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ZEROS OF ACCRETIVE OPERATORS 

Klaus Deimling 

In the investigation of accretive operators in Banach spa- 
ces X , the existence of zeros plays an important role, 
since it yields surjectivity results as well as fixed point 
theorems for operators S such that I-S is accretive. Let 
D cX and T: D ~ X an operator such that the initial value 
problems 
(1) u'(t) = -Tu(t) , u(O) : x e D 
are solvable. Then T has a zero iff (1) has a constant so- 
lution for some xE D. Under certain assumptions on D and T 
it is possible to show that (1) has a unique solution u(t,J 
on [0,~), for every x e D. In this case, define U(t): D + D 
by U(t)x = u(t,x). If T is accretive it turns out that U(t) 
is nonexpansive for every t > O. This fact constitutes the 
basis for several authors co[cerned with this subject. 
They proceed with assumptions on D and X ensuring either 
that the U(t) must have a common fixed point x or that 

�9 �9 > o- . 

U(p) has a fmxed polnt Xp for every p 0 . In The first 
case, U(t)x o is a constant solution of--(1), whence Tx o = 0. 
In the second case, U(t)x is a p-periodic solution of (1) 
Hence, one has to impose ~dditional conditions on T which 
imply that a p-periodic solution must be constant, for 
some p > O. 
The main purpose of the present paper is to shbw that, in 
certain situations, either the operators U(t) are actually 
strict contractions or T may be approximated by operators 
T D such that the corresponding Un(t) are strict contrac- 
tions. Thus, we obtain several results in general Banach 
spaces and a unification of some results in special spaces. 

1. Preliminaries 

Let X be a real Banach space, X ~ its dual and F: X § 2 X~ 

the duality map defined by 

F(x) = {x~e X �9 x �9 2 x �9 : ixl ,I i : Ixl} 

By means of F, the generalized pairings 

(.,-)_ , (.,.)+ : XxX § R 1 

are defined as 
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2 DEIMLING 

(x,y) inf{x~(x) : x ~ _ = e F(y)} , 

(2) 
(x,y)+ sup{x~(x) : x ~ = e F(y)} . 

The following properties are immediate consequences of the 

definitions. 

(x+ey,y)+ = ~lyl 2 + (x,y) 
(3) ~-~ ~-+~ 

<_ (x,z)z l y l l z l  
(--) 

(4) (x,y)_ < (x,y)+ , with equality holding everywhere if 

X ~ is strictly convex 

(5) If x: (a,b] § X is weakly differentiable at t 
O ' 

r = Ix(t)l and n-r = lim sup h-1{r 
h§ + 

then r r o) < (x'(to),X(to)) - 

Definition 1. Let De X . We call T: D § X accretive if 

(Tx-Ty,x-y)+ > 0 for every x,ye D , and strongly accretive 

if (Tx-Ty,x-y)+ > ~(Ix-yl)Ix-yl for every x,y~ D , where 
1 1 

~: R+ + R+ is continuous with a(0) = 0 and ~(r) > 0 for 

r > 0 . 

Remark 1. The usual definition af accretiveness is 

"<Tx-Ty,x~> > 0 for some x~ F(x-y)" It coincides with 

our weaker assumption if X ~ is strictly convex. 

If DC X , p(x,D) denotes the distance from x eX to D 

2. Zeros of certain operators on arbitrar~ closed subsets 

Theorem 1. Let Dc X be closed, T: D § X continuous and 

(Tx-Ty,x-y)_ ~ a(Ix-yl)Ix-y I , with a as in Definition 1 

satisfying a(r) + ~ as r ~ = and lim inf ~(r)/r > 0 
r§ Suppose in addition that 

(6) p(x-kTx,D) = o(k) a_s_s k + 0+ , for every x eD 

holds. Then O e T(D) 

Proof. (i) We may assume 0 e D . Let f(u) = -Tu for u ~ D 

Since p(u+%f(u),D) = o(X) and 
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DEIMLING 3 

= -(Tu-Tv,u-v) < 0 (f(u)-f(v),u-v)+ _ _ 

for u,v ~ D , the initial value problem (i) has a unique 

solution u(t,x) on [0,~) , by Theorem 4 in [6] 

(iT) There is a "ball" K = {x6 D : IxJ ! R} such that 

u(t,x)a K for each x ~ K and each t ~ 0 . To see this, let 

%(t) = Ju(t,x) I . By (5) and (3) , we have 

r162 

Hence, with S = JT(0)J , 

(7) r162 ! [8-~(%(t))]%(t) in t > O , %(0) : JxJ 

Let R = inf{r > O:~(p) > B in (r,~)} . If 8 = O we are 

done. Therefore, we may assume 8 > 0 and we have 0 < R < ~. 

If jx I ! R then (7) implies ~(t) ! R in 9 h 0 . 

(iii) Let U(t)x = u(t,x) . By (iT) , U(t): K § K for every 

t h 0 . We olaim that there exists p > 0 such that U(p) is 

a strict contraction. Let %(t) = [U(t)x-U(t)yj We have 

9(0) = Jx-y I and }(t)D-~(t) ! -~(%(t))~(t) in t > 0 ,henee 

~(t) s p(t,Jx-y I) , where p(t~r) denotes the solution of 

p' = -~(p) , with p(O) = r . Therefore, we need only show 

That p(p,r) ! ~r for some p > 0 and each r e [0,2R] . 

Since lim inf ~(r)/r > 0 , there exist c > 0 and r > 0 
r+O o 

such that ~(r) hcr in [O,ro] . Now, if r ~ r ~ then p'~-ep, 

and therefore p(t,r) ~ r/2 for t h c-llog 2 . If, however, 

r ~ < r _< 2R then let tr be the first time with p(t,r) = ro. 

Since y = inf{~(r) : r h r o} > 0 , we have p' _< -y in 

[0,tr] , hence t r ~ y-l(2R-ro ) = ~ , and thus 

p(t,r) ~ roeXp[-c(t-~) ] for t h 

implies p(t,r) < ~r for all t > ~ + c-ilog(2r /r) and This 
- z 1 -- - -1 o 

r e (ro,2R ] . Hence, p(p,r) ~ ~r for p = t + c log 2 and 

every r e [0,2R] 

(iv) By (iii) there is a unique fixed point x e K of U(p). 
P 

Since u(0,Xp) = u(p,Xp) and (1) is uniquely solvable, 

u(t,Xp) is p-periodic. By (iii) , we have 

lu(t,Xp)-Xpl = lu(t+p,Xp)-Xpl : lU(p)u(t,Xp)-~(p)xpl i 
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4 DEIMLING 

! �89 , 

hence u(t,Xp) = Xp for every t _> 0 , and therefore TXp = O. 

q.e.d. 

Remark 2. Theorem 1 has been proved in [9,Theorem 3] in 

case ~(r) = cr and T satisfies in addition a global Lip- 

schitz condition. Obviously, we may replace "a(r) § = as 

r § =" by the weaker condition "lim inf e(r) > I Tx I for 
O 

some x e D" . If lim inf ~(r) = 0 then the conclusion in 
o r§ r 

(iii) may be wrong, as is shown by the exa[~ple e(r) = r q 

with q > 1 

C0rollary i. Let Dc X be closed, T: D § X continuous, 

(Tx-Ty,x-y)+ ~ klx-yl 2 for some k < 1 , and . 

p((1-k)x + ITx,D) : o(~) as I § O+ , 

for each xg D . Then T has a unique fixed point. 

Corollary 1 is Proposition 3 from [6] It follows immedi- 

ately from Theorem I applied to S = I-T . 

3. Zeros of stron$1y accretive operators on convex sets. 

In case D is also convex, Theorem i can be improved con- 

siderably. This depends on two facts. At first, the exi- 

stence theorem mentioned in step (i) holds if 

(f(u) - f(v),u-v)_ ! 0 , 

and secondly the boundary condition (6) is equivalent (in 

this case) to 

(8) "If x e D , x me X m \{0} and x~(x) : sup x (y) then 

x~(-Tx) < 0" D 

as follows immediately from the duality formula 

p(z,D) : max{x~(z)-sup xm(y):Ixml:l} for ze X. 
D 

Theorem 2. Let Dc X be closed and convex, T: D ~ X conti- 

nuous and strongly accretive, and condition (6) hold. If 
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DEIMLING 5 

> 0 for Ixl  > R" or " l T x l  § " as Ix I § ~" either "(Tx,x)+ . . . .  

then O e T(D) 

Proof. Since everything is invariant under translation of 

D, except "(Tx,x)+ > 0" _ , we may assume 0 ~ D , but we have 

to change "(Tx,x)+ > O" into "(Tx,x+x ) > 0 for IX+XoI>R" 
- 1 o + - - 

(some x e X fixed) Let T = T + --I . 
O n ~ n 

If x~ 8D , x~e X~\{0} and x (x) = sup x~(y) then 

~( !x~(x D) < 0 x -T x) = x~(-Tx) - 
n n -- 

since x -Tx) < 0 by (6) and (8) , and x~(x) > 0 (since 

0 c D) Hence, (6) is also true for T In addition, T 
i n n 

is strongly accretive with an(r) = n r . Now, in the proof 

of Theorem 1 applied to T n we only have to change step (i): 

since D is convex, (-(TnU-TnV),U-V) =-(TnU-TnV,U-V)+ < 0 

is sufficient for (i) to have a unique zlobal solution. 
1 

Hence, T n has a zero Xn{ D , i.e. TXn = - -Xn n for every n. 

Suppose first that "ITxl + as ixt + "" holds. Sinoe T 
i 

is accretive, we obtain ITXn[ = [~Xnl < [T(O)I Hence, 

(x) must be bounded too. 
n 

If, however, (Tx,x+Xo) + _> 0 for. IX+Xol _> R ' thenlXn~+Xo'--]>R 

implies (Xn,Xn+Xo) - < 0 . Let x F(Xn+X _) . Then Ix ] = 

IXn+Xo I and IXn+Xol2 : x~(Xn)+X~(Xo) <_ x~(Xn)+iXn+Xol iXol " 

This implies IXn+Xo 12 <_ (Xn,Xn+Xo)_ + IXn+Xol IXol , and 

therefore Ix nl ~_ max{R+Ix ol , 21x ol} for every n 

Since in both cases IXnl <_ c for some c > 0 and every n , 

we obtain 

I i) ~(]Xn-Xm])IXn-Xml _< (TXn-TXm,Xn-Xm) + _< c ( ~  + m IXn-Xml' 

hence ~(]Xn-Xm[) § 0 as n,m § ~ . Therfore, (x n) is a 

Cauchy sequence and thus convergent to some x e D . Since 
1 

T is continuous and Tx = - --x § 0 as n § ~ , Tx = 0 
n n n 

q.e.d. 

Notice that both "conditions at infinity" in Theorem 2 are 

weaker than "a(r) § = as r § =" . The following fixed 

point theorem is an immediate consequence of Theorem 2 
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6 DEIMLiNG 

Corollary 2. Let Dc X be closed and convex ; T: D § X con- 

1 § R 1 tinuous and (Tx-Ty,x-y)_ i ~(Ix-yl)Ix-yl with ~: R+ 

continuous and ~(r) < r for r > 0 ; p((1-1)x+lTx,D) = o(l) 

as I § O+ , for each x~ D If D is unbounded , assume 

either " l x - T x l  + -  tx l  + =" " ( T x , x ) _  ! 1• 2 f o r  

j x j  h R" . Then T has exactly one fixed point. 

Theorem 3. Let D c X b__ee open , T: D + X continuous and 

strgngly accretive with ~ satisfying in addition 

lim inf ~(r) > 0 . Then T(D) i__{s open . 

Proof. Let x oe D and K r (x o) = {x : IX-XoI ! to} c D . We 
O 

have to show that there is some ~ > 0 such that K~Xo)CT(D). 

Without loss of generality, we assume x ~ = 0. Let 6 > 0 be 

such that R6 = inf{r : ~(D) > ~ in (r,~)} < r ~ . Let 

= T + !l . Then, the initial value prob- ye K6(T(0)) and T n n 

lem 

(9) u' = -TnU + y , u(0) = XaKR6(0) 

has a unique local solution u(t,x) . Let r = lu(t,x)l 

As in the proof of Theorem 1 we obtain 

@(t)D-@(t) < [ly-T(0)I-~(r , ~(0) = Ixl �9 

Hence, @(t) < R~ . This implies that u(t,x) ean be extended 

to a unique solution on [0,~) with lu(t,x)l i R~ for t > 0. 

Since the operators U(t) , corresponding to (9) , are 

strict contractions from KR (0) into itself (for t > O) , 

there exists1 Xn such that TnXn-Y = 0 and l Xnl _< R6 . Hence, 

Tx = - --x + y § y as n + ~ �9 Since 
n n n 

~(IXn-Xml) _< ITXn-TXml + 0 as n,m + = , 

we have x n § x for some x e KR (0) and Tx = y . 

q.e.d. 

Corollary 3. Let T: X + X b_~e continuous and strongl~ accre- 

tive. Assume either "lim inf ~(r) > 0" o__rr "ITxl + = as 
r+~ 

Ixl § =,, . Then T is a home omorphism of X onto X . 

Proof. In case !im inf ~(r) > 0 , T(X) is open by Theorem 3, 

370 



DEIMLING 7 

and closed since ~(Ix-y[) < [Tx-Ty[ . Hence, T(X) : X , T 

is one to one, and ~(IT-ix - T-lyl) < Ix-yl implies the 

continuity of T -1 . Now, assume ITxl § ~ as Ix[ + ~ Since 

T-y (for fixed y) has the same properties as T , Theorem 2 

implies T(X) = X , and T is one to one. If Yn § y then 

T(T-lYn ) = y and therefore (T-ly) is bounded. Together 
-i n -1 n . . . 

T v -T ) < - § 0 thls implles with e(I -n Y _ [Y n Yl , T-lyn§ 

q.e.d. 

A result similar to Corollary 3 is Theorem 4 in [3] , where 

~(r) : er and T satisfies in addition a global Lipschitz 

condition. 

4. Projectional solvability of equations involvin$ stron$- 

ly accretive operators. 

In this section, we consider a real Banaeh space with some 

projection scheme {(Xn),(Pn )} , where Xn is a finite dimen- 

sional s u b s p a c e  o f  X , P a l i n e a r  p r o j e c t i o n  f r o m  X i n t o  
n 

X n with [Pn] = 1 for every n and Pn x § x for each x eX Q 

Recall that the equation Tx = y is said to be projectional- 

l y  s o l v a b l e  i f  PnTX = P y h a s  e x a c t l y  o n e  s o l u t i o n  x e X , 
n n n 

x + x as n § ~ and Tx = y 
n 

Theorem 4. Let T: X § X be continuous , (Tx-Ty,x-y)_ 

~(Ix-yl)Ix-yl with ~ as in Definition 1 and lira inf ~(r)>O. 
r+~ 

Then Tx = y is projectionally solvable for every ye X 

Proof. Since [ P n [  = 1 it is easy to see that P~F(x)c F(x) 

for x eX n . Hence, if xe X n and ye X then (PnY,X)__> (y,x)_. 

This implies that P T has the same properties on X as T 
n n 

on X . Since lim inf ~(r) > 0 there is exactly one x e X 
n n 

r~ 
with PnTXn = Pny and exactly one Xoe X with TXo = y , by 

Corollary 3 . Since P Tx = P Tx and TP x § Tx = y as 
n o n n no o 

n § ~ , we obtain a(IXn-PnXol) ! IY-TPnX o] + 0 as n + 

hence x § x as n § 
n o 

q . e . d .  
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8 DEIMLING 

Remark 3. Theorem 4 has been proved in [7, Corollary 11] 

under the additional eondition "~ strictly increasing, 

a(r) § ~ as r § ~ , X reflexive, X ~ strictly convex and F 

weakly continuous" , and in [1, Theorem 8] under the addi- 

tional condition "X ~ strictly convex and F uniformly conti- 

nuous on bounded sets" which is equivalent to "X ~ is uni- 

formly convex". 

5. Some consequences for accretive operators. 

Proposition 1. Let X , D and T be as in Theorem 2 , bu___~t i__nn- 

stead of "T stron$1y accretive" assume "T accretive and 

T(D) closed". Then 0 eT(D) 

Proof. In the proof of Theorem 2 , we have obtained Tx 
1 n 

- -x and (x n) bounded, hence, Tx + 0 and therefore 
n n n 

0 e T(D) 
q.e.d. 

Recall that T: D § X is called pseudo-contractive if 

Ix-yl ! l(1+X)(x-y) - X(Tx-Ty)l 

for every I > 0 and all x,x e D It is known that I-T is 

accretive if T is pseudo-contractive. Hence, Proposition I 

yields a fixed point theorem for such mappings. A similar 

result has been proved in [4, Theorem I] : Let D be open 

and bounded, Oe D , T: ~ § X Lipschitzian and pseudo-con- 

tractive, (I-T)(~) closed and the Leray-Sehauder condition 

"Tx # lx for x e ~D and % > i" satisfied, then T has a fixed 

point. In case D is also convex, we need only assume that 

T is continuous, but it is easy to see that our boundary 

condition "0((1-l)x + lTx~D) = o(l)" is stronger than that 

of Leray-Schauder, in general. In particular, if D is a 

ball with center 0 then our condition is equivalent to 

"(Tx,x)+ ! Ix[ 2 on SO" 

The next proposition, proved in [I0, Theorem 5] and [8, 

Theorem 2] , is a typical result of the kind mentioned in 

the introduction. 
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DEIMLING 9 

Proposition 2. Let X be reflexive, Dc X closed bounded con- 

vex and of normal structure , T: D § X accretive and Lip- 

schitz continuous , with condition (6) satisfied Then 

0 e T(D) 

Proof (following [10]). Since X and D are as indicated and 

U(t): D § D is nonexpansive, U(p) has a fixed point x for 
P 

every p > 0 , by a well known fixed point theorem of Kirk. 

Hence, U(t)Xp is p-periodic. But a theorem of Lasota/Yorke 

[5] says that T satisfying ITx-Ty I ~ LIx-yl has nonconstant 

p-periodic solutions for p > 4/L only. Hence, U(t)x is 
- p 

constant for p < 4/L and therefore Tx = 0 
P 

q.e.d. 

If X in Proposition 2 is uniformly convex then "of normal 

structure" is automatically satisfied and "Lipschitz" is 

unnecessary, since by a fixed point theorem of Browder the 

U(t) have a fixed point x ~ in common, whence Tx ~ = 0 [9 , 

Theorem 2] In this case, it is even possible to replace 

"D bounded" by "ITxl § ~ as Ixl + ~" , since the theorem 

on common fixed points remains true [2, p. 873] ; see also 

[6, Propos. 4] . This observation implies T(X) = X if "X 

uniformly convex, T: X § X accretive and continuous and 

ITxl § ~ as Ixl § ~" holds, a result that has been an- 

nounced in [3, Theorem 5] under the additional condition 

"T uniformly continuous on bounded sets" 
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