On bounded polynomials in several variables.
By
0. D. Kellogg in Cambridge, Mass.

1. Introduction.

The properties of bounded polynomials have been of interest ever
since the appearance of the celebrated memoir of Tschebychev entitled
Theorie des méchanismes connus sous le nom de parallelogrammes?).
Questions concerning them arise not only in problems of polynomial
approximation®), but also in connection with the theory of analytic
functions. For polynomials in one variable, there is a considerable liter-
ature®). For polynomials in several variables, less has been done*).

The present notes had their origin in a study of the question as to
the region of convergence of the power-series obtained by dropping the
parentheses in series of harmonic polynomials known to converge in a
certain circle. For this raised the question, given the maximum absolute
value of a homogeneous polynomial of degtee n in a circle sbout ‘the

¥} Mémoirs présentés & lAcademie Impérial des Sciences de St..Petersbourg
per divers savants, 7 (1852), pp. 539-—568; Oeuvres 1 (Petrograd 1899), pp. 111—148.

%) For an extensive bibliography on the approximation problem, see the report
of Dunham Jackson on The general theory of approximation by polynomials and
trigonometric sums, Bull. Amer. Math. Soc. 27 (1921), pp. 415—431.

- %) See the articles of I Schur and G. 8zegé in various numbers of the Mathe-
matlsche Zeitschrift, in particular, I. Schur, Uber das Maximum des absoluten Be-
trages eines Polynoms in einem gegebenen Intervall, 4 (1919), pp. 271—287; G.Szegd,
Uber einen Satz von A. Markoff, 28 (1925), pp. 45—61, also the literature cited by
these  authors. In addition may be cited S8zegé in Acts Lit. ac. Sci. Reg. Univ.
Hungaricae Francisco-Josephinae 3 (1928), Féjer in Journ. fir Math. u. Phys. 146
{1916), and Math. Ann. 85 (1922), Egervary in Avchiv f. Math. u. Phys 27.(1918),
Dulac in Acts Math. 31 (1907).

4) But see Tonelli, I polynomi d’approssimazione de Tachebichev, Annali di
Mat. 16 (1908), esp. p. 73; J.Chokhatte, Sur une formule générale dans la théorie
des polynomes de Tschebycheff et ses applications, Comptes Rendus 181 (1925},
Pp. 329—331.
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origin, what can be said of its coefficients? Results on this problem are
attained in the following pages for polynomials in twe and in m variables.
The first derivatives of bounded homogenecus and non-homogeneous
_polynomials are then studied, and extensions of theorems due to
S. Bernstein and A. Markoff aré obtained. It is shown that all results
hold for polynomials with complex coefficients.

2. The coefficients of hounded homogeneous polynomials.

In what follows, we shall be concerned with polynomials P, (z,, z,,...,2,,),
whose degrees do not exceed the index n, and whose coefficients may be
rea.l or 1magmary The variables will be restricted o the real region
rP=af+x; +...+ 2, <1, and in this region the modulus of P, will
be required not to exceed 1. The proofs will be given on the assumption
that the coefficients are real; this restriction will be removed at the end
(p. 64). In the present section, P, will be supposed to be homogeneous,
and to depend on two variables only. ;

Theorem I. Let P,(z,y) be a homogeneous polynomial of degree n,
such that |P,| <1 for r®*=2a*4-y*=1. Then the modulus of the
coefficient a,, of the term in x*y"—* cannot exceed the bimomial coeffi-
cient "C,. For values of k other than 0 and n, this bound is attatned
only when . 18 @ constant of unit modulus times the real or smaginary
part of (z+1y)" ¥

To deétermine the maximum of |@,|, We may restrict ourselves to
polynomials which are either even in y or odd in y, since all the coeffi-
cients of P, occur in one or the other of the properly bounded poly-
nomials I[P" (z,y)+ P, (z,—y)] or [P, (x,y)— P,(x, — y)]. Taking
first the case in which » — k is even, we consider the polynomial

Pz, y)=a,2"—@a, 2"y ta, " *y*—...,
and compare it with the polynomial
rcosnf =z" —"Chzn2y® + "C,an-tyt — ..
I —1< i<, the difference
D(z,y,A)=r"cosnl —iP, (z,y)
=d, 2" —d, ,e"ty*+d,_,entyt — ...
is positive at all points of r = 1 .where r"cosnf =1, and iégative where

% The bound for a, and a, is attained also for the polynomials «" and y™.
Since the submission of this paper for publication, there has appeared the book of
S. Bernstein, Lecons sur les propriétés extrémales des fonctions analytiques d'une
variable réelle, Paris (1926). Professor Szeg has kindly pointed out that the bounds
on the coefficients in theorem I, above, are an immediat result of inequalities given
on page 56 of this book,
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this function is — 1. Hence D (z, y, 1) has exactly one root®) between
each pair of successive extremes of cos 78, 1. e. all its roots are real and
distinet. Now it follows from Descartes rule of signs?) that if sli the
roots of & polynomial in x are real, and if any coefficient vanishes which
is between two non-vanishing coefficients, the coefficients adjacent to the'
vanishing one must be different from zero and have opposite signs. This
result is applicable to D{2, y,4), and the numbers d_, d,_,, 4, _,, ...
are all different from zero and have the same signs, for if either the
first or last vanished, the polynomials would have a multiple root, and
we have seen that this is not the case. Now |a@,|=|P,(1,0)] cannot
exceed 1, so that d,—=1—4ia, is positive, and therefore also’
d, o, 8,_4, 8,_g.... The limits of these functions of 1, as i—1 or as
i—> —1 are therefore >0, and so |a,| < "C,.

The second part of the theorem for n — k even emerges when we
consider the limiting form of D(x,y,1) as i—1 or — 1. The roots
remain real, and can coalesce only in pairs, unless the limit is an iden-
tically vanishing polynomial. If |a,| atbains its maximum for % other
than 0 or =, then for A=1 or A= — 1, an infermediate one of the
numbers d,_, d,_,, d,_,,... would vanish, and hence all preceding or
all following numbers of this sequence would have to vanish. But this
would require too high a multiplicity for a root. The only alternative
is D(z,y,1)=0 or D(z,y, —1)=0, i.e. P, = £ r"cosnb.

For the case in which n — k is odd, the same reagoning may be
applied with the substitution of r"sinnf for r"cosnf, until we arrive
at the point where it is necessary to show that the numbers d,_,, 4, _,,
d,_5, ... are all positive. This fact will follow from a lemme, which
will also find later appiication:

Lemma 1. Jf P, (2, y)=e,2"+ne,_ 21y ... 8 a homo-
geneous polynomial with real coefficients, such thai (P, | L1 for r=1,
then op ol , < 1.

If ¢ and ¢ are determined so that &, ==gcose and «, ,=gsine,
then P, (x,y) —or"cos(n® + &)= R(x, y) will be a homogeneous poly-
nomial containing %? as a factor. If, now, ¢ were greater than 1,
E(z,y) would have signs opposite to those of cos(n®-;-¢) at every
extreme of this function, and hence it would have n distinct roots. But

% We mean by root of D(z,y,1), & value of the ratio z:y for which
D{=,y, 1) vanishes; or also one of the vaslues of § which corresponds to such a
value by the equations z =rcosf, y=rsind, say in the intervel 0 <8 < .

") See, for instance, Weber, Lehrbuch der Algebra 1 (Braunschweig 1898),
p. 350, -
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this contradicts the fact that it has a double root for y = 0. Hence
O =ast a5, <1, as was to be proved.

From the lemma it follows that in a polynomial containing only
odd powers of y, |a,_,| < n, and hence that d,_, >0 for —1< i< 1.
Theorem I is thus etablished.

It may be remarked that the elementary method employed above
leads to B very simple proof of the theorems of W.Markoff®) with
respect to the coefficients of polynomials P, (x) of degree not exceeding n-
and maximum absolute value not exceeding 1 for — 1 <2 <1. Ascom-
parison functions are used ‘

T,(x)=-cos(narccosz) and T, _,(x)=cos((n — 1)arccosz).

3. An applitation to eonvergence of power-series.,

Before proceeding with the generalization of Theorem I to poly-
nomials in more variables, let us consider an application. In the theory
of the logarithmic potential, the potential, U(z, y), due to a certain dis-
tribution of masses, is shown to be susceptible of expansion in a series

U#‘j‘r"(a” cosn - b, sinn0),
n=0 .
which converges uniformly and absolutely in any closed region interior
to the ‘circle r — R which passes through that point, or limit point, of
the distribution, nearest the origin. It is also shown that the power-
series in z and y, '

S=ay+ a2+ ay, ¥+ ap2®ta,zy+a,y*+...
obtained by expanding cosnf and sinnf in the series in U, and replacing
rcos by «, and rsin@ by y, converges in a neighborhood of the origin,
i. e. that U(x, y) is analytic in 2 and y. The extent of the region of
convergence is not usually considered.

Theorem I enables us to give a region within which § is certainly

convergent. For, from the uniform convergence of U, it follows that to
any 1> 0 there corresponds an N such that for n > N,

|#"(a,cosn04b,sinnf)| <1 for r<R—1,
i e. that [r"(R—2)"(a,cosn®+ b sinnb)|<1 for r<1. Hence,
by the theorem, (R —1)"|a;| < "C,, where ¢ j=mn. Accordingly 8
is dominated by the series obtained by expanding the terms of

8 Uber Polynome, die in einem gegebenen Intervalle moglichst wenig von Null
abweichen, Math. Ann. 77 (1916), pp. 213258,
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2 {—-—————i xli-:lly!]“' It therefore converges at the points -of the square

lz|+ |yl < R.?)

The result may be extended by means of the theorem of the next
gsection. A harmonic function in space, whose representation by a series
of spherical harmonics converges uniformly in any closed region interior
to the sphere r = R will be represented by a power-series in #, » and z,
which converges at the points of the octshedron {x|--|y|~+|2z| <R,
and similarly for higher space. "

In two dimensions, the only possible additional points of conver-
gence of the power series lie on the sides of the square or on the
cobrdinate axes, as Bocher showed. The situation is different in three
or more dimensions, for the three dimensional region in which the power-
series converges may go beyond the octahedron, and have various shapes,
but exact results, as far as I know, have not been obtained.

4. Generalization to polynomials in  variables.

Theorem II. Let P,(x,,%,,..., z,) be a homogeneous polynomial
of degree n, such that |P,| <1 for r®=2; +-ad+...+am=1. Then

the coefficient of xt X5%. .. :c,’,‘{" cannot exceed in absolute value the poly-
nomial coefficient W:i'——k—’ It should be remarked, however, that
kgl Rt

this formula does not, in general, give actual maxima?®).

The theorem reduces to the preceding one when m = 2. Let us
suppose it has been established when there are m — 1 variables. We
make the substitution 2, =gy, 2, =0¥a -+ s £ o1 = @Y1y Tow = Zpy>
and impose the restrictions yX--ys + ...+ yo-1=1, o - ap=1.

The polynomial P, then takes the form Z”’Akm o™ Fmatr  where 4, is
L]

a homogeneous polynomial in y,, ¥,,...,y,-,, of degree n —%,, and

m?
ni
[CEYSIr=E Now Theo-

rem II holds, by hypothesis, if m is replaced by m — 1, and so permits

subject, by Theorem I to the inequality | 4,,| <

?) This is included in a result obtained by Bécher, by a different method;
On the regions of convergence of power-series which represent two-dimensional har-
monic funetions, Trans, Amer. Math. 3oe. 15 (1909), pp. 271—278,

%) For instance, the coefficient of the term in wyz in P, (»,y,7) has as
maximum absolute value 3 VS, whereas the theorem gives the bound 8.



60 0. D. Kellogg.

us to infer that the coefficient of y* y¥*... yinit in Ay, i. e. the coeffi-
cient of ¥ z¥ .. zk in P,, cannot exceed
n! ><' (n—ka)  a
(n—kn)tha! "l ke Fmy! T kylhg!.. kn!’

as was to be shown.

5. The de'rgvatives of bounded homogeneous polynomials in & and y.

We are here concerned with the maximum absolute value of the
derivate D P, of a polynomial P,, in any direction. In the case of poly-
nomials with real coefficients, this will also be the maximum of the
magnitude of the gradient of the polynomial, i e. of the vector whose
components along the codrdinate axes are the corresponding partial deri-
vatives of P,. We start with the case of two variables,

Theorem Iil. Let P,(z,y) be a homogeneous polynomial of degree
n, such that |P,| <1 for r=1. Then |D P,| never exceeds n for r <1.

It is obvious that [P P,|, the magnitude of the gradient of P,,
attains its maximum for points of the circle r ;/ 1 on the circumference
r =1, because of the homogeneity of P,. Since the gradient is invariant
under a rotation, we are at liberty to assume that the point at which its
‘magnitude is greatest is the point (1, 0). But at this point, the poly-
nomial .P, (z, y) = e, 2+ ne,_ 2" 1y 4-... has the partial derivatives
251-;1=nozn and %%::nu”_l. Hence, by Lemma 1, the magnitude of
the gradient cannot exceed n, as was to be proved.

It is of interest to compare this result with the theorem of Bernstein ),
which, although ususlly enunciated for trigonometric polynomials, holds
for the boundary values of polynomials in # and y. We infer from
Bernstein’s theorem that the fangential derivatives of P, cannot exceed
n in absolute value. Obviously, the normal derivatives of the homogeneous
function P, cannot exceed n, so that the gradient cannot exceed }2n
in magnitude. )

Our theorem is thus sharper than what we should infer in this way.
On the other hand, it is apparently less general than Bernstein’s theorem

) Sur lordre de la meilleure approximation des fonctions continues par des
polynomes de degré donné, Mémoir couronné, Brussels, 1912. (Inciuded in the Mémoirs
publiés par la Classe des Sciences de I’Académie Royale de Belgique (2) 4, p. 20.)
For a moere complete statement and simple proof, see de la Valiee Poussin, Sur
le maximum du module de la derivée d’une expression trigonométrique d’ordre et
du module bornes, Comptes Rendus 186 (1918), pp. 843—846; or Le¢ons sur Pap-
~ proximation des fonctions d’une variable réelle, Paris.1919, pp, 39—42.
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in the information it gives with respeet to tangential derivatives, for the
latter applies also to the values on » =1 of ;non-homogeneous polynomials.
Rernstein’s theorem can be inferred from Theorem III, and for reasons
that will appear later, it is worth while to give the reasening.

Let P,(z,y) be any polynomial of degree n, with real coefficients,
and not greater than 1 in absolute value for r=1. Suppose the point
at which the tangential derivative in greatest has been brought by a
rotation to (1, 0). By multiplying the terms of P, by appropriate powers
of r= Yz® -+ »?, it can be brought, without altering its values on r =1,
o the form P (x,y)=Q,(x,y)+rR,_,(x,y), where g and R, _,
are homogeneons polynomials of degrees indicated by the subscripts, cme
degree being even, and one odd. Hence, as both P, (2, ) and P, (—x, — %)
are Dot greater than 1 in absolute value on =1, it follows that
1Q,|+1B,_,| <1 onr=1, and therefore the homogeneous polynomial,
S,(z,9)=0,(=,y)+zR,_, (%, y) is similarly bounded. Hence, its tan-
gential derivative at (1, 0), which coincides with that of P, cannot ex-
ceed m, and this gives the desired result.

Incidentally, there has been proved the following lemma, which will
be useful in the next séction.

Lemma 2. Given the function F,(z, y)=Q (z, )+ R, (=, ¥),
where r = Va® - y?, and Q, and R, _, are homogeneous polynomials of
degrees ¢ndicated by the subscripts; if |F, | <1 for r=1, then no tan-
gential dertvative of F, on r=1 can exceed n tn absolute value.

An obvious consequence of theorem III and the property of homo-
geneity is the following:

Let 8 denote a region of the x,y-plane contained in a circle of
vadius B aboul the origin, and containing a concentric civcle of radius p.
Then if the homogeneous polynomial P,(z,y) 4s not greater than M in
absolute value in S, |DP,} < MaR""|¢* in 8. It will presently appear
that the same is true of homogeneous polynomials in s variables. Evi-
dently, this corellary may be used in the discussion of the termwise
differentiability of series of homogeneous polynomials,

6. Derivatives of homogeneous polynomials in e variables,

Theorem IV. Let P,(2,,x,,...,x,) be a homogeneous polynomial
of degree m whose absolute wvalue does not exceed 1 for r=1. 7Then
IDP,|<n for v <1,

Suppose the gradient of P, attains its maximum magnitude a¢
{(a,;8,,...,a,), and that it has at this point the components (b, 5,,...,5,).
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We rotate the axes about the origin so that the plane of the origin and
the points (a,,ayy...,a,) and (,,b,,...,b,) becomes the plane of
%,, ¥,. P, then becomes a homogeneous polynomial in z, and z,, when
the other variables are equated to 0, and the gradient of maximum
magnitude is unaltered by the process. Thus the desired result follows:
imniediately from Theorem III.

By the use of reasoning previously employed we may estabhsh a
generahzatxon of Bernstein’s theorem to m dimensions::

Theorem &7 Let P, (x;,2,,...,2,) be any polynomial of degree
not greater than n, whose absolute value does not exceed 1 for r=1.
Then the langential derivatives of P, on the hypersphere r =1 never
exceed n in absolule value.

In particular, if S,(0,¢) is & linear function of spherical harmonics.
of orders not exceeding n, such that |8,| <1, then

V(5) +mms (55 <

7. A. Markoff’s theorem and its extension to m -spaee.

Markoff’s?) theorem is to the effect that if P, (z) is a polynomial
of degree not exceeding # und absolute value on —1 <2 <1 not ex-
ceeding 1, then the absolute value of its derivative on the same interval
does not exceed n?:

Thig theorem, in a more precise form, may be obtained as follows.
P, (x) is a particular case of a polynomial in x and y, and as such, its
tangential derivatives on the circle r =1 cannot exceed n in absolute

value, by Bernstein’s theorem. That is, |y % —x a—a% < n, and there-

fore [P, (z)|<n||y|=n] Y1 —x%. The rest isa result of the following
emma :

I If a polynomial of degree #»—1 is dominated by the function

n]Y1—2z%on —1<L2<1, it is dominated on the same interval by n®.
Suppose this were not so, and that the polynomial P,_,(z), dominated

by n/y1—2® on —1L2<1, exceeded n? at a point x=a of this

interval. By legitimate sign changes we are free to assume that 0 <a <1,

and that P,_,(a)>0. We consider the polynomial -of degree n —1,

D(z)=P, () .—1’%’%—2—?, where cosgp =z, and 1 is a number suffi-

ciently slightly greater than 1 so that Pn_; (a) >4 n?. The function D (z)

1%) On i problem of Mendeleieff (in’ Russian), Memoirs of the St. Petersburg
Academy 62 (1889). See also I Schur, loc. cit., esp. p. 272—277.
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must alternate in sign at the interior extremes of sinng, i e for

(_2_’_’*?;;"1__)_2 (ﬁ%—:’;ﬂﬁ” R cos%, and hence have n — 1 roots in

the intervals between these points. Now the point ¢ cannot lie between
0 and cosz—’;;, for in this interval, n/}/l—-x“:nisintpgn/sin%, 8

number easily shown to be less than »® for » = 2 (for n==1 the theorem

& == 608 , COS

is trivial). Hence D (x), negative at cos 2—%; would be positive at a point
between this one and 1, and so would have w roots. This is impossible,
since D (zx) is not identically 0. We thus arrive at the result contained
in the article of Bchur (loe. cit.):

It P (z) is a polynomial of degree nof greater than n, whose ab-
solute value does mot exceed 1 for —1 <z < 1, then Py (x) is dominated
sn this interval by the smaller of the two numbers n| Y1 —a® and n®. %)

The result is readily generalized to polynomials in m variables:

Theorem VI. Let P, (x,,%,, ..., %,) be a polynomial of degree
not greater than =n, and of absolule value not greater than 1 for

=a{+ 234 ... + 2 <1. Then for r L1, DP, is dominated by the
smaller of the two numbers n|V1—r* and 2’

By a rotation of axes sauch as was used in the last section, we may
reduce the general case to that of two variables. We may think of the
polynomial P, (z, y) as one in z, ¥, 2**), and as such its tangential deriva-
tives on the sphere r =1 cannot exceed n in absolute value, by theorem V.
If a,8,y, be the direction cosines of a (non-vertical) tangent to the

sphere, we infer that laaP" + 8 ~—~‘ < wu, and hence that the derivative

of P, (z,y) in the direction 7 e‘: = 7 f}_ = at any interior point
o we-

# <1, ia not greater in absolute value than n/}e®4 8%, a function of
o and § which, under the conditions on e, 8, y, and x, ¥, 2z, cannot ex-

ceed n/|z|=mn[}1 —rs.
Now the derivative of P,(z, y) in a fixed direction at the points of
& line through the origin and containing the point at which this derivative

18) ‘Berxistein gives the following theorem: If the polynomial P, (x) of de-
gree not greater than n satisfies the inequality |P.(2)|< L on (e, D), then
EPn ()| Y(a—=x)(#—b)<nL on (a,b). Un the best polynomial approximation to
continuous funetions, Thesis, 1912 (in Russmn) I am indebted to Prof, T. A. Shohat
for this note.

14} The coefficients of the terms in 2z being 0.
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is greatest 1 absolute value, is a polynomial in r (r being allowed nega-
tive values), and so, by the reasoning employed above, cannot exceed n®.
Theorem VI is thus established.

8. Removal of the restriction to real coefficients.

In multiplying a polynomial by a’ complex number of unit modulus,
we change neither the bounds of the absolute value of the polynomial,
nor of its coefficients, nor of its derivatives. Such a multiplier may
always be so chosen as to reduce tg a real number any given coefficient,
or derivative at a point. Thus the given coefficient, or derivative at a
point will be the torresponding coefficient or derivative of the real part
of the new polynomial, and this real polynomial will be bounded in ab-
solute value by unity in any region in which the given polynomial is so
bounded. The results attained for polynomials with real coefficients there-
fore hold for polynomials with complex coefficients.

Oct, 15, 1925.

(Eingegangen am 2. November 192-5.)



