ZEROS OF ACCRETIVE OPERATORS

Klaus Deimling

In the investigation of accretive operators in Banach spaces X , the existence of zeros plays an important role, since it yields surjectivity results as well as fixed point theorems for operators S such that I-S is accretive. Let $D \subset X$ and T: $D \to X$ an operator such that the initial value problems

(1) $u'(t) = -Tu(t)$, $u(0) = x \in D$ are solvable. Then T has a zero iff (1) has a constant solution for some $x \in D$. Under certain assumptions on D and T it is possible to show that (1) has a unique solution $u(t,x)$ on $[0,\infty)$, for every xedD. In this case, define U(t): D \rightarrow D by U(t)x = u(t,x). If T is accretive it turns out that U(t) is nonexpansive for every $t > 0$. This fact constitutes the basis for several authors concerned with this subject. They proceed with assumptions on D and X ensuring either that the U(t) must have a common fixed point x or that $U(p)$ has a fixed point x_{p} for every $p > 0$. In the first case, U(t) x_{α} is a constant solution of (1), whence T x_{α} = 0. In the second case, $U(t)x_{n}$ is a p-periodic solution of (1). Hence, one has to impose additional conditions on T which imply that a p-periodic solution must be constant, for some $p > 0$.

The main purpose of the present paper is to show that, in certain situations, either the operators U(t) are actually strict contractions or T may be approximated by operators T_n such that the corresponding $U_n(t)$ are strict contractions. Thus, we obtain several results in general Banach spaces and a unification of some results in special spaces.

1. Preliminaries

Let X be a real Banach space, x^* its dual and F: $X \rightarrow 2^{X^*}$ the duality map defined by $F(x) = {x^* \in X^* : x^*(x) = |x|^2, |x^*| = |x|}.$ By means of F, the generalized pairings (\cdot,\cdot) , (\cdot,\cdot) : X×X \div R¹ are defined as

(2)
$$
(x,y)_{-} = inf\{x^*(x) : x^* \in F(y)\},
$$

 $(x,y)_{+} = sup\{x^*(x) : x^* \in F(y)\},$

The following properties are immediate consequences of the definitions.

(3)
$$
(x+ay,y)_{\begin{matrix}t\\ -\end{matrix}} = \alpha |y|^2 + (x,y)_{\begin{matrix}t\\ -\end{matrix}} \\ (x+y,z)_{\begin{matrix}t\\ -\end{matrix}} \le (x,z)_{\begin{matrix}t\\ -\end{matrix}} + |y||z|
$$

- (4) (x,y) \le (x,y) , with equality holding everywhere if X^* is strictly convex
- (5) If x: $(a,b] \rightarrow X$ is weakly differentiable at t_a , $\phi(t) = |x(t)|$ and $D^{\dagger} \phi(t) = \lim_{h \to 0} \sup_{h \to 0} h^{-1} {\phi(t) - \phi(t-h)}$ h→∪+ then φ(t_o) φ(t_o) <u><</u> (x'(t_o),x(t_o)) -

Definition 1. Let $D \subset X$. We call T: $D \rightarrow X$ accretive if $(Tx-Ty,x-y)_+ \geq 0$ for every $x,y \in D$, and strongly accretive if $(Tx-Ty,x-y)_2 \geq \alpha(|x-y|)|x-y|$ for every $x,y \in D$, where $\alpha\colon R_{+}^{1} \to R_{+}^{1}$ is continuous with $\alpha(0)$ = 0 and $\alpha(r)$ > 0 for $r > 0$.

Remark 1. The usual definition af accretiveness is " $(Tx-Ty,x^*) > 0$ for some $x^* \in F(x-y)$ ". It coincides with our weaker assumption if X^* is strictly convex.

If $D \subset X$, $\rho(x,D)$ denotes the distance from $x \in X$ to D .

2. Zeros of certain operators on arbitrary closed subsets

Theorem 1. Let $D \subset X$ be closed, T: $D \rightarrow X$ continuous and $(Tx-Ty,x-y)$ > $\alpha(|x-y|)|x-y|$, with α as in Definition 1 satisfying $\alpha(r) \rightarrow \infty$ as $r \rightarrow \infty$ and lim inf $\alpha(r)/r > 0$. Suppose in addition that $r\rightarrow 0$ (6) $\rho(x-\lambda Tx, D) = o(\lambda)$ as $\lambda \to 0+$, for every $x \in D$ holds. Then $0 \in T(D)$.

Proof. (i) We may assume $0 \in D$. Let $f(u) = -Tu$ for $u \in D$. Since $\rho(u+\lambda f(u),D) = o(\lambda)$ and

$$
(f(u)-f(v),u-v)_{+} = -(Tu-Tv,u-v)_{0} < 0
$$

for $u, v \in D$, the initial value problem (1) has a unique solution $u(t,x)$ on $[0,\infty)$, by Theorem 4 in $[6]$. (ii) There is a "ball" K = $\{x \in D : |x| \le R\}$ such that $u(t,x) \in K$ for each $x \in K$ and each $t > 0$. To see this, let $\phi(t) = |u(t,x)|$. By (5) and (3), we have $\phi(t)D^{\dagger}\phi(t) \leq -(Tu-T(0),u-0), + |T(0)|\phi(t) < -\alpha(\phi(t))\phi(t) + |T(0)|\phi(t).$ Hence, with $\beta = |T(0)|$, (7) $\phi(t)D^{-}\phi(t) < [\beta-\alpha(\phi(t))] \phi(t)$ in $t > 0$, $\phi(0) = |x|$. Let R = inf{r > $0: \alpha(\rho) > \beta$ in (r, ∞) }. If $\beta = 0$ we are done. Therefore, we may assume $\beta > 0$ and we have $0 < R < \infty$. If $|x| \le R$ then (7) implies $\phi(t) \le R$ in $t > 0$. (iii) Let $U(t)x = u(t,x)$. By (ii), $U(t): K \rightarrow K$ for every $t > 0$. We claim that there exists p > 0 such that U(p) is a strict contraction. Let $\phi(t) = |U(t)x-U(t)y|$. We have $\phi(0) = |x-y|$ and $\phi(t)D^{\dagger}\phi(t) \leq -\alpha(\phi(t))\phi(t)$ in $t > 0$, hence $\phi(t) \leq \rho(t,|x-y|)$, where $\rho(t,r)$ denotes the solution of $p' = -\alpha(\rho)$, with $\rho(0) = r$. Therefore, we need only show that $p(p,r) \leq \frac{1}{2}r$ for some $p > 0$ and each $r \in [0, 2R]$. Since lim inf $\alpha(r)/r > 0$, there exist c > 0 and r > 0 r+O o such that $\alpha(r) \geq cr$ in $[0,r_{c}]$. Now, if $r < r_{c}$ then ρ' < -cp, and therefore $p(t, r) \le r/2$ for $t \ge c^{-1} \log 2$. If, however, r_{0} < r \leq 2R then let t_r be the first time with $\rho(t,r) = r_{0}$. Since γ = inf{ $\alpha(r)$: $r \ge r$ \ge 0 , we have ρ' < - γ in $[0, t_n]$, hence $t_n \leq \gamma$ (2R-r_o) = t, and thus $p(t,r) \leq r_{\text{exp}}[-c(t-\bar{t})]$ for $t \geq \bar{t}$

This implies $p(t,r) \leq \frac{1}{2}r$ for all $t \geq t + c^{-1} \log(2r \frac{1}{2})$ and $r \in (r \frac{1}{2}, 2R]$. Hence, $p(p,r) \leq \frac{1}{2}r$ for $p = \overline{t} + c^{-1} \log 2$ and every $r \in [0, 2R]$.

(iv) By (iii) there is a unique fixed point $x_p \in K$ of U(p). Since $u(0, x_{p}) = u(p, x_{p})$ and (1) is uniquely solvable, $u(t, x_n)$ is p-periodic. By (iii), we have

 $|u(t,x_p)-x_p| = |u(t+p,x_p)-x_p| = |U(p)u(t,x_p)-U(p)x_p| \le$

$$
\leq \frac{1}{2}|u(t,x_p)-x_p| \qquad ,
$$

hence $u(t, x_p) = x_p$ for every $t \ge 0$, and therefore $Tx_p = 0$. q.e.d.

Remark 2. Theorem 1 has been proved in $\lceil 9, \text{Theorem} \rceil$ in case $\alpha(r)$ = cr and T satisfies in addition a global Lipschitz condition. Obviously, we may replace " $\alpha(r) \rightarrow \infty$ as $r \rightarrow \infty$ " by the weaker condition "lim inf $\alpha(r) > |Tx_{\alpha}|$ for O some $x_0 \in D^n$. If lim inf $\frac{m-2}{r} = 0$ then the conclusion in (iii) may be wrong, as is shown by the example $\alpha(r) = r^q$ with $q > 1$.

Corollary 1. Let Dc X be closed, T: $D \rightarrow X$ continuous, $(Tx-Ty,x-y)_+ \leq k|x-y|^2$ for some k < 1, and

$$
\rho((1-\lambda)x + \lambda Tx, D) = o(\lambda) \quad \text{as } \lambda \to 0+,
$$

for each $x \in D$. Then T has a unique fixed point.

Corollary 1 is Proposition 3 from $[6]$. It follows immediately from Theorem I applied to S = I-T .

3. Zeros of strongly accretive operators on convex sets.

In case D is also convex, Theorem 1 can be improved considerably. This depends on two facts. At first, the existence theorem mentioned in step (i) holds if

$$
(f(u) - f(v), u-v) \leq 0
$$

and secondly the boundary condition (6) is equivalent (in this case) to

(8) "If $x \in D$, $x^* \in X^* \setminus \{0\}$ and $x^*(x) = \sup_{D} x^*(y)$ then $x^*(-Tx) < 0"$,

as follows immediately from the duality formula

$$
\rho(z,D) = \max\{x^*(z) - \sup_D x^*(y) : |x^*| = 1\} \text{ for } z \in X.
$$

Theorem 2. Let $D \subset X$ be closed and convex, T: $D \rightarrow X$ continuous and strongly accretive, and condition (6) hold. If

either "(Tx,x) \geq 0 for $|x| \geq R$ " or "|Tx| $\rightarrow \infty$ as $|x| \rightarrow \infty$ " then $0 \in T(D)$.

Proof. Since everything is invariant under translation of D, except " $(Tx,x)_+ \geq 0$ ", we may assume $0 \in D$, but we have to change " $(Tx,x)_{+} \ge 0$ " into " $(Tx,x+x_{0})_{+} \ge 0$ for $|x+x_{0}| \ge R$ " (some $x_0 \in X$ fixed) . Let $T_n = T + \frac{1}{n}I$. If $x\in \partial D$, $x^{'}\in X\setminus \{0\}$ and $x^{'}(x)$ = sup $x^{'}(y)$ then $x^*(-T_n x) = x^*(-Tx) - \frac{1}{n}x^*(x) \leq 0$

since $x^*(-Tx) \le 0$ by (6) and (8), and $x^*(x) \ge 0$ (since $0 \in D$) . Hence, (6) is also true for T_n . In addition, T_n is strongly accretive with $\alpha_n(r) = \frac{1}{\pi}r$. Now, in the proof of Theorem 1 applied to T_{n} we only have to change step (i): since D is convex, $(- (T_n u - T_n v), u - v) = -(T_n u - T_n v, u - v)_{+} \leq 0$ is sufficient for (1) to have a unique global solution. Hence, T_{α} has a zero $x_{n} \in D$, i.e. $Tx_{n} = -\frac{1}{n}x_{n}$ for every n. **Suppose first that "ITxl + as ixt + "" holds. Sinoe T** is accretive, we obtain $|Tx_n| = |\frac{1}{n}x_n| \le |T(0)|$. Hence, (x_n) must be bounded too. n

If, however, $(Tx, x+x_0)$ ≥ 0 for $|x+x_0| \geq R$, then $x_n+x_0/2R$ implies (x_n,x_n+x_0) \leq 0 . Let $x \in f(x_n+x_0)$. Then $|x| =$ $|X_n+X_0|$ and $|X_n+X_0| = X(X_n)+X(X_0) \leq X(X_n)^+|X_n^+X_0| + Y_n$ This implies $|X_n+X_0| \leq (X_n,X_n+X_0)$ + $|X_n+X_0| \geq 0$ therefore $|x_n| \leq \max\{R+|x_0|, x_0, x_0\}$ for every n.

Since in both cases $|x_n| \le c$ for some c > 0 and every n, we obtain

 α ($|x_n-x_m|$) $|x_n-x_m| \le (Tx_n-Tx_m,x_n-x_m) + \le c(\frac{1}{n} + \frac{1}{m}) |x_n-x_m|$ hence $\alpha(|x_n-x_m|) \rightarrow 0$ as $n,m \rightarrow \infty$. Therfore, (x_n) is a Cauchy sequence and thus convergent to some $x \in D$. Since T is continuous and $Tx_n = -\frac{1}{n}x_n \to 0$ as $n \to \infty$, $Tx = 0$

$$
\texttt{q.e.d.}
$$

Notice that both "conditions at infinity" in Theorem 2 are weaker than " $\alpha(r) \rightarrow \infty$ as $r \rightarrow \infty$ ". The following fixed point theorem is an immediate consequence of Theorem 2.

Corollary 2. Let $D \subset X$ be closed and convex ; T: $D \rightarrow X$ con- $\frac{1}{\text{trivious and }}$ $(\frac{1}{\text{Tr}} - \text{Tr}(x - y)) \le \alpha (|x - y|) |x - y| \text{ with } \alpha: \mathbb{R}^1_+ \rightarrow \mathbb{R}^1$ continuous and $\alpha(r)$ < r for $r > 0$; $\rho((1-\lambda)x+\lambda Tx, D) = o(\lambda)$ as $\lambda \rightarrow 0+$, for each $x \in D$. If D is unbounded, assume either "|x-Tx| + ∞ as |x| + ∞ " or "(Tx,x) \leq |x|² for $|x|$ > R" . Then T has exactly one fixed point. Theorem 3. Let $D \subset X$ be open, $T: D \rightarrow X$ continuous and strongly accretive with a satisfying in addition lim inf $\alpha(r) > 0$. Then $T(D)$ is open. $r\rightarrow \infty$ <u>Proof</u>. Let $x_0 \in D$ and $K_{r} (x_0) = \{x : |x-x_0| \le r_0\} \subseteq D$. We O have to show that there is some $\delta~\ge~0$ such that $K_{{\cal{A}}}(Tx_{\alpha})\subseteq T(D)$. Without loss of generality, we assume $x_0 = 0$. Let $\delta > 0$ be such that $R_{\delta} = \inf\{r : \alpha(\rho) > \delta \text{ in } (r, \infty)\} < r_{\delta}$. Let $y \in K_{\delta}(\mathbb{T}(0))$ and $T_{n} = T + \frac{1}{n}I$. Then, the initial value problem (9) $u' = -T_n u + y$, $u(0) = x \in K_{R_6}(0)$ has a unique local solution $u(t,x)$. Let $\phi(t) = |u(t,x)|$. As in the proof of Theorem 1 we obtain $\phi(t) D^{\dagger} \phi(t)$ < $\left[\left| y - T(0) \right| - \alpha(\phi(t)) \right] \phi(t)$, $\phi(0) = \left| x \right|$. Hence, $\phi(t) \leq R_{\delta}$. This implies that $u(t,x)$ can be extended to a unique solution on $[0, \infty)$ with $|u(t,x)| \le R_{\chi}$ for $t \ge 0$. Since the operators U(t) , corresponding to (9) , are strict contractions from $K_{R_{\hat{\Lambda}}}$ (0) into itself (for $t > 0$), there exists x_n such that $T_n x_n - y = 0$ and $|x_n| \le R_\delta$. Hence, $Tx_n = -\frac{1}{n}x_n + y + y$ as $n \to \infty$. Since $\alpha(|x_n-x_m|) \leq |Tx_n-Tx_m| + 0 \text{ as } n,m \to \infty ,$ we have $x_n \rightarrow x$ for some $x \in K_{R_n}(0)$ and $Tx = y$. q.e.d. Corollary 3. Let T: $X \rightarrow X$ be continuous and strongly accretive. Assume either "lim inf $\alpha(r) > 0$ " or "|Tx| + = as r $\rightarrow \infty$ $\vert x\vert \rightarrow \infty$ ". Then T is a homeomorphism of X onto X. Proof. In case lim inf $\alpha(r) > 0$, T(X) is open by Theorem 3, and closed since $\alpha(\vert x-y \vert) \leq \vert Tx-Ty \vert$. Hence, $T(X) = X$, T is one to one, and α ($|T^{-1}x - T^{-1}y|$) $\leq |x-y|$ implies the continuity of T^{-1} . Now, assume $|Tx| \rightarrow \infty$ as $|x| \rightarrow \infty$. Since T-y (for fixed y) has the same properties as T, Theorem 2 implies $T(X) = X$, and T is one to one. If $y_n \rightarrow y$ then $T(T^{-1}y_n) = y_n$ and therefore $(T^{-1}y_n)$ is bounded. Together with α ($|T^{-1}y$, $T^{-1}y|$) $\leq |y$, $-y| \rightarrow 0$, this implies $T^{-1}y$, γ q.e.d.

A result similar to Corollary 3 is Theorem 4 in [3] , where $\alpha(r)$ = cr and T satisfies in addition a global Lipschitz condition.

4. Projectional solvability of equations involving strongly accretive operators.

In this section, we consider a real Banach space with some projection scheme $\{(X_n), (P_n)\}\;$, where X_n is a finite dimensional subspace of X , P_n a linear projection from X into \sim X_n with $|P_n| = 1$ for every n and $P_n x \rightarrow x$ for each $x \in X$. Recall that the equation $Tx = y$ is said to be projectionally solvable if $P_nTx = P_ny$ has exactly one solution $x_n \in X_n$, $x_n \rightarrow x$ as $n \rightarrow \infty$ and Tx = y

Theorem 4. Let T: $X \rightarrow X$ be continuous, $(Tx-Ty,x-y)$ > α (|x-y|)|x-y| with α as in Definition 1 and lim inf α (r)>0. r $\rightarrow \infty$ Then Tx = y is projectionally solvable for every $y \in X$

Proof. Since $|P_n| = 1$ it is easy to see that $P_n^*F(x) \subset F(x)$ for $x \in X_n$. Hence, if $x \in X_n$ and $y \in X$ then $(P_n y, x) \ge (y, x)$. This implies that P_{n} T has the same properties on X_{n} as T on X . Since lim inf $\alpha(r) > 0$ there is exactly one $x_n \in X_n$ r~ with $P_nTx_n = P_ny$ and exactly one $x_n \in X$ with T $x_n = y$, by Corollary 3 . Since $P_n^Tx \rightarrow \Gamma_{n}^Tx \rightarrow Tx \rightarrow Tx \rightarrow y$ as $n \rightarrow \infty$, we obtain $\alpha \cup x_n - P_n x_{n}$ \geq $|y - T P_n x_{n}$ \rightarrow 0 as $n \rightarrow$ hence $x_n \rightarrow x_o$ as $n \rightarrow$

q.e.d.

Remark 3. Theorem 4 has been proved in [7, Corollary 11] under the additional condition " α strictly increasing, $\alpha(r) \rightarrow \infty$ as $r \rightarrow \infty$, X reflexive, X^* strictly convex and F weakly continuous" , and in [1, Theorem 8] under the additional condition "X* strictly convex and F uniformly continuous on bounded sets" which is equivalent to " X^* is uniformly convex".

5. Some consequences for accretive operators.

Proposition 1. Let X, D and T be as in Theorem 2, but instead of "T strongly accretive" assume "T accretive and $T(D)$ closed". Then $0 \in T(D)$.

Proof. In the proof of Theorem 2, we have obtained $Tx_n =$ $\frac{1}{n}$ and (x_n) bounded, hence, $Tx_n \rightarrow 0$ and therefore $0 \in T(D)$.

q.e.d.

Recall that T: $D \rightarrow X$ is called pseudo-contractive if

 $|x-y|$ < $|(1+\lambda)(x-y) - \lambda(Tx-Ty)|$

for every $\lambda \geq 0$ and all $x, x \in D$. It is known that I-T is accretive if T is pseudo-contractive. Hence, Proposition I yields a fixed point theorem for such mappings. A similar result has been proved in [4, Theorem I] : Let D be open and bounded, $0 \in D$, T: \overline{D} \rightarrow X Lipschitzian and pseudo-contractive, $(I-T)(\overline{D})$ closed and the Leray-Schauder condition "Tx $\neq \lambda$ x for x $\in \partial D$ and $\lambda > 1$ " satisfied, then T has a fixed point. In case D is also convex, we need only assume that T is continuous, but it is easy to see that our boundary condition " $\rho((1-\lambda)x + \lambda Tx, D) = o(\lambda)$ " is stronger than that of Leray-Schauder, in general. In particular, if D is a ball with center 0 then our condition is equivalent to $"\left(Tx,x\right)_{1} \leq |x|^{2}$ on $\partial D"$.

The next proposition, proved in [10, Theorem 5] and [8, Theorem 2] , is a typical result of the kind mentioned in the introduction.

372

Proposition 2. Let X be reflexive, Dc X closed bounded convex and of normal structure, $T: D \rightarrow X$ accretive and Lipschitz continuous, with condition (6) satisfied. Then $0 \in T(D)$.

Proof (following [10]). Since X and D are as indicated and U(t): $D \rightarrow D$ is nonexpansive, U(p) has a fixed point x_{n} for P every p > 0 , by a well known fixed point theorem of Kirk. Hence, U(t)x_p is p-periodic. But a theorem of Lasota/Yorke [5] says that T satisfying $|Tx-Ty| \le L|x-y|$ has nonconstant p-periodic solutions for $p \geq 4/L$ only. Hence, $U(t)x_{n}$ is constant for $p \leq 4/L$ and therefore $Tx \neq 0$ q.e.d.

If X in Proposition 2 is uniformly convex then "of normal structure" is automatically satisfied and "Lipschitz" is unnecessary, since by a fixed point theorem of Browder the U(t) have a fixed point x_{0} in common, whence $Tx_{0} = 0$ [9, Theorem 2] . In this case, it is even possible to replace "D bounded" by " $|Tx| \rightarrow \infty$ as $|x| \rightarrow \infty$ ", since the theorem on common fixed points remains true [2, p. 873] ; see also $[6,$ Propos. 4] . This observation implies $T(X) = X$ if "X uniformly convex, T: $X \rightarrow X$ accretive and continuous and $|Tx| \rightarrow \infty$ as $|x| \rightarrow \infty$ " holds, a result that has been announced in [3, Theorem 5] under the additional condition "T uniformly continuous on bounded sets"

References

- $\lceil 1 \rceil$ **[2] [3]** BROWDER, F.: Nonlinear accretive operators in Banach spaces. Bull. Amer. Math. Soc. 73, 470-476 (1967) : Nonlinear equations of evolution and non linear accretive operators in Banach spaces. Bull. Amer. Math. Soc. 73, 867-874 (1967) : Nonlirear mappings of nonexpansive and accretive type in Banach spaces. Bull. Amer. Math. Soc. 73, , 875-882 (1967)
- [4] GATICA, J.; KIRK, W.: Fixed point theorems for Lipschitzian pseudo-contractive mappings. Proc. Amer. Math. Soc. 36 , 111-115 (1972)

- [5] LASOTA, A.; YORKE, J.A.: Bounds for periodic solutions of differential equations in Banach spaces. J. Diff. Eq. 10 , 83-91 (1971)
- [6] MARTIN, R.H.: Differential equations on closed subsets of a Banach space. Trans. Amer. Math. Soc. 179 , 399- 414 (1973)
- [7] PETRYSHYN, W.V.: Projection methods in nonlinear numerical functional analysis. J. Math. Mech. 17 , 353- 372 (1967)
- [81 REICH, S.: Remarks on fixed points. Atti Accad. Lincei 52 , 689-697 (1972)
- [91 VIDOSSICH, G.: How to get zeros of monotone and accretive operators using the theory of ordinary differential equations. Actas Sem. Anal. Fune. Sao Paulo (to appear)
- [10] --- : Non-existence of periodic solutions and applications to zeros of nonlinear operators (preprint)

Prof. K. Deimling Math. Seminar d. Universität D-23 Kiel

Olshausenstr. 40-60

(Received July 3, 1974)