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ZEROS OF ACCRETIVE OPERATORS

Klaus Deimling

In the investigation of accretive operators in Banach spa-
ces X , the existence of zeros plays an important role,
since it yields surjectivity results as well as fixed point
theorems for operators S such that I-S is accretive. Let
DcX and T: D - X an operator such that the initial value
problems

(1) u'(t) = -Tu(t) , u(0) = xep

are solvable. Then T has a zero iff (1) has a constant so-
lution for some x e D. Under certain assumptions on D and T
it is possible to show that (1) has a unique solution u(t,x)
on [0,»), for every xe€ D. In this case, define U(t): D = D
by U(t)x = u(t,x). If T is accretive it turns out that U(t)
is nonexpansive for every t > 0. This fact constitutes the
basis for several authors concerned with this subject.

They proceed with assumptions on D and X ensuring either
that the U(t) must have a common fixed point x_ or that
U(p) has a fixed point x, for every p > 0 . In the first
case, U(t)x, is a constant solution of (1), whence Tx, = 0.
In the second case, U(t)x_ is a p-periodic solution of (1).
Hence, one has to impose Bdditional conditions on T which
imply that a p-periodic solution must be constant, for
some p > O.

The main purpose of the present paper is to show that, in
certain situations, either the operators U(t) are actually
strict contractions or T may be approximated by operators

T, such that the corresponding Un(t) are strict contrac-
tions. Thus, we obtain several results in general Banach
spaces and a unification of some results in special spaces.

1. Preliminaries

¥
Let X be a real Banach space, X* its dual and F: X - 2X

the duality map defined by

F(x) = {xFex® : «*(x) = |x|2,[x*] = [x|}
By means of I, the generalized pairings

(o) 5 (o,e), XXX > R

are defined as
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2 DEIMLING

) (x,y)_ = inf{x*x) : x*c F(yI}
2
(x,y)+ = sup{x*(x) : xTe T(y)}r .«
The following properties are immediate consequences of the
definitions,
2

(xtay,y), = aly| + (x,y)
(3) T T

(x+y,2), < (x,2), + |y||z]

(=) (=)
W) (x,y)_ < (x,y)+ » with equality holding everywhere if

x* is strictly convex

(5) If x: (a,b] » X is weakly differentiable at to s

o(t) = |x(t)]| and D () = lim sup h™1{o(t)-¢(t-h)}
_ h+0+
then ¢(t DD 9(t ) < (x'(t)),x(t ))_ .

Definition 1. Let Dc X . We call T: D + X accretive if

(Tx—Ty,x—y)+ > 0 for every x,ye D , and strongly accretive

if (Tx-Ty,x-y), > a(|x-y|)[x-y| for every x,yeD , where

o Ri + Ry is continuous with a(0) = 0 and a(r) > 0 for

r >0 .

Remark 1. The usual definition af accretiveness is
"<Tx—Ty,x¥> > 0 for some x*e F(x-y)" . It coincides with

. . L .
our weaker assumption if X 1is strictly convex.

If DcX , p(x,D) denotes the distance from xeX to D .

2. Zeros of certain operators on arbitrary closed subsets

Theorem 1. Let Dc X be closed, T: D » X continuous and
(Tx-Ty,x-y)_ > al|x-y|)|x~y| , with o as in Definition 1

satisfying a(r) » » as r » » and lim inf alr)/r > O

Suppose in addition that r>0

(6) p(x=-ATx,D) = o(X) as X > 0+ , for every xeD
holds. Then O0€ T(D) .

Procf. (i) We may assume 0€D . Let f(u) = -Tu for ueDd

Since p(u+if(u),D) = o(X) and

366



DEIMLING 3

(f(u)—f(v),u-v)+ = =(Tu-Tv,u-v)_ < 0
for u,ve D , the initial value problem (1) has a unique

solution u(t,x) on [0,%) , by Theorem 4 in [6] .

(ii) There is a "ball"™ K = {xeD : [x| < R} such that
u(t,x)€ K for each x<K and each t > 0 . To see this, let
¢(t) = Jult,x)| . By (5) and (3) , we have
¢(t)D~¢(t)§-(Tu—T(O),u-0)++{T(O)I¢(t)i—&(¢(t))¢(t)+iT(O)HKtL
Hence, with 8 = |T(0)]| ,

(7)  $CEID7¢(t) < [B-ald(tN]¢(t) in t > 0 , ¢(0) = |x|

Let R = inf{r > QO:alp) > B in (r,=)} . If B = 0 we are
done. Therefore, we may assume B > 0 and we have 0 < R < =,
If [x] < R then (7) implies ¢(t) < R in t > 0

(iii) Let U(t)x = ult,x) . By (ii) , U(t): K + K for every
t > 0 . We claim that there exists p > O such that U(p) is
a strict contraction. Let ¢(t) = |U(L)x-U(t)y] . We have

$(0) = |x-y| and ¢ (t)D ¢(t) < -a(¢(t))¢(t) in t > O , hence
¢(t) < p(t,|x-y|) , where p(t,r) denotes the solution of
p' = -0{p) , with p(0) = r . Therefore, we need only show

that p(p,r) < %r for some p > 0 and each » € [0,2R] .

Since lim inf o(r)/r > 0 , there exist ¢ > 0 and vy >0
0
such that a(r) > cr in [O,ro] . Now, if r < r_ then p'<-cp,

and therefore p(t,r) < r/2 for t > c_llog 2 . If, however,
ro<rZ 2R then let tr be the first time with p(t,r) = ro.
Since v = inf{a(r) : v > ro} >0 , we have p' < -y in
[O’tr] » hence t < 7_1(2R-ro) = T , and thus

p(t,r) < roexp[—c(t—%)] for t > %
This implies p(t,r) < %r for all t > T + ouilog(zro/r) and
r»e(rO,ZR} . Hence, p(p,r) < %r for p = Tt + 0—110g 2 and

every r e [0,2R] .

(iv) By (iii) there is a unique fixed point xpe K of U(p).
Since u(0,x_) = u(p,xp) and (1) is uniguely solvable,

u(t,xp) is p-periodie. By (iii) , we have

[u(t,xp)—xpl = lu(t+p,xp)-xpl = [U(p)u(t,xp)—U(p)xpl <
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4 DEIMLING

1
< 7]u(t,xp)-xp| R
hence u(t,xp) = XP for every t > 0 , and therefore Tx_ = 0.

q.e.d.

Remark 2. Theorem 1 has been proved in [9,Theorem 3] in
case a(r) = cr and T satisfies in addition a global Lip-
schitz condition. Obviously, we may replace "a(r) - = as

r » «" by the weaker condition "lim inf a(r) > ITxo| for
oo
some Xx_ € D" . If 1lim inf E%El = 0 then the conclusion in
r>0
(iii) may be wrong, as is shown by the example a(r) = r9

with q > 1
Corollary 1. Let Dc X be closed, T: D -+ X continuous,
(Tx-Ty,x-y), < ka—yl2 for some k < 1 , and

p((1-M)x + ATx,D) = o(X) as A > O+ ,

for each xeD . Then T has a unique fixed point.

Corollary 1 is Proposition 3 from [6] . It follows immedi-
ately from Theorem 1 applied to S = I-T .

3. Zeros of strongly adcretive operators on convex sets.

In case D is also convex, Theorem 1 can be improved con-
siderably. This depends on two facts. At first, the exi-

stence theorem mentioned in step (i) holds if
(f(u) - £(V),u~v)_ < 0 ,

and secondly the boundary condition (6) is equivalent (in

this case) to

(8) "If xeD , x*e x* N {0} and x*(x) = sup x*(y) then
x¥ (~Tx) < o" D

as follows immediately from the duality formula

0(z,D) = max{x"(z)-sup x*(y):|x¥|=1} for zeX.
D

Theorem 2. Let Dc X be closed and convex, T: D = X conti-

nuous and strongly accretive, and condition (6} hold. If
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DEIMLING 5

either "(Tx,x), > O for [x] > R" or "|Tx| + = as |x]| + ="
then 0€ T(D) .

Proof. Since everything is invariant under translation of
D, except "(Tx,x)+ > 0" , we may assume 0 €D , but we have
to change "(Tx,x), > 0" into "(Tx,x+x ), > O for [x+x_[>R"
(some X € X fixed) . Let Tn = T + %I .

If xe 3D , x*e x*N {0} and x*(x) = sup x*(y) then
D
x*(—T X) = X*(“TX) - ix*(x) <0 ,
n n -

since x*(—Tx) < 0 by (8) and (8) , and x*(x) > 0 (since

0 € D) . Hence, (6) is also true for Tn . In addition, Tn
is strongly accretive with an(r) = %r . Now, in the proof
of Theorem 1 applied to Tn we only have to change step (i):
since D is convex, (—(Tnu—Tnv),u—v)_= -(Tnu—Tnv,u—V)+ <0
is sufficient for (1) to have a unique global solution.
Hence, Tn has a zero xne D, i.e. Txn = - oXy for every n.

Suppose first that "|Tx| » « as |x| =+ " holds. Since T
is accretive, we obtain |Tx_ | = [%xnl < |T(0)| . Hence,

(xn) must be bounded too.

If, however, (Tx,x+x ), 6 > 0 for ]x+xo] >R, then|x +xe|zR

o'+ =
implies (x_,x +x_)_ < O . Let x*e F(x_+x_) . Then [x*] =
n’“n "o TQ— n

* *
[x #x | and |x +x |° = x"(x J#x"(x ) < x (Xn)+lxn+xollx I

o
This implies Ixn+x [ < (Xn,Xn+XO)_ + IXn+XOIIXOI » and

therefore [x_| < max{R+|x_| 2|x |} for every n .

Since in both cases Ixn] < ¢ for some ¢ > 0 and every n ,
we obtain

1 1
), S el ¥ ) x ~x

a(lxn—xm])lxn—xml < (Tx -Tx % =x ),

L
hence a(lxn—xm[) -+ 0 as n,m > ® , Therfore, (xn) is a
Cauchy sequence and thus convergent to some xe D . Since

. . 1
T is continuous and Txn = - g > 0asn->® , Tx =0

g.e.d.

Notice that both "conditions at infinity" in Theorem 2 are
weaker than "a(r) > ® as r + " ., The following fixed

point theorem is an immediate consequence of Theorem 2 .
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6 DEIMLING

Corolliary 2. Let DcX be closed and convex 3 T: D » X con-
1 1
R

+
continuous and oafr) < r for r > 0 ;3 p({1-)x+ATx,D) o ()

tinuous and (Tx-Ty,x~y)_ < a(|x-y[)|x-y| with a: R

¥

as A + 0+ , for each xe¢ D . If D is unbounded , assume

either "|[x-Tx| +®as [x| = " opr "(Tx,x)_ < x| for

[x] > R" . Then T has exactly one fixed point.

Theorem 3. Let Dc X be open , T: D » X continuous and

strongly accretive with o satisfying in addition

lim inf a(r) > 0 . Then T(D) is open .

oo

Proof. Let x_ €D and Kro(xo) = {x : |x-x | < v }eD . We
have to show that there is some § > 0 such that KSGXO)CT(DL

Without loss of generality, we assume X, = 0. Let § > 0 be

such that R(3 = inf{r : aflp) > § in (r,=)} < v . Let
yeKg(T(0)) and T_ = T + ZI . Then, the initial value prob-
lem

t -, =
(9) ut = T§1+y s, u(0) xeK%(m
has a unique local solution u(t,x) . Let ¢(t) = |ult,x)] .

As in the proof of Theorem 1 we obtain
(D o () < [|y-T(O)|-alo ()] () , ¢(0) = |x]| .

Hence, ¢(t) < Rg - This implies that u(t,x) can be extended
to a unique solution on [0,®) with [u(t,x)| < Ry for t > O.
Since the operators U(t) , corresponding to (8) , are
strict contractions from KR6<O) into itself (for t > 0) ,

i -y = < .
there exists Xy such that Tnxn y 0 and Ixnl < R5 Hence,

1 .
= - =x_ + > as n + « , Since
Txn nn .y ¥

a(lxn—xm[5 < [Txn—Txm[ + 0 as n,m > ®

we have x> X for some xe Ky (0) and Tx = y .
§

g.e.d.
Corollary 3. Let T: X » X be continuous and strongly accre-
tive. Assume either "lim inf a(r) > 0" or "[Tx| + « as
oo
|x] = <" . Then T is a homeomorphism of X onto X .

Proof. In case 1im inf al{r) > 0 , T(X) is open by Theorem 3,
o
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DEIMLING 7

and closed since a(|x-y|) < |Tx-Ty| . Hence, T(X) = X , T

_1y[) < |x-y| implies the

is one to one, and u(|T-1x - T
continuity of 771 . Now, assume |Tx] = = as |x| + = . Since
T-y (for fixed y) has the same properties as T , Theorem 2
implies T(X) = X, and T is one to one. If Y, TV then

T(T y ) = yn and therefore (T y ) is bounded Together
with a(]T y -T y|) < Iy -y| = 0, this implies T 1y +T 1y.

q.e.d.

A result similar to Corollary 3 is Theorem 4 in [3] , where
a(r) = cr and T satisfies in addition a global Lipschitz

condition.

4. Projectional solvability of equations involving strong-

ly accretive operators.

In this section, we consider a real Banach space with some
projection scheme {(Xn),(Pn)} , where Xn is a finite dimen-
sional subspace of X , Pn a linear projection from X into

X, with |P_| = 1 for every n and P x > x for each xe€X .

Recall that the equation Tx = y is said to be projectional-
ly solvable if PnTx = Pny has exactly one solution x € Xn’
X, > xasno>o and Tx = y .

Theorem 4. Let T: X + X be continuous , (Tx-Ty,x-y)_ >

a(|x-y|)|%x-y| with o as in Definition 1 and lim inf o(r)>0.
P00
Then Tx = y is projectionally sclvable for every yeX .

Proof. Since [P | = 1 it is easy to see that P;F(x)c F(x)
for xean . Hence, if xern and ye X then (Pny,x)__z(y,x)_.
This implies that PnT has the same properties on Xn as T

on X . Since lim inf oa(r) > 0 there is exactly one X € Xn
P+

with PnTxn = Pny and exactly one X, € X with Txo =y , by
Corollary 3 . Since P Tx = P Tx_ and TP . x =~ Tx =y as
n "o n 'n n"o o
n > » , we obtain a(lxn—anoI) < Iy—Tano| + 0 as n > » ,
hence x_ ~ x_as n » « ,
n o

g.e.d.
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8 DEIMLING

Remark 3. Theorem 4 has been proved in [7, Corollary 11]
under the additional condition "o strictly increasing,

a(r) » ©» as r + @ , X reflexive, x* strictly convex and F
weakly continuous" , and in [1, Theorem 8] under the addi-
tional condition "X* strictly convex and F uniformly conti=-
nuous on bounded sets" which is equivalent to "x* is uni-

formly convex".

5. Some consequences for accretive operators.

Proposition 1. Let X , D and T be as in Theorem 2 , but in-
stead of "T strongly accretive" assume "T accretive and
T(D) closed". Then 0eT(D) .

Proof. In the proof of Theorem 2 , we have obtained Txn =
- %xn and (xn) bounded, hence, Txn + 0 and therefore
0e T(D) .
g.e.d.

Recall that T: D + X is called pseudo-contractive if
|%-y| < | (1+A)(x=y) = A(Tx-Ty)]|

for every A > 0 and all x,x&€D . It is known that I-T is
accretive if T is pseudo-contractive. Hence, Proposition 1
yields a fixed point theorem for such mappings. A similar
result has been proved in [4, Theorem 1] : Let D be open
and bounded, OeD , T: D » X Lipschitzian and pseudo-con-
tractive, (I-T)(D) closed and the Leray-Schauder condition
"Tx % Ax for xedD and A > 1" satisfied, then T has a fixed
point. In case D is also convex, we need only assume that
T is continuous, but it is easy to see that our boundary
condition "p((1-A)x + ATx,D) = o(A)" is stronger than that
of Leray-Schauder, in general. In particular, if D is a
ball with center O then our condition is equivalent to

"(Tx,x), < |x|2 on 3D"

The next proposition, proved in [10, Theorem 5] and [s,
Theorem 2] , is a typical result of the kind mentioned in

the introduction.
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DEIMLING 9

Proposition 2. Let X be reflexive, DCX closed bounded gon-

vex and of normal structure , T: D =+ X accretive and Lip-
schitz continuous , with condition (6) satisfied . Then
e T(D)

Proof (following [10]). Since X and D are as indicated and
U(t): D » D is nonexpansive, U(p) has a fixed peoint X5 for
every p > O , by a well known fixed point theorem of Kirk.
Hence, U(t)x_ is p-periodic. But a theorem of Lasota/Yorke
[5] says that T satisfying |Tx-Ty| < L|x-y| has nonconstant
p-periodic solutions for p > 4/L only. Hence, U(t)xp is
constant for p < 4/L and therefore Txp =0

q.e.d.

If X in Proposition 2 is uniformly convex then "of normal
structure" is automatically satisfied and "Lipschitz" is
unnecessary, since by a fixed point theorem of Browder the
U(t) have a fixed point X in common, whence Tx, =0 (9,
Theorem 2] . In this case, it is even possible to replace
"D bounded" by "|[Tx| + « as |x| + <" , since the theorem
on common fixed points remains true [2, p. 873] ; see also
[6, Propos. 4] . This observation implies T(X) = X if "X
uniformly convex, T: X -+ X accretive and continuous and
[Tx| - = as |x| » ®" holds, a result that has been an-
nounced 1in [3, Theorem 5] under the additional condition

"T uniformly continuous on bounded sets".
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