)

As in Section 3.1, several elosed form solutions are derived from (33) for special values of
the parameters o and 5. These are presented in Table 2. Also, numerical values of g(0) for
several values of the parameters m, & and Pr are calculated and presented in Fig. 3.

4 Asymptotic limit for large Prandtl number

In this Section, we derive the asymptotic results for large Prandtl number for the tem-
Pperature functions 6(x) and ¢(»), which arise in the PST and PHTF cases respectively.

4.1 PST-case

In this case the boundary layer equation and boundary conditions are
0" + f(n) 0" — (rf'(n) — ex) 6 = 0, (35)
0(0) =1, f(c0) = 0, (36)
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where ¢ = (Pr)~! and a prime denotes differentiation with respect to #. The change of
variable

/1 7
o) = exp (5~ S(n)) D), Flp)= [ fr") doy (37)
applied to (35) gives
1 1
2P — [Z Ho® + ( + —2—) ef (n) — s%c] ?=0. (38)

Using WKB (Wentzel, Kramers and Brillouin) theory we obtain a uniform approximation

in the limit of small ¢ (see [16]). The inner solution can be found by scaling » by 1/; in
Eq. (38) which gives to lowest order

d2P [ 1 1

_dn”_zm —4—772—74-5]@:0 where 1‘7:7;/]/3. (39)

The inner solution is then proportional to D_, (7). For # > ]/; the solution is found by
looking for a solution of the form

1 o0
D(n) ~ exp [ 2 e"ﬂn(n)]- (40)

€ p=o0

Calculating By(n) and f,(n) gives the approximation

—1
() ~ C{fn)) " exp (—2— F(n)) (41)

with €' determined by matching with the inner solution. The solution (39) and Eq. (41) can
be combined in the uniform expansion

IFoy V! - _1
0(n) ~ 72271 (1 + _;_) (]’f(f;;) ) D_,.,I(V,?F(?y)/e) exp (—é: F(17)> . (42)

From (42) we observe that there is a boundary layer of width l/e_

4.2 PHF-case

The analysis in Section 4.1 can be applied to this case as well. The uniform asymptotic
expression in this case is

sl 1\ (VF@ e —~1
gln) ~ ml2g ag2p (f—;—) (V f(:)?) ) D_s—l(VQF(W)/8> exp (_é—c_ F(n))- (43)

As in the PST-case, the boundary layer is also l/g

b Asymptotic limit for small Prandtl number

As in Section 4, we would like to derive an asymptotic approximation for small Prandtl
number for the temperature functions 6(y) and g(n). However it is not possible to find
matched asymptotic expansions in the usual sense. This is evident by considering the exact
solution with Pr replaced by . The solution in both cases changes by 0(1) on a length scale
of order (Pr)~1, which is arbitrarily large for small Pr.
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Fig. 1. Temperature profiles for r = 1 whena Pr = 1 and b Pr = 2
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8.1 PST-case

Letting ¢ = Pr in (17) gives
0" + ef(n) 8" — (erf'(n) — x) 0 = 0.
The solution satisfying (44) and boundary conditions

80) = 1,  f(co) = 0

175

(44)
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is
M —0-—7* 1+——(O‘—1) T8 e
—con/2m m? m? m?
() = e - - — (45)
M(ﬁa—r,l—l—ﬂ-@—z(a—l); mz)
where
4dom?\V2
&

The term ¢~*°"" gives a slow exponential decay, which shows the impossibility of a bound-
ary layer type solution.

5.2 PHF-case

Similarly g(n) is given by

i LT
o ¥ (= L = i
e £ 3 —e\ [
*ﬁM(m"“"””ﬁ(““”; )]
Xe~san/2mM<_8_d_S 1+_6_(0_1).:e—mn> (47)
4 mz 3 mg : mz

with ¢ as before in (46). Again, the solution decays slowly due to the ¢™¢**™ term.

6 Diseussion of results

In Fig. 1a, the temperature distribution 6(5) is plotted for Pr = 1 and several sets of values
of m and «. Similar plots are given in Fig. 1b for Pr = 2. From these it is evident that the
temperature increases with an increase in the viscoelastic parameter m. The temperature

0.0
-0.5 b it
1
-1.0 1]
0 (o) v
-1.5
-2.0
Fig. 2. Temperature gradient in
the PST case for r = 1; curves as
-2.5 | L ! I in Fig. 1
0 1 2 3 4 5

Pr



Heat transfer in a second-order fluid 177

also increases with an increase in the value of the heat source/sink parameter «. Further-
more, an increase in the Prandtl number decreases the temperature at a given point in the
fluid. This is consistent with the fact that the thermal boundary layer thickness decreases
with increasing Prandtl number.

The wall temperature gradient 6’(0) as a function of Pr for several sets of values of m
and « is shown in Fig. 2. For given values of m and «, the larger the Pr, the larger (in an
absolute sense) the magnitude of the wall temperature gradient. Also, the wall temperature
gradient increases in magnitude as m increases. This is true even for the heat source/sink
parameter «.

1.25

0.75 +

g(o)

0.50 |-

0.25 -

Pr

Fig. 8. Temperature at = 0 in the PHF case for s = 1; curves as in Fig. 1

2.0

16

1.2

0.8

0.4

Fig. 4. Temperature in the PST caseforr = 2,0, —1, —2at m = 1.1 and x = 0.2
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The behavior of the wall temperature ¢(0) with changes in m, « and Pr is displayed in
Fig. 3. From this figure it is seen that the wall temperature decreases rapidly for small
values of Pr and then decreases slowly for further increases in the Prandtl number. Further-
more, the effects of m and « are to increase the wall temperature g(0).

In Fig. 4 the effect of r, the temperature parameter, on the temperature distribution
for fixed values of m, « and Pr is shown. When » > 0, heat flows from the stretching sheet
to the ambient medium. The magnitude of the temperature gradient increases with » for
this case. When r <C 0, the temperature gradient is now positive and heat flows into the
stretching sheet from the ambient medium.
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