ZEROS OF ACCRETIVE OPERATORS

Klaus Deimling

In the investigation of accretive operators in Banach spaces X , the existence of zeros plays an important role, since it yields surjectivity results as well as fixed point theorems for operators S such that I-S is accretive. Let $D \subset X$ and T: $D \rightarrow X$ an operator such that the initial value problems

(1) u'(t) = -Tu(t) , u(0) = $x \in D$ are solvable. Then T has a zero iff (1) has a constant solution for some $x \in D$. Under certain assumptions on D and T it is possible to show that (1) has a unique solution u(t,x) on $[0,\infty)$, for every $x \in D$. In this case, define U(t): $D \rightarrow D$ by U(t)x = u(t,x). If T is accretive it turns out that U(t) is nonexpansive for every t ≥ 0 . This fact constitutes the basis for several authors concerned with this subject. They proceed with assumptions on D and X ensuring either that the U(t) must have a common fixed point x or that U(p) has a fixed point x_p for every $p \geq 0$. In the first case, U(t)x₀ is a constant solution of (1), whence $Tx_0 = 0$. In the second case, U(t)x_p is a p-periodic solution of (1). Hence, one has to impose additional conditions on T which imply that a p-periodic solution must be constant, for some $p \geq 0$.

The main purpose of the present paper is to show that, in certain situations, either the operators U(t) are actually strict contractions or T may be approximated by operators T_n such that the corresponding $U_n(t)$ are strict contractions. Thus, we obtain several results in general Banach spaces and a unification of some results in special spaces.

1. Preliminaries

Let X be a real Banach space, X^* its dual and F: $X \rightarrow 2^{X^*}$ the duality map defined by $F(x) = \{x^* \in X^* : x^*(x) = |x|^2, |x^*| = |x|\}$. By means of F, the generalized pairings $(\cdot, \cdot)_-$, $(\cdot, \cdot)_+ : X \times X \rightarrow \mathbb{R}^1$ are defined as

(2)
$$(x,y) = \inf\{x^{*}(x) : x^{*} \in F(y)\} ,$$
$$(x,y)_{\perp} = \sup\{x^{*}(x) : x^{*} \in F(y)\} .$$

The following properties are immediate consequences of the definitions.

(3)
$$(x+\alpha y, y)_{\underline{+}} = \alpha |y|^{2} + (x, y)_{\underline{+}}$$
$$(x+y, z)_{\underline{+}} \leq (x, z)_{\underline{+}} + |y||z|$$

- (4) $(x,y) \leq (x,y)_{+}$, with equality holding everywhere if X^{*} is strictly convex
- (5) If x: (a,b] \rightarrow X is weakly differentiable at t_o, $\phi(t) = |x(t)|$ and $D^{-}\phi(t) = \lim_{h \to 0^{+}} \sup_{h \to 0^{+}} h^{+}O_{+}$ then $\phi(t_{o})D^{-}\phi(t_{o}) \leq (x'(t_{o}), x(t_{o}))_{-}$.

Definition 1. Let DCX. We call T: D \rightarrow X accretive if $(Tx-Ty,x-y)_{+} \geq 0$ for every $x,y \in D$, and strongly accretive if $(Tx-Ty,x-y)_{+} \geq \alpha(|x-y|)|x-y|$ for every $x,y \in D$, where $\alpha: \mathbb{R}^{1}_{+} \rightarrow \mathbb{R}^{1}_{+}$ is continuous with $\alpha(0) = 0$ and $\alpha(r) > 0$ for r > 0.

<u>Remark 1</u>. The usual definition af accretiveness is " $Tx-Ty,x^* \ge 0$ for some $x^* \in F(x-y)$ ". It coincides with our weaker assumption if X^* is strictly convex.

If $D \mathrel{\sc C} X$, $\rho(x,D)$ denotes the distance from $x \mathrel{\sc e} X$ to D .

2. Zeros of certain operators on arbitrary closed subsets

<u>Proof</u>. (i) We may assume $0 \in D$. Let f(u) = -Tu for $u \in D$. Since $\rho(u+\lambda f(u),D) = o(\lambda)$ and

$$(f(u)-f(v), u-v)_{-} = -(Tu-Tv, u-v)_{-} \leq 0$$

for $u, v \in D$, the initial value problem (1) has a unique solution u(t,x) on $[0,\infty)$, by Theorem 4 in [6]. (ii) There is a "ball" $K = \{x \in D : |x| \le R\}$ such that $u(t,x) \in K$ for each $x \in K$ and each $t \ge 0$. To see this, let $\phi(t) = |u(t,x)|$. By (5) and (3), we have $\phi(t)D\phi(t) \leq -(Tu-T(0), u-0) + |T(0)|\phi(t) \leq -\alpha(\phi(t))\phi(t) + |T(0)|\phi(t).$ Hence, with $\beta = |T(0)|$, $\phi(t)D^{-}\phi(t) < \left[\beta - \alpha(\phi(t))\right]\phi(t) \quad \text{in } t > 0 , \phi(0) = |x| .$ (7) Let R = $\inf\{r > 0: \alpha(\rho) > \beta \text{ in } (r, \infty)\}$. If $\beta = 0$ we are done. Therefore, we may assume β > 0 and we have 0 < R < $\infty.$ If $|x| \leq R$ then (7) implies $\phi(t) < R$ in t > 0. (iii) Let U(t)x = u(t,x). By (ii), $U(t): K \rightarrow K$ for every $t \ge 0$. We claim that there exists p > 0 such that U(p) is a strict contraction. Let $\phi(t) = |U(t)x-U(t)y|$. We have $\phi(0) = |x-y|$ and $\phi(t)D\phi(t) \leq -\alpha(\phi(t))\phi(t)$ in t > 0, hence $\phi(t) \leq \rho(t, |x-y|)$, where $\rho(t, r)$ denotes the solution of $\rho' = -\alpha(\rho)$, with $\rho(0) = r$. Therefore, we need only show that $\rho(p,r) \leq \frac{1}{2}r$ for some $p \, > \, 0$ and each $r \in [0,2R]$. Since $\lim \inf \alpha(r)/r > 0$, there exist c > 0 and $r_{o} > 0$ r→0 such that $\alpha(r) \ge cr$ in $[0, r_o]$. Now, if $r \le r_o$ then $\rho' \le -c\rho$, and therefore $\rho(t,r) \leq r/2$ for $t \geq c^{-1}\log 2$. If, however, $r_0 < r \leq 2R$ then let t_p be the first time with $\rho(t,r) = r_0$. Since $\gamma = \inf\{\alpha(r) : r \ge r_0\} > 0$, we have $\rho' \le -\gamma$ in $[0,t_r]$, hence $t_r \le \gamma^{-1}(2R-r_0) = \overline{t}$, and thus $\rho(t,r) \leq r_{o} \exp[-c(t-\overline{t})] \text{ for } t \geq \overline{t}$

This implies $\rho(t,r) \leq \frac{1}{2}r$ for all $t \geq \overline{t} + c^{-1}\log(2r_0/r)$ and $r \in (r_0, 2R]$. Hence, $\rho(p,r) \leq \frac{1}{2}r$ for $p = \overline{t} + c^{-1}\log 2$ and every $r \in [0, 2R]$.

(iv) By (iii) there is a unique fixed point $x_p \in K$ of U(p). Since $u(0,x_p) = u(p,x_p)$ and (1) is uniquely solvable, $u(t,x_p)$ is p-periodic. By (iii), we have

 $|u(t,x_{p})-x_{p}| = |u(t+p,x_{p})-x_{p}| = |U(p)u(t,x_{p})-U(p)x_{p}| \leq$

$$\leq \frac{1}{2}|u(t,x_p)-x_p|$$

hence $u(t,x_p) = x_p$ for every $t \ge 0$, and therefore $Tx_p = 0$. q.e.d.

<u>Remark 2</u>. Theorem 1 has been proved in [9,Theorem 3] in case $\alpha(\mathbf{r}) = \mathbf{cr}$ and T satisfies in addition a global Lipschitz condition. Obviously, we may replace " $\alpha(\mathbf{r}) \rightarrow \infty$ as $\mathbf{r} \rightarrow \infty$ " by the weaker condition "lim inf $\alpha(\mathbf{r}) > |Tx_0|$ for some $\mathbf{x}_0 \in \mathbb{D}$ ". If lim inf $\frac{\alpha(\mathbf{r})}{r} = 0$ then the conclusion in (iii) may be wrong, as is shown by the example $\alpha(\mathbf{r}) = \mathbf{r}^q$ with q > 1.

<u>Corollary</u> 1. Let Dc X be closed, T: D \rightarrow X continuous, (Tx-Ty,x-y)₊ $\leq k |x-y|^2$ for some k < 1, and

$$\rho((1-\lambda)x + \lambda Tx, D) = o(\lambda) as \lambda \rightarrow 0+$$
,

Corollary 1 is Proposition 3 from [6] . It follows immediately from Theorem 1 applied to S = I-T.

3. Zeros of strongly accretive operators on convex sets.

In case D is also convex, Theorem 1 can be improved considerably. This depends on two facts. At first, the existence theorem mentioned in step (i) holds if

$$(f(u) - f(v), u - v) \le 0$$
,

and secondly the boundary condition (6) is equivalent (in this case) to

(8) "If $x \in D$, $x^* \in X^* \setminus \{0\}$ and $x^*(x) = \sup_{D} x^*(y)$ then $x^*(-Tx) \leq 0$ ",

as follows immediately from the duality formula

$$\rho(z,D) = \max\{x^{*}(z) - \sup x^{*}(y): |x^{*}|=1\} \text{ for } z \in X.$$

Theorem 2. Let $D \subset X$ be closed and convex, $T: D \rightarrow X$ continuous and strongly accretive, and condition (6) hold. If

either "(Tx,x) ≥ 0 for $|x| \geq R$ " or "|Tx| $\rightarrow \infty$ as $|x| \rightarrow \infty$ " then $0 \in T(D)$.

<u>Proof</u>. Since everything is invariant under translation of D, except " $(Tx,x)_+ \ge 0$ ", we may assume $0 \in D$, but we have to change " $(Tx,x)_+ \ge 0$ " into " $(Tx,x+x_0)_+ \ge 0$ for $|x+x_0|\ge R$ " (some $x_0 \in X$ fixed). Let $T_n = T + \frac{1}{n}I$. If $x \in \partial D$, $x^* \in X^* \setminus \{0\}$ and $x^*(x) = \sup x^*(y)$ then $x^*(-T_nx) = x^*(-Tx) - \frac{1}{n}x^*(x) \le 0$,

since $x^*(-Tx) \leq 0$ by (6) and (8) , and $x^*(x) \geq 0$ (since $0 \in D$). Hence, (6) is also true for T. In addition, T_n is strongly accretive with $\alpha_n(r) = \frac{1}{n}r$. Now, in the proof of Theorem 1 applied to T_n we only have to change step (i): since D is convex, $(-(T_nu-T_nv),u-v)_{-} = -(T_nu-T_nv,u-v)_{+} \leq 0$ is sufficient for (1) to have a unique global solution. Hence, T_n has a zero $x_n \in D$, i.e. $Tx_n = -\frac{1}{n}x_n$ for every n. Suppose first that $||Tx|| \neq \infty$ as $|x| \neq \infty$ " holds. Since T is accretive, we obtain $|Tx_n| = |\frac{1}{n}x_n| \leq |T(0)|$. Hence, (x_n) must be bounded too.

If, however, $(Tx, x+x_o)_+ \ge 0$ for $|x+x_o| \ge R$, then $|x_n+x_o| \ge R$ implies $(x_n, x_n+x_o)_- \le 0$. Let $x^* \in F(x_n+x_o)$. Then $|x^*| = |x_n+x_o|$ and $|x_n+x_o|^2 = x^*(x_n)+x^*(x_o) \le x^*(x_n)+|x_n+x_o||x_o|$. This implies $|x_n+x_o|^2 \le (x_n, x_n+x_o)_- + |x_n+x_o||x_o|$, and therefore $|x_n| \le \max\{R+|x_o|, 2|x_o|\}$ for every n. Since in both cases $|x_n| \le c$ for some c > 0 and every n,

we obtain

 $\begin{array}{l} \alpha(|\mathbf{x}_n-\mathbf{x}_m|)|\mathbf{x}_n-\mathbf{x}_m| \leq (\mathrm{Tx}_n-\mathrm{Tx}_m,\mathbf{x}_n-\mathbf{x}_m)_+ \leq c(\frac{1}{n}+\frac{1}{m})|\mathbf{x}_n-\mathbf{x}_m|,\\ \text{hence } \alpha(|\mathbf{x}_n-\mathbf{x}_m|) \neq 0 \text{ as } n,m \neq \infty \text{ . Therfore, } (\mathbf{x}_n) \text{ is a}\\ \text{Cauchy sequence and thus convergent to some } \mathbf{x} \in D \text{ . Since}\\ \text{T is continuous and } \mathrm{Tx}_n = -\frac{1}{n}\mathbf{x}_n \neq 0 \text{ as } n \neq \infty \text{ , } \mathrm{Tx} = 0 \text{ .}\\ q.e.d. \end{array}$

Notice that both "conditions at infinity" in Theorem 2 are weaker than "
$$\alpha(r) \rightarrow \infty$$
 as $r \rightarrow \infty$ ". The following fixed point theorem is an immediate consequence of Theorem 2.

Corollary 2. Let $D \in X$ be closed and convex ; T: $D \rightarrow X$ con-<u>tinuous</u> and (Tx-Ty,x-y) $\leq \alpha(|x-y|)|x-y|$ with $\alpha: \mathbb{R}^1_+ \to \mathbb{R}^1$ continuous and $\alpha(r) < r \text{ for } r > 0$; $\rho((1-\lambda)x+\lambda Tx,D) = o(\lambda)$ as $\lambda \rightarrow 0+$, for each $x \in D$. If D is unbounded, assume either " $|x-Tx| \rightarrow \infty$ as $|x| \rightarrow \infty$ " or " $(Tx,x) \leq |x|^2$ for |x| > R''. Then T has exactly one fixed point. Theorem 3. Let DCX be open , T: D + X continuous and strongly accretive with a satisfying in addition lim inf $\alpha(r) > 0$. Then T(D) is open . r→∞ <u>Proof</u>. Let $x_o \in D$ and $K_{r_o}(x_o) = \{x : |x-x_o| \le r_o\} \in D$. We have to show that there is some $\delta > 0$ such that $K_{\delta}(Tx_{\lambda}) \subset T(D)$. Without loss of generality, we assume $x_0 = 0$. Let $\delta > 0$ be such that $R_{\delta} = \inf\{r : \alpha(\rho) > \delta \text{ in } (r,\infty)\} < r_{\rho}$. Let $y \in K_{\delta}(T(0))$ and $T_n = T + \frac{1}{n}I$. Then, the initial value problem (9) $u' = -T_n u + y$, $u(0) = x \in K_{R_{\delta}}(0)$ has a unique local solution u(t,x). Let $\phi(t) = |u(t,x)|$. As in the proof of Theorem 1 we obtain $\phi(t)D^{-}\phi(t) < \left[|y-T(0)| - \alpha(\phi(t)]\phi(t) , \phi(0) = |x| \right].$ Hence, $\phi(t) \leq R_{\delta}$. This implies that u(t,x) can be extended to a unique solution on $[0,\infty)$ with $|u(t,x)| \leq R_{\delta}$ for $t \geq 0$. Since the operators U(t) , corresponding to (9) , are strict contractions from $K_{R_{\xi}}(0)$ into itself (for t > 0), there exists x_n such that $T_n x_n - y = 0$ and $|x_n| \le R_{\delta}$. Hence, $Tx_n = -\frac{1}{n}x_n + y \rightarrow y \text{ as } n \rightarrow \infty$. Since $\alpha(|\mathbf{x}_n - \mathbf{x}_m|) \leq |\mathbf{T}\mathbf{x}_n - \mathbf{T}\mathbf{x}_m| \rightarrow 0 \text{ as } n, m \rightarrow \infty$, we have $x_n \rightarrow x$ for some $x \in K_{R_{\mathcal{S}}}(0)$ and Tx = y. q.e.d. Corollary 3. Let T: X \rightarrow X be continuous and strongly accretive. Assume either "lim inf $\alpha(r) > 0$ " or " $|Tx| \rightarrow \infty$ as $|x| \rightarrow \infty$ ". Then T is a homeomorphism of X onto X. <u>Proof</u>. In case lim inf $\alpha(r) > 0$, T(X) is open by Theorem 3, and closed since $\alpha(|x-y|) \leq |Tx-Ty|$. Hence, T(X) = X, T is one to one, and $\alpha(|T^{-1}x - T^{-1}y|) \leq |x-y|$ implies the continuity of T^{-1} . Now, assume $|Tx| \neq \infty$ as $|x| \neq \infty$. Since T-y (for fixed y) has the same properties as T, Theorem 2 implies T(X) = X, and T is one to one. If $y_n \neq y$ then $T(T^{-1}y_n) = y_n$ and therefore $(T^{-1}y_n)$ is bounded. Together with $\alpha(|T^{-1}y_n - T^{-1}y|) \leq |y_n - y| \neq 0$, this implies $T^{-1}y_n + T^{-1}y$. q.e.d.

A result similar to Corollary 3 is Theorem 4 in [3] , where $\alpha(r) = cr$ and T satisfies in addition a global Lipschitz condition.

Projectional solvability of equations involving strongly accretive operators.

In this section, we consider a real Banach space with some projection scheme $\{(X_n), (P_n)\}$, where X_n is a finite dimensional subspace of X, P_n a linear projection from X into X_n with $|P_n| = 1$ for every n and $P_n x \rightarrow x$ for each $x \in X$. Recall that the equation Tx = y is said to be projectionally solvable if $P_n Tx = P_n y$ has exactly one solution $x_n \in X_n$, $x_n \rightarrow x$ as $n \rightarrow \infty$ and Tx = y.

<u>Theorem 4</u>. Let T: X \rightarrow X be continuous , (Tx-Ty,x-y) $\geq \alpha(|x-y|)|x-y|$ with α as in Definition 1 and lim inf $\alpha(r)>0$. Then Tx = y is projectionally solvable for every y $\in X$.

<u>Proof</u>. Since $|P_n| = 1$ it is easy to see that $P_n^*F(x) \in F(x)$ for $x \in X_n$. Hence, if $x \in X_n$ and $y \in X$ then $(P_n y, x) \ge (y, x)_-$. This implies that P_n^T has the same properties on X_n as Ton X. Since lim inf $\alpha(r) > 0$ there is exactly one $x_n \in X_n$ with $P_n^T x_n = P_n^y$ and exactly one $x_o \in X$ with $Tx_o = y$, by Corollary 3. Since $P_n^T x_o = P_n^T x_n$ and $TP_n x_o + Tx_o = y$ as $n + \infty$, we obtain $\alpha(|x_n - P_n x_o|) \le |y - TP_n x_o| \neq 0$ as $n \neq \infty$, hence $x_n \neq x_o$ as $n \neq \infty$.

q.e.d.

<u>Remark 3</u>. Theorem 4 has been proved in [7, Corollary 11] under the additional condition " α strictly increasing, $\alpha(r) \rightarrow \infty$ as $r \rightarrow \infty$, X reflexive, X^{*} strictly convex and F weakly continuous", and in [1, Theorem 8] under the additional condition "X^{*} strictly convex and F uniformly continuous on bounded sets" which is equivalent to "X^{*} is uniformly convex".

5. Some consequences for accretive operators.

<u>Proposition</u> 1. Let X , D and T be as in Theorem 2 , but instead of "T strongly accretive" assume "T accretive and T(D) closed". Then $0 \in T(D)$.

<u>Proof</u>. In the proof of Theorem 2 , we have obtained $Tx_n = -\frac{1}{n}x_n$ and (x_n) bounded, hence, $Tx_n \neq 0$ and therefore $0 \in T(D)$.

q.e.d.

Recall that T: $D \rightarrow X$ is called pseudo-contractive if

 $|x-y| \leq |(1+\lambda)(x-y) - \lambda(Tx-Ty)|$

for every $\lambda \geq 0$ and all x,x \in D. It is known that I-T is accretive if T is pseudo-contractive. Hence, Proposition 1 yields a fixed point theorem for such mappings. A similar result has been proved in [4, Theorem 1] : Let D be open and bounded, $0 \in D$, T: $\overline{D} \rightarrow X$ Lipschitzian and pseudo-contractive, $(I-T)(\overline{D})$ closed and the Leray-Schauder condition "Tx $\ddagger \lambda x$ for $x \in \partial D$ and $\lambda > 1$ " satisfied, then T has a fixed point. In case D is also convex, we need only assume that T is continuous, but it is easy to see that our boundary condition " $\rho((1-\lambda)x + \lambda Tx,D) = o(\lambda)$ " is stronger than that of Leray-Schauder, in general. In particular, if D is a ball with center 0 then our condition is equivalent to " $(Tx,x)_{\perp} \leq |x|^2$ on ∂D ".

The next proposition, proved in [10, Theorem 5] and [8, Theorem 2], is a typical result of the kind mentioned in the introduction.

<u>Proposition</u> 2. Let X be reflexive, DCX closed bounded convex and of normal structure, T: D \rightarrow X accretive and Lipschitz continuous, with condition (6) satisfied. Then $0 \in T(D)$.

<u>Proof</u> (following [10]). Since X and D are as indicated and U(t): D + D is nonexpansive, U(p) has a fixed point x_p for every $p \ge 0$, by a well known fixed point theorem of Kirk. Hence, U(t) x_p is p-periodic. But a theorem of Lasota/Yorke [5] says that T satisfying $|Tx-Ty| \le L|x-y|$ has nonconstant p-periodic solutions for $p \ge 4/L$ only. Hence, U(t) x_p is constant for p < 4/L and therefore $Tx_p = 0$.

If X in Proposition 2 is uniformly convex then "of normal structure" is automatically satisfied and "Lipschitz" is unnecessary, since by a fixed point theorem of Browder the U(t) have a fixed point x_0 in common, whence $Tx_0 = 0$ [9, Theorem 2]. In this case, it is even possible to replace "D bounded" by " $|Tx| \rightarrow \infty$ as $|x| \rightarrow \infty$ ", since the theorem on common fixed points remains true [2, p. 873]; see also [6, Propos. 4]. This observation implies T(X) = X if "X uniformly convex, T: X \rightarrow X accretive and continuous and $|Tx| \rightarrow \infty$ as $|x| \rightarrow \infty$ " holds, a result that has been announced in [3, Theorem 5] under the additional condition "T uniformly continuous on bounded sets".

References

- BROWDER, F.: Nonlinear accretive operators in Banach spaces. Bull. Amer. Math. Soc. <u>73</u>, 470-476 (1967)
 --- : Nonlinear equations of evolution and non linear accretive operators in Banach spaces. Bull. Amer. Math. Soc. <u>73</u>, 867-874 (1967)
 --- : Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Amer. Math. Soc. <u>73</u>, 875-882 (1967)
- [4] GATICA, J.; KIRK, W.: Fixed point theorems for Lipschitzian pseudo-contractive mappings. Proc. Amer. Math. Soc. <u>36</u>, 111-115 (1972)

- [5] LASOTA, A.; YORKE, J.A.: Bounds for periodic solutions of differential equations in Banach spaces. J. Diff. Eq. <u>10</u>, 83-91 (1971)
- [6] MARTIN, R.H.: Differential equations on closed subsets of a Banach space. Trans. Amer. Math. Soc. <u>179</u>, 399-414 (1973)
- [7] PETRYSHYN, W.V.: Projection methods in nonlinear numerical functional analysis. J. Math. Mech. <u>17</u>, 353-372 (1967)
- [8] REICH, S.: Remarks on fixed points. Atti Accad. Lincei 52, 689-697 (1972)
- [9] VIDOSSICH, G.: How to get zeros of monotone and accretive operators using the theory of ordinary differential equations. Actas Sem. Anal. Func. Sao Paulo (to appear)
- [10] --- : Non-existence of periodic solutions and applications to zeros of nonlinear operators (preprint)

Prof. K. Deimling Math. Seminar d. Universität <u>D-23 Kiel</u>

Olshausenstr. 40-60

(Received July 3, 1974)