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I .  Introduction. 

The properties of bounded polynomials have been of interest ever 
since the appearance of the celebrated memoir of T s c h e b y c h e v  entitled 
Theorie des m~ehanismes connus sous le nora de parallelogrammesl).  
Questions concerning them arise not only in problems of polynomia] 
approximatlon~), but also in connection with the theory of analytic 
funct ions.  For polynomials in one variable, there is a considerable liter- 
atureS). For polynomials in several variables, less has been done4). 

The  present notes had their origin in a study" of t h e  question as to 
t h e  region of convergence of the power-series obtained by dropping the 
parentheses in series of harmonic polynomials known to converge in a 
certain circle. For this raised the question, given the maximum absolute 
value of a homogeneous polynomial of degree • in a circle about 'the 

z) M~noirs pr&ent~s k l'A~ademio ImpdriaI des Sciences de St.~Petersbourg 
par divers savants, 7 (!852), pp. 589~568; Oeuvres 1 (Petrograd 1899) , pp. 111m143. 

a) For an extensive bibliography on the approximation problem, see the report 
of Dunham Jackson on The general theory ~)f approximation by polynomials and 
trigonometric sums, Bull. Amer. Math. Soc. 27 (1921) ', pp. 415--481. 

s) See the articles ofI. Schur and G. Szeg6 in various numbers of the Msth~ 
matische Zeitschrift, in particular, I. Schur, Uber das Maximum des absoluten Be- t 
trages emes Polynoms in einem gegebenen Interval], 4 (1919), pp. 271--287; G. SzegS~ 
Uber einen Satz yon A. Markoff, 23 (1925), pp. 45--61, also the literature cited by 
these authors. In addition may be cited Szeg6 in Acta Lit. ac. Sci. Reg. Univ. 
Hungaricae Francisco~osephinae 8 (1923), F6jer in Journ. f/it Math. u. Phys. 14.6 
(1916), and Math. Ann. 85 (1922), Egerv~ry in Archly f. Math. u. Phys. $7-(1918)~ 
Dulsc in Act~ Math. al (1907). 

4) But see Tonelli, I polynomi d'approssimazione de" Tschebichev, Annali di 
Mat. 15 (1908), esp. p. 78; J. Chokhat te ,  Sur ~me formule g6n6rale duns la th6orie 
des polynomes de Tschebycheff et ses applications, Comptee Rendus 181 (t925), 
pp. 329--331. 
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origin, what can be said of its coefficients? Results on this problem are 
attained in the following pages for polynomials in two and in m variables. 
The first derivatives of bounded homogeneous and non-homogeneous 

polynomials are then studied, a n d  extensions of theprems due to 
S. Be rns t e in  and A. Markof f  ard obtained. I t  is shown that all results 
hold for  polynomials with complex coefficients. 

2. The coefficients of bounded homogeneous polynomials. 

In what follows, we shall be concerned withpolynomials P,(x i ,  x~ . . . .  , z,~), 
whose degrees do not exceed the index n, and whose coefficients may be 
real or imaginary. The variables will be restricted to the real region 
r = xl 2b x~ + . . .  + x~ ~ !, and in this region the modulus of P~ will 
be required no t  to exceed 1. The proofs will b e  given on the assumption 
that the coefficients are real; this restriction Mll be removed at .the end 
(p. 64). In the present section, P~ will be. supposed to be homogeneous, 
and to depend on two variables only. 

T h e o r e m  I. Let P,~ (x,  y) be a homogeneous polynomial o] degree n, 
such that !P ,  ] ~ 1 /or .r s ~ x ~ -q- y~ ----- 1. Then the modulus o/ the 
coe//icient % ,  o/ the term in xk y n-k cannot exceed the binomial coe//i- 
cient 'LUg. For values o/ k other than 0 and n, this bound is attained 
only when Pn is a constant o / u n i t  modulus tim~s the "real or imaginary 
~rt  o / ( z + i y ) " .  6) 

To determine the maximum of la~l, we may restrict ourselves to 
polynomials which are either even in y or odd in y, dnce all the coeffi= 
cients of Pn occux in one or the ocher of the properly bounded p01y- 
nomials i [P.  (x, y ) q - P .  ( x , -  y)] or �89 [P, ,(x,  y) -- Pn (x, -- y)]. Taking 
first the case in which n - / r  is even, we Consider the polynomial 

P.  ( x ,  y) .~ a . x "  -- a,,_~ x'*y~ y ~ + a._~ x'~~4y 4 - - . . . ,  

and compare it wi~h the polynomial 

r"cosnO = x" -- "C2xn:'~y ~ + "Cq x '~-4 y4 - - . . ,  . 

If -- 1 < , 2 <  1' the difference 

D ( x ,  y,  2) = r "cosn0  -- 2 P . ( x ,  y) 

= d . x  n -  t in-2 x "-'~ Y~ + d, , -4 x " - 4 Y  4 - -  , . .  

is positive at all points of r ~ 1 where rneosnO - -  1, and i%gative where 

a) The bound for a o and an is attained also for the polynomials x ~ and y". 
Since the submission of this paper for publication, there has appeared the book of 
S~ Bernstein, Lemons sur; los p r o p r i ~  extr~males des fonctions analytiques d'une 
variable r~elle, Paris (1926). Professor Szeg~ has kindly pointed out that the bounds 
on the coefficients in theorem I, above, are an immediat result of inequalities given 
on page 56 of this book. 
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this function is - - i .  Hence D(x~ y j~ )  has exactly one r ~  ~) between 
each pair of successive extremes of cosn0 ,  i .e .  all its roo~ are real and 
distinct. Now it foliows from Desca rees  rule of signs 7) tha~ i~ all the 
roots o~ a polynomial in x are real, and if any coefficient varSshes which 
is between two non-vanishing coefficients, the c~efficients adjacent ~o the ~ 
vanisMng one must be different from zero and have opposite signs. This 
result is applicable to D ( x ,  y, ~), and the numbers d , ,  d , _ , ,  d ,_~,  .~ 
are all different from zero and have the same signs, far if either the 
first or last vanished, the polynomials would have a multiple root, and 
we have seen that  this is not the case. Now ] a , i =  ! P , ( 1 ,  0)[ cannot 
exceed 1, so that  d , , = l - - 2 a , ,  is positive, and ~herefore a l so  
d~_~, d,_~, d~_ 6 . .  The limits of these functions of 2~, as 2 -~  1 o~ as 

---* -- 1 are therefore ~ 0, and so !a~ 1 ~-~ "Ck. 

The second part  of the ~heorem for n -  k even emerges when we 
consider the limiting form of D ( x , y , ~ )  as ~ - - ~  or - - ! .  The roots 
remain real, and can coalesce only in pairs, unless the limit is an iden- 
tically vanishing polynomial. If l a~! attains its maximum for k other 
than 0 or n ,  then for 2 = 1 or 2 = -- 1, an intermediate one of the 
numbers d~, d~_~, d , _ 4 , . . ,  would vanish, and hence all preceding or 
all following numbers of this sequence would have ~o vanish. But this 
would require too high a multiplicity for a root. The only alternative 

d: r'~ cos nO. is O ( x , y ,  1)=~O or D ( x , y , - - 1 )  O, i.e. P , ~  

For the case in which n -  k is o4d, the same reasoning may be 
applied with the substitution of r"  sin nO for r"  cos nO, until we arrive 
at  the point where it is necessary to show that  ~he numbers d ,_~,  d ,_  ~ 
d~_5 , . . ,  are all positive. This fact will follow from a 1emma, which 
will also find later application: 

L e m m a  1. I] P~(x, y ) =  '~ ' .,  
geneous polynomial with real coe//icients, such that i P , , l ~  1 ]or r ~ 1~ 

If  ~ and e are determined so that a~ ~ ~cose and %_~ ~ - ~ s i n e ,  
then .P,, ( x,  y) -- e r'~ cos ( n O -4- e) ----- R ( x, y) wil l  be a homogeneous poly- 
nomial containing y~ as a factor. If, now, ~o were greater than I~ 
R ( x , y )  would have signs opposite t~ those of c o s ( n 0 + e )  a~ every 
extreme of this function, and hence i~ would have n distinct roo~. Bu~ 

~) We mean by root of D ( x ~ y , ~ ) ,  a value of the ratio z : y  for which 
D ( x ,  y, ~) vanishes; or also one of the values of 0 which corresponds to ~uch a, 
value by the equations x - - r c o s 0 ,  y = r a i n 0 ,  my  in the ia~erval 0 ~  ~ ~t. 

*) See, for instance, Weber ,  Lohrbueh der Algebra. | (Braur~chwoig 1898), 
p. 850. �9 
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this contradicts the fact that it has a double root for y =  0. Hence 
Q~ 2 ---- #n 4- a , - i  ~ 1, as was to be proved. 

From the lcmma it follows that in a polynomial containing only 
odd powers of y,  la._~ [ <~ n, and hence that d,_a ~> 0 for " 1 ~ ~ ~ 1. 
Theorem I is thus etablished. 

I t  may be remarked that the elementary method employed above 
leads to a very simple proof of the theorems of W. Markoff  s) with 
respect to the coefficients of polynomials P~ (x) of degree not exceeding n- 
and maximum absolute value not exceeding 1 fo~r -- 1 ~ x _< 1. As com- 
parison functions are used 

T,~(x) = cos (n axccos x) and T~_,(x) = c o s ( ( n - -  1)arccosx). 

3. An applitation to convergence o~ power-series.~ 

Before proceeding with the generalization of Theorem I to poly, 
nomials in more variables, let us consider an application. In the theory 
of the logarithmic potential, the potential, U(z,  y), due to a certain dis- 
tribution of masses, is shown to be susceptible of expansion in a series 

U ~ Z r" (a, cos n 0 4. b~ sin n 0), 

which converges uniformly and absolutely in any closed region interior 
to the ~circle r ~ R which passes through that point, or limit point, Of 
the distribution, n.earest the origin. 'It is also shown that the power- 
series in x and y, 

8---- see 4- ale x 4- Sol y 4- a~o ~ 4-  a~l x y 4- ao~ y~ 4 - . . .  

obtained by expanding cos nO and sin nO in the series in U, and replacing 
r cos0 by x, and r sin0 by y, converges in aneighborhood of the origin, 
i. e. that U(x, y) is analytic in x and y. The extent of the region d 
convergence is not usually considered. 

Theorem I enables us to give a region within which ~ is certainly 
convergent. For, from the uniform convergence of U, it follows that to 
any ,l ~ 0 there corresponds an Ar such that for n ~ N, 

[r"(ancosnO~-b, sinnO)l~l for r ~ R - a ,  

i. e. that  Ir'~(R--2)"(a, cosnO-~-b, sinnO)i<_~l f6r r < ~ l .  Hence, 
by the theorem, (R -- ~)" l a~i I ~ "Ck, where i 4- ] ---- n. Accordingly 8 
is dominated by the series obtained by expanding the terms of 

s) Uber Polynome, die in einem gegebenen Intervalle m0glichst wenig yon Null 
abweichen, Math. Ann. 77 (1916), pp. 213--258. 



On bounded polynomials in several vax/abies. 59 

". It therefor, conve,ge  at the points the sqLlar~ _ _ / r  ~ 

The result may be extended by means of the theorem of She nex$ 
se6tion. A harmonic function in space, whose representation by a series 
of spherical harmonics converges uniformly in any closed regmn interior 
to She sphere r ~ R will be represented by a power-aeries in x, y and z, 
which converges at the point~ of the oetahedron { x I + l yl + I z I < R, 
and similarly for higher space. 

In two dimensions, the "only possible additional points of conver- 
gence of the power series lie on the sides of the square or on t he  
coSrdinate axes, as B6cher showed. The situation is different in three 
or more dimensions, for the three dimensional region in which the power- 
aeries converges may go beyond the octahedron, and have various shapes, 
but exact results, as far as I know, have not been obtained. 

4. Generalization to polynomials-in m variables. 

Theorem II. Let P ~ ( x l ,  x . , , . . . ,  x , )  be a homogeneous po lynomial  

o/ degree n,  such that [P~I ~_~ 1 /or r ~ ~ x ~ = x l  + .~ + . . .  + x ~ =  l .  Then 

~:, k. . .  x~,~ cannot exceed in  absolute value the poly- the coe[/icient e l  x~ x : - .  
n!  

nomial  coe//icient k~! k~t...k,.~" It  should be remarked, however, that 

this formula does not, in general, give actual maximal~ 

The theorem reduces to the preceding one when m = 2. Let us 
suppose it has been established when there are m -  1 variables. We 
make the substitution x~ ~ OY~, x~ ~ e Y e , . . . ,  x , , - x  -~ e Y , , - 1 ,  x,~ = xm, 

2 2 2 and impose the restrictions y ~ + y ~ + . . . + y m _ I ~ l ,  0 + x = = l .  
n n -  km ~k,,, 

The polynomial P ,  then takes the form Z Ak~ 0 ,~, where Ak~ is 
0 

a homogeneous polynomml in y~, y~, . . . .  y,,_x, of degree n - - k  m, and 

n! Now Thee- subject, by Theorem I to the inequality [ Ak,,,I ~ (n--k,)! k~!" 

rein II holds, by hypothesis, if m is replaced by m -  1, and so permits 

~) This is included in a result obtained by B6cher, by a different, method~ 
On the regions of convergence of power-series which represent two-dimension~l har- 
monic functions, Trans. Amer. Math. 3oc. 15 (1909), pp. 27t--278. 

~o) For  instance, the coeffieien~ of the term in x y z in P~ (x, y ,  z) has as 
maximum absolute value 3 V3, whereas the theorem gives the bound 6. 
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us to infer that the coefficient of y~ 'y~ ' .  ~ ' - '  Ym-~ in-4k,, i. e. the coeffi- 
km 

oient of x~' x ~ . . .  xm in P~, cannot exceed 

n~ ( .  - k,.).' n ,  

as was to be shown. 

5. The der!vatives o f  b o u n d e d  homogeneous polynomials in x and y .  

We are here concerned with the maximum absolute value o f  the 
derivate D P~ of  a polynomial P~, in any direction. In the case of poly- 
nomials with real coefficients, this will also be the maximum of the 
magnitude of the gradient of the polynomial, i. e. of the vector whose 
components along the co6rdinate axes are the corresponding partial deri- 
vatives of P . .  We start with the case of two variables. 

Theorem I~I. Let P,  (x, y) be a homogeneous polynomial o/ degree 
n,  such that I P,, ] s 1 /or r = 1. Then I D P,, I never exceeds n /or r s 1. 

It is obvious that [IrP~I , the magnitude of the gradient of P~, 
attains its maximum for points of the circle r =~1 on the circumference 
r ~ - l ,  because of the homogeneity of P, .  Since the gradient is invariant 
under a rotation, we are at liberty to assume that the point at which its 
magnitude is greatest is the point (1, 0). But at this point, the poly- 
nomial ;P. (x, y) = a,,x n + n % _  x x n - l y  .-~-... has the  partial derivatives 

~x - - n %  and nr 1. Hence, by Lemma 1, the magnitude of 

the gradient cannot exceed n, as was to be proved. 

I t  is of interest to compare this result with the theorem of B e r n s t e i n  1~), 
which, although usually enunciatad for trigonometric polynomials, holds 
for the boundary values of polynomials in x and y. We infer from 
B e r n s t e i n ' s  theorem that the tangential derivatives of P ,  cannot exceed 
n in absolute value. Obviously, the normal derivatives of the homogeneous 
function P .  cannot exceed n, so that the gradient cannot exceed ]/2n 
in magnitude. 

Our theorem is thus sharper than what we should infer in this way. 
On the other hand, it is apparently less general than B e r n s t e i n ' s  theorem 

zl) Sur l'ordre de la meilleure approximation des fonctions continues par des 
polynomes de degr6 donn6, M6moir couronn~, Brussels, 1912. (Included in the M~moirs 
publi6s par la Classe des Sciences de l'Acadtmie Royalc de Belgique (2) 4, p. 20.) 
For a more complete statement and simple proof, see de la Vallee Poussin, Sur 
le maximum du module de la deriv6e d'une expression trigonom6trique d'ordre et 
du module bornes, Comptcs Rendus 166 (1918), pp. 843--846; or Lemons sur rap- 
proximation des fonctions d'une variable r6elle, Paris.1919, pp. 39--42. 
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in the information it gives with ~espect to tangential derivatives, ~o~ ~he 
lat, ter applies also ~o the values on r = 1 of,non-homogeneous polynomials. 
B e r n s t e i n ' s  theorem can be inferred from Theorem IH, and ~or reasons 
~hat; will appear later, it is worth while to give the reasoning. 

Let P~(x,  y) be any polynomial of degree n, with real coefficients, 
and not greater than 1 in absolute value for r ~ 1. Suppose ~he point 
a~ which the tangential derivative is greaCes~ has been brought by a 
r.o~ation to ( I ,  O). By multiplying the terms oi P~ by appropriate powem 

o~ r = f x ~ +  ~ ,  it can be brought, without altering its values on ~ ~ 1~ 

~re homogeneous polynomials of degrees indicated by *he subscripts, one 
degree being even, and one odd. Hence, as both P , ( z ,  y) and P,~ (-- x, -- y) 
are not greater than 1 in absolute value on r = l ,  it follows ~hat 
I Q. i + JR.-1 [ ~ 1 on r = 1, and therefore the homogeneous polynomial 
S.  ( x , y) ~ Q. ( x , y) + x R .  _ a ( x, y) is similarly bounded. Hence. its ~an- 
gential derivative at (1, 0), which coincides with that of P~, cannot ex- 
ceed n, and ~his gives the desired resul t .  

Incidentally, there has been proved the following lemma~ which will 
be useful in the next sgction. 

g e m m a  2. Given the/unction F . (x ,  y ) =  Q.(x ,  y) + r R ._a(x ,  y),  

where r = ]fx ~ -+-y~, and Q, and R ._  1 are homogeneous polynomials o/ 
degrees indicated by the subscripts; i/ [ F . [ ~  1 /or r = 1 ,  then no ~an. 
gential derivative o/ F~ on r = 1 can exceed n in absolute value. 

An obvious consequence oi theorem III and the property of homo- 
geneity is the following: 

Le~ ~ denote a region o/ the x, y-plane contained in a circle el 
radius R about the origin, and containin9 a concentric circle o/radius ~. 
Then i / the  homogeneous polynomial P.  (x, y) is not greater than M in 
absolute value in S,  ] DP,~] < MnR~-~ / e '~ in S. It  wilt presently appear 
that the same is true of homogeneous polynomials in m variables. Evi- 
dently, this corella~ may be used in the discussion of the r 
differentiability of series of homogeneous polynomials. 

6. Derivatives of homogeneous polynomials in m variables, 

Thei)rem IV. Let P,,(xi, x~ . . . . .  x,,) be a homogeneoue polynomia~ 
o] degree n whose absolute value does not exceed l / o r  r ~ 1. Then  

/or r _1. 
Suppose ~ e  gradient of P,  attains its maximum magnitude at 

(a~, a. z . . . . .  a~), and that it has at this point the components (b v b~ . . . .  , b~). 
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We rotate the axes about  the origin so that the plane of the origin and 
the points (a~, a.~ ~, . . . .  , a . )  and (b~, b~, . . . ,  b~) becomes the plane of 
x~, z~. P~ then becomes a homogeneous polynomial in x ! and x~, when 
the other variables a rc  equated to 0, and the gradient of maximum 
magnitude is unaltered by the process. Thus the desired result follows 
immediately from Theorem IH.  

By the use of reasoning previously employed, we may establish a 
generalization of B e r n s t e i n ' s  theorem to m dimensions: 

T h e o r e m  ~. Le~ P , ( x l ,  x.~,. , . ,  x~,) be any p o l ~ i a l  of degree 
not greater than n, whose absolute value, does not ~ceed 1 /or r = 1. 
T h e n  the tangential derivatives o] P,, on the hypersphere r = 1 never 
exceed n in absolute value. 

In particular, if ~q~(O,~)is a linear function of spherical harmonics. 
of orders not exceeding n, such that IS,  I ~ 1, then 

= n .  

7. A.  M a r k o ~ ' s  theorem and its extension to m-space .  

Markof f ' s  12) theorem is to the effect that if P, (x )  is a polynomial 
of degree not exceeding n and absolute value on - - t  ~ z ~ 1 not ex- 
ceeding 1, then the absolute value of its derivative on the same interval 
does not exceed n e. 

This theorem, in a more precise form, may be obtained as follows. 
Pn(z)  is a particular case of a polynomial in x and, y, and as such, its 
tangential derivatives on the circle r ~-1 cannot exceed n in absolute 

value, by B c r n s t e i n ' s  theorenL That is, [ Y ~aP" x ~P" ] - -  -b~l ~ n, and there- 

fore IlP,~ ( z ) ] ~  n / [y[  - -  n / ] / 1  - z ~ . The rest is ~a result of the following 
e m m a  : 

1 If a polynomial of degree n -  1 is dominated by the function 
n / ~ - o n  - - 1  _ ~ x ~  1 ,  it is dominated on the same interval by n ~ 

Suppose this were not" so, and that the polynomial P , _ l ( x ) ,  dominated 
by n/~-i----x ~ on - - l ~ z ~ l ,  exceeded n ~ at a point x = a  of this 
interval. By legitimate sign changes we are free to assume that 0 ~ a ~ 1, 
and that P . _ ~ ( a ) >  O. We consider the polynomial o f  degree n -  I ,  

D I z ) = P . _ l ( x ) - - , ~  ns innv  where eos~0=x ,  and ~ is a number suffi- 
sin ~p 

ciently slightly greater than 1 so that P~-I  (a) > ~n g. The function D Ix) 

lg) On a problem of M e n d e l e i e f f  (in'  Russian), Memoirs of the St. Petersburg 
Academy 62 (1889). See also I. S c h u r ,  loc. cit., esp. p. 272--277. 
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must alternate in sign at  the interior extremes of sin n?~, i. e. for 

: v~  c o s ( 2 n -  I) :~ cos (2 n2--:! ~ 2 n ' , . o . ,  cos ~-~, and hence have ~ -- 1 roots in 

the intervals between these points. Now the point a cannot lie between 

0 and cos~-~, ~ for in this interval, n/~/-l--x'~=n/sin~ nlsm,~_~ ,I" ~ 

number easily shown to be less than n s for n:> 2 (for n ~ I the theorem 

is trivial). Hence D(x), negative at cos ~-~ would be positive at a point 

between this one and I, and so would have n roots. This is impossible, 
since D(x)is not identically 0. We thus a~rive at the "result contained 
in the article of S c h u r  (loe. cir.): 

I/ P , ( x )  is a polynomial o/ degree nol greater than n, whose ab- 
solute value does not exceed 1 /or -- 1 ~ z ~ I,  ~hen P~ ( o~ ) i8 dominated 

i~ this interval by the Smaller o / the  two numbers n t ~ - -  xs a..d n% 1~) 

The result is readily generalized to polynomials in m variables: 

T h e o r e m  VL L e t  P.(x~,x~ . . . . .  x,.) be a polynomial o f  dedvree 
not greater than n, and o/ absolute vodue no~ yreater ~han, i /or 
r~ = x,~ -+- x2 + . . . + xs s  Then /or rs D P,~ ie dominated by the 

smaller o/ the two numbers n / ~ -  r s and n% 

By a rotation of axes such as was used in the last section, we may 
reduce the general case to that of two variables. We may think o~ the 
polynomial P .  (x, y)  as one in x, y ,  z 1~), and as such its tangential deriva- 
tives on_the sphere r ----- 1 cannot exceed n in absolute value~ by theorem V. 
H a, f l ,7 ,  be the direction cosines of a (non-vertical) tangent to the 

sphere, we infer that  !a ~P" ~ ~P~ ~ + P -~-  I ~ n,  and hence that  the derivative 

of P~(x ,y )  in the direction a fl ~ ,  [ / ~  at any interior point 

r ~  i ,  is not greater in absolute value than n / ] / ~ + f l ~ ,  a fuaction o~ 
a and fl which, under the conditions on r162 fl, y, and x, y, z, cannot ex- 

ceed n / [ z l ~ n  [ f l - r  s. 
Now the lderivative of P . ( x ,  y) in a fixed direvtion at the points of 

a line through the origin and containing the point at which this derivative 

x3) Bernste in  gives the following theorem: If the polynomial P~(x) of de- 
gree not greater than n ~tisfies the inequality ]-Pn(x)] <:: L on (a, b), then 
IP~(x) ly~(a-z) ( x - -b )~nL  on (a, b). On the best polynomial approximation to 
continuous functions, Thesis, 1912 (in Russian). ! amindebted to Prof. T. A. Shohs~ 
for this note. 

14) The coefficients of the terms in z being 0. 
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is greatest m absolute value, is a polynomial in r (r being allowed nega. 
give values), and so, by the reasoning employed above, cannot exceed n ~ 
Theorem VI is thus established. 

8. Removal of the restriction to real coefficients. 

In multiplying a polynomial by a ~ complex number of unit modulus, 
we change neither the bounds of the absolute value of the polynomial, 
nor of  its coefficients, nor of its derivatives. Such a multiplier may 
always be so chosen as to reduce t~ a real number any given coefficient, 
or derivative at a point. Thus the given coeffi~ent, or derivative at a 
point will be the "corresponding coefficient or derivative of the real part 
of the new polynomial, and this real polynomial will be bounded in ab- 
solute value by unity in any region in which the given polynomial is so 
bounded. The results attained for polynomials with real coefficients there- 
fore hold for polynomials with complex coefficients. 

Oct. 15,: 1925. 

(Eingegnmgen am 2. November 1925.) 


