
Some general problems of the theory of ordinary linear 
differential equations and expansion of an arbitrary 

function in series of fundamental functions. 
By 

J. Tamarldn in Hanover, N.H. (U. S. A.). 

This paper reproduces a paper which was published in 1917 under 
the same title1), with considerable abbreviations and generalizations. 
A detailed discussion of some questions which are explained here but 
briefly, as well as extended references, may be found in the above men~ 
tioned paper. 

w 

A~ymptotie expressions of solutions of ditterenUal equations containing 
a parameter. 

1. We begin with a discussion of the system of ~ differential equations 
n 

<I) 5,, _ Z %  (x, ~) y~, dx 
/r 

whose coefficients are ftmctions of a real variable x in the interval a ~ x ~ b 
and of a complex parameter ~. Suppose the functions aik(x, e) admit 
of expansions 

:o ~ - ~  ( x - , ) /  x 
(1) ai1,(x,~)=.~q ai~ (x) ( i , k = l , 2 , . . : , n )  

for I~1 sufficiently large, i. e. for 

R o being a given positive constant. 

If the functions a~-')(x) possess derivatives of all orders in (a, b) 
and if the "characteristic equation" 

~) P e t r o g r a d  1917 ( in  R u s s i a n ) .  
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(8) ~(o)  - 

has simple roots 

(4) 

(~) 
a(n~ (x) a , ,  (x) . . .  a ~ ( x )  0 

for every value of x, then a matrix of formal solutions of (I) can be 
found of the form 

ef~176 ~=o (') x (5) 2 y .  ( )~-', 
where t 

o~. (x, e) = ~'" ~J"' (~') + . . .  + .~  ~o?~ (~,) 

and the coefficients 
~-'(~), y~; (~) 

are determined by immediate substitution of (5) in the system (I). The 
series (5) are divergent in the general ease, but they can be used for 
apprcximate representation of certain solutions of (I) ,  as it is shown by 
the following theorem: 

T h e o r e m  1. Suppose the coefficients a ~ ( x , ~ )  o/ the system (I) 
to satisfy the /odowing conditions: 

1 ~ Series (1) are convergent on the region (2) and the Junctions 

a~- ' ) (x)  ( i , k - - ~ l ; 2 , . . . , n ;  ~,-- O, 1, 2 , . . . )  

are continuous and uni]ormly bounded on (a, b). 

2 ~ I/  m denotes a given positive integer, and integers s and r are 
determined by the condition 

m = s ~ + r + l  

it is assumed that the functions 

a'+~ -~" ~ d "+~ a~-'~(x) ~tk ~ J 
da : t+ l  ~ . . , ,  dX#+l 

dze  ' �9 . . ,  dxe  

(o_< r _ < , , -  a), 

�9 ~ ~ . �9 ~ . �9 ~ ~ ~ ~ �9 

a(-rn+~) _(-ra+l)  ,~ (~), (~) 

poasess continuous derivatives o] the /irst order on ( a, b). 
3 ~ The roots (4) of the characteristic equation (3) are distinct /or 

every value o/ x in (a, b). 
4 ~ There exists such an infinite part (53) o] the region I0] ~_ Ro, 

in which the inequalities 
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(6) ~e  ~,~ (~, Q) < ~e  ~o~ (~, ~) __<... < ~e  ~ (~, ~) 
are satisfied /or every value o[ x in (a, b ). 

Then there exists a matrix o/ solutions o] the system (I), o / the /orm 

l, v~O 

where E ( x ,  ~) are bounded and continuous /unction8 o/ x in (a, b) and 
o/ e in ( ~ ) . ~  

The theorem 1 was proved in the paper ~) using a generalization of 
the classic D i n i ' s  methodS). 

2. In the most impor tant  case, when the system (I) is equivalent 
to a single differential equation of order n, and z = 1 ,  we obtain: 

T h e o r e m  2. Suppose the coe//icients o/ the di//erential equation 

(II) d'~Y ) d ' -~y  ~ .  + P~ (~, ~,d--~:~ + - . . §  P,(~, ~ ) y = 0  

to satis/y the ]ollowing conditions: 

1 ~ The ]unctions P~(x, ~) can be expanded in descending powers 
o/ ~ on the region (2): 

(8) P, (x ,  e) ~ e ' . ~ p , ~ ( x ) e  - i  =- e i p , ( x ,  e) " (i = 1, 2 , . . . ,  n), 
j=0 

the coe//icients Pii ( x) being continuous and uni/ormly bounded on ( a, b ). 
2 ~ . The /unctions 

p,o (~) (i = 1, 2 , .  ~., n) 

poss.ess continuous derivatives o] the second order, the ]unctions 

p,, (x) (i  = 1, 2 . . . .  , n) 

possess continuous derivatives o/ the first order on (a, b). 
3 ~ . The characteristic equation 

(9) ~ ( O ) ~ O ' ~ §  

has roots q~ . . . . .  q~,, which ar~ distinct /or all values o/ x in (a, b). 

'~) We shall use the symbol E ( ~ ,  . . . )  in order to denote functions of e and of 
other variables, bounded on (~)) or, more generally, bounded for large values of 1 ~ I. 

1) Chapters I and II. 
8) The particular case of a system with coefficients linear in ~ was discussed also 

by G. D. B i r k h o f f  and R. E. L a n g e r ,  The boundary problems and developements etc. 
Prec. of Am. Ac. of Arts and Se. 58 (1923), n ~ 2. The theorem holds true when the 
series (1) are not convergent, but  only asymptotic in (~) ,  and when the inequalities (6) 
are replaced by more general ones: ~e o~ ~ !~e (w~+ ~) ~: . . .  ~ $te (~o~+ ( n - -  1) a), 
where a is a constant. In  the ease, when the functions -~) have derivatives of all 
orders on (a, b) the matrix (7) can be chosen as to be independent of m~ Cfr. our 
paper (in collaboration with A. B e s i c o v i c h ) ,  Math. Zeitsehr. 2! (1924), pp. 119--125. 

1" 
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4 ~ There exists such an infinite part  ( ~ )  o / the  region (2) on which 

(10) ~e  (O(Px) ___< ~e  (O~p,) ~ . . .  ~ ~Re (Ocp.) 

/or every value o/ x in (a,  b). 
Then there exists a /undamental system o/ solutions o/ (II) ,  which 

on (~) ) can be represented by 

ef~}(~)dz, Ea~ ,O) ) ,  
(11) y~(x,  ~)~-  e " ~%.(~)-+ - 

.where the /unctions 

( 1 2 )  
= 1 

( , t =  1, 2 . . . . .  n) ,  

�9 '(o) --a.*(e).  l(o)=pll(x)o"-l+ 
dO ' "'" 

possess continuous derivatives o/ the second order, and the /unctions 
E~ ( x, O) are continuous and bounded. 

The ]ormulas (11) can be di//erentiated ~n - -  ~ 1) times with respect 
to x,  conserving each time the highest term in 9 only, so that 

�9 _~ efv~,x, dx {%.(x) q- ~ }  ( s : 0 ,  i . . . .  , n - - l ) .  (13) d'y~(~,e) e " [%. (x)] '  *) 
dx s 

3. A detailed diseassion shows that  i / t h e  condition 2 ~ o[ Theorem 2 
is replaced by a more restrictive one: 

2~. The /unctions 
dgpio (s)' dp ,  (x) 

' ' ( i = 1 , 2  . . . . .  n )  

are continuous and o/ bounded variation on (a, b), and the arguments o/ 
all the di//erences 

9 , ( x )  - -  9s(x )  (i ,  j = 1, 2 , . . . ,  n)  

satis/y D i r i c h l e t  condition on (a, b), then 
x 

I r ~(:~'~)~ t ~ =  1, 2, . .  n)  (14) y z ( x , . o ) = e e ~ a ' x ) a x l % . ( x ) ~ - - - ~ - - +  e" , " ' 

a n d  the /unctions 

d~ "~ ' dx (~----1, 2, . . . ,  n)  

are conti~quows and o /bounded variation on (a, b). 1) 

4) An analogous theorem was proved by G. D. Birkhoff ,  On the asymptotic 
character of solutions of certain linear diff. equat., Trans. Am. Math. Soe. 9 (1908) 

x) pp. 75--79. 



Linear 4ifferentia~ equations. 

4. If the conditions of Theorems i and 2 are not satisfied, the 
discussion of the asymptotic character of solutions of (I) and (II) pre- 
sents considerable difficulties, and even the forma~ character of the series 
(5) may change. F o r  instance, if the characteristic equation has multiple 
roots [of the same multiplicity throughout the whole interval (a~ b)], 
then instead of formal series (5) we obtain series,-which eontain~ besides 
integral, also fractional powers of ~. 

In the special case of an equation of ~he ,~econd order 

e) = S: e ' p .  (x),  q) = 
j=O j=O 

suppose that the characteristic equation has a multiple root q~ (x) = -- ~ P~e (x) 
for all values of x in (a,  b). so that 

Then it can be proved that either: 

1 dPlo (x) 1 
V ( x ) - -  2 dz 2 p~0(z) p~l (~) + p~ (~) - 0' ~ 

in which case the equation has two solutions of the form 

e,OaJ" ~ (x) tgz 

the infinite series being convergent on (2), or: y~(x) # O, in which case the 
equation has two ]ormal solutions 

where the sign (~-) corresponds to 2 =  1, the sign (--)  corresponds to 2 = 2. 
It is easy to prove the asymptotic character of these formal series. 

w 

The Green's function in general, 

5. The "boundary problem (L)"  consists in the determination of a 
~unetion y(x),  which satisfies the differential equation 

(I)  L ( y ) ~ - y ~ ) - ~ - p l ( x ) y t n - ~ ) + . . . + p , ( x ) y = f ( x )  

and n supplement~gy ~onditions 

(II)  L, (y) _ fytk-1)(t)d%,(t)  (i = 1, 2, . . . .  , n). 
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We suppose that 

1 o. The ]unctions 

(1) P, . . . ,  P. 

are continuous on the interval (a, b) and the functions 

(2) (i, k = 1, 2 , . . . ,  n) 

are o] bounded variation, the integral, being taken in the sense of S t i el t ~ e ,. 

2 ~ The linear operator, 

L , (y ) ,  L , ( y ) ,  . . . .  L , ( y )  

are linearly independent. 

If we replace the operators ( I I )  by any n linearly independent linear 
combinations with constant coefficients, we obtain a l~roblem which is 
equivalent to the problem (L) ,  and we shall make no distinction between 
~ll these problems. 

If  the function f (x )  is not equal to zero identically orr (a ,  b), the 
problem is non.homogeneous; in the contrary ease the problem is called 
homogeneous. 

If the homogeneous problem admits of at least one solution, Which 
is not identically zero on (a, b), such a problem is called compatible; if 
only y ~ 0 dan satisfy the homogeneous problem (L) ,  it is incompatible. 

Denot ing  by 

(3) ~ , k l ( ' ) ( i , k = l , 2 ,  . . . .  n ; , - - - - 1 , 2 , 3  . . . .  ) 

the points of discontinuity of the functions a ~ ( t ) ,  the end-points a,  b, 
inclusive, we can write the operators L~(y) in the form: 

b 

(4) L , (y )  ~ ~ ~fl~yt,-1)-.t.)~(~,,j_l_ ~ f y~ '~) ( t )d f l~ ( t )  
/r ~'=1 k = l  a 

where the constants t,~b are  determined by the jumps of the functions 
~k( t ) ,  and the functions ~ ( t )  are continuous and of bounded variation. 
Finally, integrating by parts, we reduce L i ( y ) t o  the form: 

b 
n ~ ( k _ l ) / t { ~ )  ~ (5) L , ( y ) ~  2 ~(~i)~ ~ , . j+  f y('-~)(t)dr,(t) 

k ~ l  v----I a 

where 7~ ) are constants and 7i(t) are continuous functions of bounded 
variation on (a,  b). "~) 

5) A special ease of the operators (II), where the number of the points of 
discontinuity was finite and the functions fl~ (t) were absolutely continuous on (a, b), 
was discussed in my paper ~). A more special ease, where all & k ( t ) ~ 0 ,  was con- 
sidered in two papers by Ch. E. Wilder,  Trans. Am. Math. Soe. 18 (1917), pp. 415-442, 
and 19 (1918), pp. 157-186. 
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6. Def in i t ion .  The Green's  /unction o/ the problem (L) is a 
/unction G (x, t) o/ two variables x, t, which is determlnedand continuous 
with respect to each variable on ( a, b), except /or 

t = t~,.' ( i , ~ = : , 2  . . . . .  ~; ~ . =  : , 2 , . . . )  
and /or 

x = t, when n = l , 

and which enables to represent the solution o/ the non-homogeneous pro- 
blem ( L ) in the /orm o/ a de/inite integral 

b 

(6) y ( x ) =  f e ( x ,  t ) f ( t ) d t  
t~ 

/or ran arbitrary choice o/ the /unction f (x) .  

The existence and the properties of the Green ' s  function have been 
discussed by many authors in special cases. It  is not difficult to make this 
discussion in our general case. Denote by 

(7 )  u ~ ( ~ ) ,  u~ (z )  . . . . .  u , ( ~ )  

a fundamental system of solutions of the homogeneous differential equation: 

(8) L ( y )  = O, 

and let 
u~"-" (,~) . . .  u .  ~"-:' (~ )  

(9 )  ~ ( ~ ) =  

(zo) g (~, t ) =  :t: ~T(t) 

(i:) 
(:2) 

- - f  Px (t) dt  

~ ( ~ )  . . ,  u , ( ~ )  

u: " - ~ ( t )  . . .  - ("-~' �9 ~. (t) 

u~( t )  . . .  u, , (t)  

u ~  = s  

+ if x > $ ,  

- -  i f  x < t ,  

( i ,  k =  I, 2, . . . ,  n ) ,  

7. Theorem 3. Only two cases are possible: either 
1% The determinant A~is equal to zero, in which case the homo. 

geneous problem (L) is compatible, the Green's  /unction does not exist 
a n d  the novt-homogencous problem (L) is impossible /or an arbitrary 

/unct ion f ( x ) .  Or 
2 5. The determinant A 4= O, in which case the homogeneous pro- 

blem (L) is incompatible, the Green's  /unction exists and is determined 
uniquely (at the points o/ continuity) by the formula 
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(13) t) = (-..!)" u l l  . . .  L, (g)= I .4 

u.1 . . .  u . .  L .O)=  

where the subscript x indicates, that the operation L~ is per/ormed on g ( x, t) 
as on a ]unct~on o/x .  The non-h~rmogeneous l~rob~em ( L ) /or an arbitrary 
choice o/ f (x )  has a unique solution 

b 
(6) y(x )  = f G(x., t ) f ( t )d t .  

In order to prove this theorem we write the general solution of the 
non-homogeneous equation (I) in the form 

n 

(14) y(x) ---- .~.,~ c,u,(x) + uo( x), 

where e~ are constants and 
b 

(15) uo(x ) = f g(x,  t ) f ( t )d t  
a 

is a particular solution of (I). Substitution in (II)  gives a system of 
equations for c~: 

n 

(16) 2 u,~c~ = -- L,(uo) (i = 1, 2 , . . . ,  n). 
]c~-I 

If the determinant A of this system is different from zero, we can 
-determine c~ uniquely. Substituting the values of c~ in (14) and using 
the relation 

b b 
L~[f f ( t )g(x ,  t)dt] = f f(t)L~(g)=dt, ") 

t t  Ot 

we obtain formulas (6) and (13). Using the fact that f (x)  is arbitrary, 
we easily obtain the proof of the statement 2 ~ of Theorem 3. The 
statement 1 ~ can be proved, by considering the case f ( x ) ~  O, and the 
corresponding homogeneous system: 

It  

(17) 2 u,~,C~, = O; A==[u,~ I = 0 .  
k = t  

e) This relation is a corollary of the following lemma: If ~,(2) is of bounded 
variation on ~ ~_ 2 ~ Z2, f(s) is an integrable funetion on a ~ s ~ b, and to (s ,  2) is 
bounded on the rectangle ~ ~_~ 2 ~_~ ~ ,  a ~_~ s _~ b and continuous with respect to 2 for 

2= k b b 22 

almost all values of s, then f da(;O~ f(s)o~(s, 2)ds = f f(s)ds f oJ(s, 2) da(2). 
a 

This lemma can be proved like an analogous (but non equivalent) lemma of 
T. C a r l e m a n ,  Sur les d~uations integrales singuli~res, Uppsala Universitets ~rsskr .  
1923, n ~ 8, p. 8. 
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8, T h e o r e m  4. I] the conditionc 1 ~ and 2 ~ o! 5 ar~ ~affsfied~ She 
Green's  /unction G(z , t ) ,  a8 /unction o! x, ha8 ~he !dlowing propertiea: 

1 ~ G (x, t) is de2ermined for all values of t + t~'~ >. It i8 determined 
,]or S = a ,  t = b also, i/ we agree to replace the terra~: 

in She expressions o/ the o'pera$ors L~(g)~, respectively by 

lira ~"-*g(x,a) lira ~ ~) ~) 

2 ~ .~or all non-singular values o! t She !unction O(x,  ~) is con- 
~inuous (n ~ 2) and i~s continuous derivatives up ~o the order (n -- 2) 
incluMve, with respect to x. The deriva2ive~ o[ orders ( n - 1) and n are 
continuous for x + t. When z = t, She limits 

(18) Lira 0'~-~ a ( ~ '  t) 
x.-~t +0 0~ n -1  

exist, and their di//erence is: 

(19) lira a"-~ (~(z, e) 
$--~t+o ~x n -1  

lira 

lira ~" - IG(~ '  ~--) = 11 ~ t - Q  aX B-J 

3% For all non-singular values of $ and/or z + t the ]unction G (x, t) 
satis/ies the equations: 

(20) L(G) ,  = O, L, (G) ,  = 0 (i = 1, 2, o. . ,  n) .  

4% The Green's /unction O(x,  t) is invariant with respect to all 
~inear transj~mations (w/th eonatan~ r and non-vanishing 
determinant) o/ the /undamental system o/ soluffons (7) and o/ the 
~perators ( H ) .  

5% 1/ the  Green's /unction O (z,  t) exists, and .F(x) is an arbitrary 
/unction, which has an absolutely continuous derivative of the order ( n--  1 ) 
on (a, b) and satisfies the exmdiHon~ 

(21) L~(~) = o (i = t, 2 , . . . ,  n), 

She /unction F (x) can be represented in the/orm o/ a de[inite integral: 
b 

(22) ~'(~j= t O ( x ,  t) L(P),at.  

7) Thus the G r e e n ' s  function remains undetermine d only for the values ~ = t(~ ) 
'~nter/or to the interval (a,  b). We shall c ~  these values of t slnguiar~ and al! 
ot&ers as non-singular.  
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The statements 1~ ~ follow immediately from 7 and 6. The state- 
ment 5 ~ follows from the definition of t,h~ Green's function G (x, ~), be- 
cause the function F(x) is a solution of the non-homogeneous problem (L), 
where 

f(x) = L (F). 
9. A more detailed study of the properties of the Green's function 

is based upon the notion of the ad]oint problem, which was introduced in 
the general case by G. D, Bi rkhoff ' ) .  Suppose that 

1% The/unct ions  
P,(~) (i  = ~, ~ . . . .  , n) 

posses continuous derivatives up $o the order ( n -  i) invlusive. 
2 ~ The operators ( I I )  contain no terms corresponding $o singular 

values o/ t and no integral.~, so that 

(23) L , ( y ) ~ A ~ ( y ) q - B i ( y  ) ( i = 1 ,  2 . . . . .  n), 

where 

(24) A,(y) ~ ~,a, ky(~-X)(a), B,(y)-~ .~b, ky'~-X)(b) 
kffil kffil 

and a~k, bg~ are given constant. 
Integration by parts gives the so called ,Green's identity": 

b 
(2~) / { v L ( u )  - , ,L ' (v ) }  d,,, = Q,.(,,, v), 

where 

(26)  L'(U) --= ( - -  1)" U(" + (-- 1)("-'(P,U)~'-" + . . .  + P.y 
is the Operator, adjointS),to the operator L(y),  and 

(~7) O~ ( ~, v) - ,S  u,'-l, ,S  ( -  l r  (P ._ ,_ j  v) (~ I ~. 
I~=1 ~-~-0 

is a bilin~ar form in two sets of arguments 

(28) ~ ( a ) , u ' ( a )  . . . .  ; u ~ - - l ' ( a ) ,  u ( b ) , , , ' ( b )  . . . . .  ~,(.-l~(b), 
(29) v(a),  v'(a) . . . . .  v("-l)(a), v(b),  v'(b) . . . . .  v(.-1)(b). 

The identity (25) gives us at once 

(3o) QL'(',, v) - - QL(v, u).  

D e f i n i t i o n .  The problem (L')! 

(~1) Z'(U) = f(z); Z~(u) = 0 (i = ! ,  2 . . . .  , n) 
s) Boundary value and expansion problems etc. Trans. Am. Math. Soc. 9 (1908), 

�9 p. 375. 
D) Frobenius, Crelle's Joura. 85 (1878). 

(Po ~ 1) 
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is adjoint to the problem (L), i] the operators L~ (y) are o] She ]orm~ 

('~2) L~(v )  - A'(V) + B;(y) (i -= 1, 2 . . . . .  n) 

(ba)  A; (y )  _---- 2: a~- y~'"-l)(~); B e ( y ) -  2b~y(~-l)(b),  
k-~l k=l 

and are such that the bilinear /orm Q~,(u, v) is zero ]or every pair o] 
]unctions u(x),  v(z), whose derivatives o] the order (n -- 1) are absolutely 
continuous on (a ,b) ,  and which satis/y the conditions 

(3~) L,(u)----O; L~'(v) = 0 ( i = 1 ,  2 . . . . .  n) .  

In order .to obtain the operators L~(y) of the adjoint problem (L ' ) , ,  
we have only to introduce n forms 

(35 )  L . + , ( u ) ,  ( i  = l ,  2 . . . . .  n), 

in 2n variables (28) which, taken together with the forms 

L~(u)  ( i  = 1, 2 . . . .  , n), 

constitute a complete system of 2n linearly independent linear forms in 
2n variables. Setting: 

u , =  L , ( ~ )  ( i = 1 ,  2 . . . . .  2~'), 
we can write Q~ (u, v) in the  form : 

(36) QL(u, v) ~ ,=,'~ U, ~,,_,+,(v)  ~- 2 ( L , ( u ) L ' . + , ( v ) +  =1= 
The forms 

? 
m 2n variables (29) constitute a com2~ete system of 2n linearly inde- 
pendent forms, and the n first of them: 

(38) L;(y) (i = i, 2 . . . . .  n) 

represent the n hnear operators of the adioint problem (L t) i n  question. 
The adjoint problem (L') is uniquely determined (in the sense of 5~ 

because every linear transformation of the forms (35) with non vanishing 
determinant merely replaces the forms (38) by linear combinations of 
them, which are linearly independent. 

10. Theorem 5. Under the conditions o /5  and 9 ~he adjoint pro- 
blem (L') exists and is uniquely determined, and we have moreover: 

15 The problem ad]oint to (/z') coincides with the.problem ('L). 
2 ~ The homogensons problems (L) and (L') are compatible or in- 

compatible Simultancouzly and they both have the same number o] linear. 
,~y independent solutions. 
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3 ~ I /  the homogeneous problem (L) is compatible, the non-homo- 
geneous problem (L) has a solution, when and only when the /unction 
f (x  ) satisfies the condition: 

b 

(39) ff(z)r(x)d~ 0, 

where v(x) d~enotes any solution o/ the.homogeneous problem (L'). 
4 ~ 1] the Green's/unction G (x, t) o~ the problem (L) exists, then 

the..Green's /unction G'(x, t) o/ the problem (L') exists also, and these- 
two Junction~s are connected by the relation: 
(40) t) ( ,  1)n a (t, ,o). 

The problem (L)  is sel/adjoint, if the ~tjoint problem (L') coincides 
with (L). "In this case the operators L(y) and L'(y)  are identical" and 
the operators L~(y) are linear combinations of the operators L~(y) and 
vice versa. In what followsu if we say that the adjoint problem (L ' )  
exists, we suppose implicitly that the conditions "of 5 and 9 are satisfied. 

1 1 .  The adjoint problem was defined only under the assumptions 
i ~ and 9 ~ of 9. The assumption 1 ~ is, of course, essential for the 
existence of the adjoint problem~but the assumptioh 2 ~ is-not essential, 
and in spite of the fact that the adjoint problem in the sense of B i r k h o f f  

can  not exist, if the operators Li(y ) contain singular values os t or inte- 
grslsl),~ the notion of the  adjoint problem can be generMized as t o  be 
adapted to the  mos~ general case of the~ operators L~(y), and even to 
the ca~e where, ~ instead of a single equation of the order n ,  We have to 
deal with a system of n equations of the first order. This generalization 
is discussed in a paper which is to be published elsewhere. 

Here we may state only the 

A d d i t i o n  to T h e o r e m  4. ]/ the conditions 1~ ~ o/ 5. and 
1 ~ o/ 9. are satisfied, the Green'~ /unction G(x, t), as /unction o / t ,  
possesses at all non,singular points a continuous derivative o/the ( n -  2)th 
order, the derivatives o/ the (n--1)  th and n ~n orders being cont~uous, 
except /or t ~-x (and Mngular points). 

This follows easi ly from (13), I i~ we observe that, in opr case, the 
adjoint equation L'(z)----0 admits of a fundamental system 0f solutions. 

z, ( t ) =  y' (.t) ( i . =  1, 2 .. n),  ~(t) 

~0) Cfr. BSeher, Application and generalization of the adjoint systems, Trans. 
Am. Math. Soc. 14 (1913); Birkhoffs);  Westfall~ Zur Theoric der Integral- 
g]eiehungen, GSttingen 1905. 

1) pp: 108--111. 
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where Yi(t) denotes the cofactor of the e]emen~ ~ - I ~ ( t )  in the' deter- 
minant 5(t).  The expression (10) for the funCffton g(x, t), then, can be 
rewritten as follows 

! + if x > ~ ,  
- i f  

Mter tha~, our assertion becomes almost obvious. 

w 

The structure of the principal parts of the.Green's fun~tien at its poles, 

12. in this section we suppose that the coefficients of the operators 
L(y)  and L, Cy ) of the p~oblem (L) depend on a eamplex parameter e, 
and that ~hey are analytic on a closed region (~o) of ~-plane. The ~egion 
(~o) may coincide with the whole ~-plane, in which ease the above 
mentioned coefficients are entire transcendental functions or polynomials 

We suppose also that the eonditions 1 ~ and 2 ~ of 5 a~e satisfied 
for all values of ~o. 

All the functions considered in the w 2, except the function f(x), a~e 
now functions of 0, which fact wilt be indicated by a slight modification 
~n the notation of w 2. For instance, we shall write: 

Pi( x, e), ui(x, ~), L(y ,e)  etc. 
instead of 

P,(x), u,(x), L(y) etc. 

Under these conditions the functions 

u,(x,  ~ ) ,  5(x, ~), ~ (x , t ,  ~), u,~(~), A(0) 

are analytic in ~o, and the Green's function 

G (z,  t, e)  

is meromorphic in ~, except for two possible cases: 

1 ~ . A ( ~ ) ~  0, when the Green's function does not exis~ for any 
value of ~, and ~he homogeneous problem (L) is always compatible. 

2 ~ A(~) has no roots at all, the homogeneous problem (L) is 
always incompatible, and the Green's function always exists and is 
analytic in O. 

In all other cases the Green's function has poles in 0, which are 
called characteristic Values of the problem (L). The Green ' s  function 
does not exist for such values of 0, the non-homogeneous problem i s  

~) In what follows it is assumed $hat ~ always remains in (~o). 
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impossible for an arbitrary, f(x), and the homogeneous problem has solutions 
which are not identically zero. These solutions are called ]undamentaZ 
/unction8 of the problem (L), corresponding to the characteristic value 
of Q in question. 

13. If ~o denotes a characteristic value, we have: 

(1) a ( x , t , ~ ) =  r~ (x , t )  + . . . +  r , ( ~ , t )  + r ( x , ~ , e )  
(o  - co) m e - eo 

where F(x, t ,~)  is analytic in the vicinity of ~ - ~ o .  The rational 
function of ~: 

(2)  O(~ t, e ) =  r.. (x, t) r . (~ ,  t) 
(~-~'o)" + " "  -I- e-~,o 

is called the principal part of G(x, t, ~) for ~ Qo. 

We have obviously: 

(qo) - -  0, 
and we denote by 

(8) (e - ~o)" . . . . .  (e - ~o) ',~ . . . .  , (e  - eo)" 

(e~ ~_ e, 2 . . .  ~_ e,, > e~+l . . . . .  e, = o) 

the elementary divisors of the matrix 

(4) (~ ,~ (e ) ) ,  

corresponding to the factor ( ~ -  Qo)" 

If we replace the functions us(x, q) and the operators L~(y) by sui- 
tably chosen linear combinations, we always can reduce the matrix (4) 
to the canonical form 

0 if k + i, 

(5) u ' k ( q ) =  (5 - -  qo)" if k----i. 

Since the problem (L) and the Green's  function G (x, t, ~) remain inva- 
riant under al l  these transformations, we can assume w~hout loss of 
generality, that the fundamental system 

and the operators L~(y)are  chosen so as to reduce ( 4 ) t o  the canonical 
~ o ~  (5)  ,,). 

/.i } (7) c,(~ -- 0o)"-----  L, g ( x , t ,  q)fCt)dt (i----1, 2,.. o, n), 

~) It is worth noting, that the choice of these linear combinations depends 
on Oo, and that the transforn~d system (6) might be modified, when we go over to 
a n o t h e r  c h a r a c t e r l s t i c  v a l u e .  
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�9 which gives the expression ior the Green ' s  function: 

(8) ~ ( z , t , e ) - -  - ~ ' ( ~ ' ~ ) L ' { 9 ( ~ ' t ' ~ ) ) ~ §  
~=I (~--qo)r 

On setting in (7) 
f (x)  ~ o, e = eo, 

we see at once that the homogeneous problem (L) has /~ linearly inde- 
pendent solutions : 

(9) ~ , (~ ,  Qo),---, u , ( ~ ,  Q), 
when Q = ~o, and that every fundamental function of the problem (L)  
corresponding to the characteristic value Q0 must be a linear combination 
of the functions (9). 

We can also prove that the # first fractions of the sum in (8) are 
reduced to ]owest terms, so that the numerators and the denominators 
of each of them have no common factors in ( ~ -  ~o): For this purpose 
it is enough to show that 

I t  is evident that 

Now, supposing that 

and using the equalities 
L , { g ( z ,  t, Co)L--  0 

(i = ! ,  2 , . . . ,  ~). 

(i = 1, 2 . . . . .  ~,) 

L,{u~(x ,  O))/~-_e~ 0 (i =1,  2, . . . .  /z, b =1,  2 , . .  ~ n), 

L , { % ( ~ ,  ~)}h=~. = o, 

we see that the general solution of L (y, Qe) = f (x)  satisfies ~he conditions 

L,(y)  = 0 (," = I, 2 . . . . .  ~) ,  

for an arbitrary f (x) ,  which is impossible. 

14. Theorem 6. I/  the conditions 1 ~ 2 ~ o/ 5 are satisfied and, 
in the neighbourhood of any root ~ = ~o of the equation A ( Q ) = O, the 
.m~riz 

(4) (u,~(q)) 

~,r~s elementary divisors 

(3) ( e - C o ) "  ( i = 1 , 2  . . . . .  n; e , ~ e ~ . . . ~ e . > e ~ + ~ =  . . . .  e . - 0 ) ,  
t ~  

1~ �9 The characteristic value 9o is a pole o/She Green's /unctio% 
o/ the multiplicity e~. 

2 ~ The homogeneous problem (L) ~ s  p linearly independent so- 
lutions /or e-----eo (/undamental /unctions). 
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3*. The principal part ol the Green's /unction /or 0----4o is of 
the [orra :" 

$1--I 

o (~ (z, t, q) = ~ r,.-, ~ .  t) 
,=o (e - so)* ' -*  ' 

where 

i ,s  

and the summation is taken over all values o[ i and s satis]ying the 
conditions 

1 < : i ~ ;  s + k ~ e  i. 

The /unctions O . ( x )  ( .~ inc ipa l  /unctions o/ the problem (L) corres- 
ponding to 0 = 0o") are well determined /unction, o[ x and have eonti. 
nuons derivatives o/ the order n on (a, b). The tunctions ~t~)(t) are 
well determined [o r all non-singular values o[ t in (a, b). 

The ]unctions 

(so) a~,o(x) (i =a ,  2, . . . ,  ~,) 

represent a complete set o/ 1 ~ linearly independent [undamental [unctions 
o[ the problem (L) /or 0 = Co. 

The set o] principal ]unctions coincide~ with the set o] ]undamental 
]unctions, when and only when all the elementary divisors are simple, 
that is when e a = e~ -:- . . . .  e~, 1. 

4 ~ 1] the matrix (4)  t's reduced to its canonical ]orm (5) ,  the 
conditions 

b 

(11)  f f ( t ) L , { g ( x ,  t, O)}~[e=eodt = 0 (i-----1, 2, . . . .  ,u) 
0$ 

are necessary and su/[icient ]or the e~iaence o[ a solution o/ the non- 
homogeneous problem (L) /or e = So. 

5 ~ I] the adioint problem (L') exists and i] the matrix (4)  is re- 
duced to the canonical /Grin (5) ,  the ]unctian, 

(12)  Li{g (x ,  t, O)},~/Q=ea ( i  = 1, 2 . . . . .  /~) 

represent a complete set el t* linearly independent solutions el the homo- 
geneous adjaint problem (L') /or Q~Oo ~). 

15. The case when the adjoint  problem exists and e x = 1 presents 
a par t icular  interest.  In  this ease we have 

1 ~ #,(x) ~,(t). (13) G(~ t, e ) =  e-~. .=  

t) pp. 117--124. On the p. 124 there is given ar/example, in which the Green's  
function has multiple poles and the principal functions appear simultaneously with 
the fundamental functions. 
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The ~nctious 

and 

are ce~ain special complete ~ets of fundamental functions of the problem~ 
(L) and (L') respectively. 

In the applications very often we know a priory two sets of funda- 
mental functions of the problems (L) and (L'), and then the question 
arises, how is it possible to determine the principal par* of the Green's 
function, using only these known sets and without reducing the matrix 
(4) to the canonical form, which requires complicated calculations. I ~ t  

(16) 91 (x) . . . .  , ~p~, (x) 

and. 

(17) v,(t), ..., v.(t) 
be ~given complete sets of fundamental functions of the problems (L) 
and (if) .  The functions (14) are linear combinations of (16) and ~he 
functions (15) are linear combinations �9 of (17); hence we can write 

G ( ~  t, 5 ) =  e_--~o ,=!. ( i s )  

w h e r e  

(10) 
/r [ 

It remains only to compute the matrix of the constants c ~  Using 
the properties of the Green's function and the equations: 

L'(~s, qo )=O;  L,'(~v~,qo)=O ( i = ! ,  2 , . . . ,  n; ] = 1 , 2  . . . . .  #) 

and integrating by parts, we easily obtain" 
b 

~(t)  = f {o(~, t, e) L'(~., ~) - ~,j(x)L(G, e)~}dz + QL(O, ~s) 
t~ 

b 

= f O(x, $, e) {L'(v2s, 5) -- L'(yJi, 0o)}dx + Qz~(e, ~j)~. 

The expression (36) 9 of the bilinear form Qx,(u, v) gives us now: 
b 

wj(t)= f a(:~, t, o){ L'(~j, el -- L'(?), oo)}dx 

+ Z L,+,(a, 5)(L:<v~., 5 ) -  L: (v~, Co)). 
Mathematische ~itsehritL XXVIX~ 
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If we substitute here 

G(z, t, 5) = a~~ t, 5) + r (x ,  ~, e ) ,  

where (]c~ t, 5) is determined by (13) and F ( x , L  5 ) i s  analytic in 
in the neighbourhood of 5 -  50, we Obtain, as 5 - ~  5o: 

b 

t : 1  a 

' 

5o)~L.(w,  e)/~__,o ( /=  1, 2,.. . ,  ~,). 
/----t s : l  

Now, Or(z ) are ,given by (19) and V~i(f) are linearly independent, so that 
finally we obtain a system o~ p ~ equations for the determination of the 
matrix (c~) : 

b 

(20) ~ , .  
k = l  t a - 

+ Z L . §  a , ,~ , ( i , j - -  1 ,2 ,  . . . .  ,u). 
m=l  

This system, which admits of a unique solution for cik, !s simplified if 
the operators L~(y) and the bilinear ~form Qz(u, v) are independent of 0- 
In this case the operators L~(y) do not depend on o either, and we get 
instead of (20): 

n b 
~ .  . 0 e (21) :,~. c ,~ j ' ,p~(z)~L (~, 5)/~=~flz = ~,j. 

Suppose finally that  

L (v) =--v~., + p~ (z) v,.,,, + . . .  +p . ( x )  v + 5" v. 

The system (21) reduces ~hen to 

b 

2 ~,~ f,~ e;  -~ ~,  (z)  ~,~ (~,) dz = ~,j. 
k = l  6 

Without loss of generality we may suppose that the sets ( i6)  and (17) 
are biorthogonal and hemal ,  which yields: 

(22) o ~~ t, e)--  _L : Z ~,(z)~,(t). 
' , d  '-~ (e-eo)  ~=~ . 

is) ~O denotes, as usqally, K r o n e c k e r ' s  symbol: 81~ = 0 i f  i =~j and ~ ,  = 1. 



(27) 

Hence 
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16. In some eases it is possible to prove that all the poles of the 
Green ' s  function are simple and real. Take for instance the se]badjoint 
problem (L) of the form: 

(28)  L(y)=--y(.~+pl(x)y(.-1)+...+p.(x)y+).q(x)y 
_~ L(~ (y) + ~q(x)y ,  

- L s  (y) + , (y) (i  = I ,  2 . . . . .  n), L~ ( y ) (o) .~ L !I) 

where ~ is written instead of Q', and the operators Z(O)(y), L~~ L~l)(y) 
do not contain 2. 

In addition to the conditions 1 ~ and 2 ~ of 9 we suppose that 

The matrix o/ the coe//icients o~ the ]orms Ls(y ) contains at lec~t 
one non-vanishing determinant o/ the order n, whose eZements do not 
depend on ~. 

In this case it is easy to show 1) that 
ft 

(24) Qr(u, v) -- Z {L,(u) M~(v) -- L~(v) M~(u)}, 
i=1  

where 

(25) M~(y) (i-~ 1, 2 , . . . ,  n) 

are linearly independent forms in 2n variables 

(26) y(a),  y'(a), .. ,, y'n-l~(a), y(b), y'(b) . . . . .  y('~-~)(b), 

whose coefficients do not depend on ~, and which, taken together with 
the forms L~ J (y), constitute a complete system of 2 n linearly independen~ 
forms.- Since QL(u, v) does not depend on R, we have for 2 = 0: 

QL (u, v) -~ 2 (L~~ Ms (v) -- L~ ~ (v) Ms(u)}. 

n 

27 {L?'(u) ~,(v) - L~'>(,,) M,(~)) ---- o 
i = : t  

and the bilinear form 

(28) T(u ,  v) -- ~ L~l'(u) M,(v) 
i----1 

is symmetric. 

Using all these facts the following theorem can be proved: 

T h e o r e m  7. Suppose that the problem ( L), whose operators are given 
by (1) and (2), is sel/.ad~oint and satisfies the conditions o/16, Suppose 
also that the coe//icients o/ the operators L(y) ,  L~(y) are real. The 
Green's /unction G (x, t, 2) has only simple and real poles (in ~), i/ 

I) pp. 133--134. 
2* 
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1% The /unction q(x) is o/ constant sign :on (a, b) and is di//eren~ 
from zero almost everywhere on (a, b ). 

2 ~ The quadratic /orm 

(~9) T(~) - -  T(y, y)-= ~ L2' (~) ~ , ( y )  
g--1 

is 8emide/inite and has the sign opposite to that o/ q(x) 
Introducing some supplementary conditions it is even possible to get 

rid of any restriction concerning the sign of q(x). 
The ,method of proof used 1) ifi in essential a generalization of 

S teklof f ' s  methods 14). 
The formulas of 15 can be .considerably Simplified in the case of 

Theorem 7. Suppose 
~1 (x), ~ (~) . . . . .  ~ (~) 

be the given set of fundamental functions of the problem (L i corresponding 
to Q ~ Oo' We always can "orthogonalize' them according to the conditions: 

b 

and then we obtain easily: 

: 1 . Z ~ , ( ~ ) ~ , ( t ) .  (31) a~~ (x, t, e) = ,o~,_1 (~_ qo).,=l 

Existence and asymp~tic expression o !  the characteristic values. 

17. This section is devoted to t h e  discussion ~ of theexistence and 
approximate representation of  the poles of the Qreen 's  function. We 
assume now that the operator L(y)  of the problem (~) is of the form 

(1) L(y ) - -L ' ( y ,~ )~- -y"*)~-Pl (x ,O)y ( '* ' l ' -~ . . .+P, (x ,o )y ,  

(2) Pi(x, O) ~ ~p , (x ,  ~) ~ O ~ 2q-~p,~(x)  (i = 1,2, .... ,n ) .  
j=0 

we shall first discuss the case in which ,the operators L~(y)contain 
neither singular Values of t, nor integrals, and are polynomials in ~: 

, n  

(8) L,(y) - "L,(y. 0) -- 27 0'L?)(Y), 

where L~')(y)do not depend On Q: 

1)pp. 181--141. 
1,) Sgr l'existence des fonctions fondametzt~les, Atti d. R. Acc. dei Lincei (5*), 

(4910), pp. 166--167. 
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(4) z~,)(y)_~Z.a,~ye_l)(a);  B~S)(y ) ~b<,,.(k_l)(b ~ 
%=I k = l  

and a~k, o~k are given constants. We shaH write also 

L,(y)  =-- A , (y ,  ~) 4--B,(y, e); 

& .B(.~,  , (5) A , ( y , e ) = - - ~ e  ~ "*A('), r.,~.~j, B,(y,e)_~2~q" , tY). 
8----0 $=0 

As to the functions p~5(x), we suppose: 

I". The /unc$iovs 

(6)  ~'P'~ , ~"(~)d~ , p , ; (z)  (i = i ,  2 , . . . ,  n; j = 2, . . . . ,  n) 

are eonginuou~ ca ( a, b ). 

2". The characteristic equation 

V ( 0 ) - -  0 " +  p,o(~)e"  -~ + .... + ~_~0(~ )e  + p~o(x) = 0 

has only simple roots 

3% The roots (7) ~" o/ the characteristic; equation are di//eren~ from 
zero and their arguments, az well as those o/their di//erenve~ are constan~o 

It  is easy to prove that the suppositions l~  ~ imply that either: 

~ i o/~he: form 41. Thd /unctiona- ~ 7 ) are 

where ~ are constants which are distinct and di//er~nt ~tom zero, and 
q (x) is a ~sit ive/unction which possesses a see.and deri.vative con~inuou~ 
on (a, b) and which ha{ a lower bound qr different /tom zero: 

~ ( z ) ~ _  qo > o.  ~ 

Or: 4~. The/unctions (7) are o / t he / e rm:  I 

Where ~o is a constant df//eren~ / tom zero and q~('x) are positive and 
distinct /or all values at z in (a, b) and have the same properties of 
exmtinuity as q(z).  

Both cases may be unified in%ne notation: 
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The suppositions 1~ restrict considerably the nature of the functions 
Pie (x) "16) So, for instance, in the case 4~ we must have 

p,o (~) = c ,  {q (~))~ (i = 1, 2, . . . ,  n), 

where C~ are constants such that  ~ are the roots of the equation 

~o(~)-- ~ - -  o1~"-~+...  + ( -  1)-0 ~ 0. 
The conditions, of Theorem 2 are satisfied under the conditions 1 ~  3 ~ 

and the  region (!I)) of Theorem 2 coincides with one of the sectors 

(9) (~x), ( ~ ) ,  . . . .  ( ~ . ) ,  

which are made by. the  straight lines 

(10) !)te (~ F~) = ~te ( ~ k )  (i,/r 2, . . . ,  n; iJek). 
18. Theorem 2 ensures the existence of a fundamental system of 

solutions 

Oaf cPi(s)d~ r 
(11) 

on every secto~ ( ~ ) i . )  (ca. 2). 
At the same time we can use the fundamental system 

(12) u,(x, q) (i---- i ,  2, . . . .  n)  

of w167 2, 3, which, in our case, is determined on the whole e-plane. This 
system can be chosen in various ways,  [or instance we can impose the 
conditions: 

d s-I  ut ] 
-~--x,_- i- ~=,= ~, (i, s = I, 2,..., n). 

The G r e e n ' s  function G(x ,  t, ~) may be expressed in terms of either 
of the systems (11) and (12). We denote by A~.(Q) the determinant which 
we obtain from d ( ~ ) ,  if the functfons (12) are replaced by (11) in the 
formula (12) 6 for Lt(Q). 

We find: 
I , (~- I )  

(13) A(q)---- [O]q ' J./(O), ':) 
where O #  0 is a numerical constant which does not depend on 0. 

x 5) The restricti~Y, concerning ~the arguments of the functions (7) is essential 
for the expansion problem only. Most of the results of this section can be proved 
supposing only that the arguments of all the differences of (7) are constant. Cfr. ~) 
Ch. IV. 

16) In what follows the term "sector ( ~ ) "  shall be understood'to mean "the 
part of this sector which is outside the �9 i~]<~ R0". 

17) We 'use here a notation due to G. D. Birkhoff- [a] denotes an expression 
of ~he form u +  E where ~ is bounded for large values of I~I. 
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i t  is not difficult to obtain an expression ~or Aj(~). We set 

b 

end denote by t~ "~ the number which i s  determined as follows: mtppose 
we have 

(*) ~(s) a u ~ , ~ t = O  when Z>l~ ~' 

and at least one of the numbers 

agt ~ ~ i l  

a(*) b(*) is different from zero, If all the cofficients ~,  u are equal to zero 
(l = 1, 2 , . . . ,  n)  we s e t / I ' ) - -  - O. 

Now we define the number l~ as the maximum term of the sequence 

(.15) z l * ) + 8 -  1 (8 o, L . . .  n) 

in which only terms with /~(')> O are taken into account. 

It is easy to show that 

(16) u~k----- L, (yui) ----- 0 z, {[A,u] + eew, [B~] ) ,  

where 

~i~= n~(b) (" ' - 27 b.,(.) q~ (a) 
(a) "% 

and the summation is made over all values o~ s for which 
~(,) + ~ - -  l = l ~ .  

Replacing u~ by ~ in the expression (12) 6 for J (e ) ,  we ~et: 

where 

(19) 

4(Q) -- ~ i 

and (13) gives then: 

(2o) 

It ought to be noted that 

a (5) -- 0 ~'---r--4 (~ (~), 
CAll] + e ~'~ [ B l d  . . . .  , [AI,J + ev,,, [B I . ]  
�9 . o . �9 . . , . , , . ,~  o , . * ~ " I o 

[A.I] + a , , ' ,  [B.~] . . . .  , [A..] + ~ow- [Bo.]I 
the formula (1.8),is valid only on the 
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sector ( ~ ) ,  but t h e  formulas (20) and (21) are valid on the whole 
q - plane. 

19. I t  remains now to discuss the roots of the equation: 

(~)  ~'~ ( 5 ; - o .  
Each of the equations 

( 2 3 )  ~e  e u;~ = o (i - -  1 ,  2 ,  . . . .  n) 

determines two rays (0 -~oo)  on the Q-plane, so that the equations (23) 
together determine 2l, ( ~ 2 n )  distinct rays. We shall denote these 
rays by 

(24) dl, d~, . . . ,  d~t,, 

and ,by (aj -+- 2 )  the argument of the ray d~. We suppose then, that the 

rays are ordered so that 

0 < : ~ 1 <  a~ < . . .  < ~ . ~  < 2~. 
Let 

(25) ' +' ' �9 d~, d~ . . . .  , d ~ ,  

be  a second set of rays which are diilerent from (24) and arbitrary, 
subject only to the condition that the sequence 

(~,6) dt a, d~ d., d '  ' 
) 

progresses in the counter-clockwise sense. 
The rays (26) divide the whole e-plane into 2/* sectors 

(2~) (~1), (~,~) . . . .  , ( ~ ) .  

~onsider one of these, sectors, say (~:~), and let 

be those numbers of the set 

(2s) r w~, . . . ,  ,i,. 

which  lie .on the rays ~perpendicular to dj and dj+i,, is) Now, if we set 

it is always possible to arrange the numbers (28) so tha~" 

(8o) ~ , ' ~ < Z ~ <  .... < ~ < o < ~ , ; §  . 

I f  a l l  the numbers ~ ate > 0, we set v~-~ 0; if all the numbers 2~ (9 
a re  < 0 ,  we set r~.=v i, a n d  we must modify the inequalities (30)  

~) If k is an integer different from 1, 2, . . . ,  2u, the symbol gl denotes the 
ray d~ where ~ is the positive residuum "of k rood 2/*. The rays di, dt+t, constitute 
th6 entire straight line through the origin: 
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accordingly. The remaining numbers of the set (28) can be divided inv~ 
two groups (w') and (w"), which are characterized by She conditions: 

(31). oo; 

Jej---oo on 
20. The substitution 

~ransforms the ra~ dj ~ the positive pars of the imaginary ~-axis, and 
the sector (~r to a sector ( ~ )  of ~he t-plane eontainlng ~he positive 
part of ~he imaginary t-axis. We have on this sector (~) :  

(32) z (0~ (5) = e z~'~'' Nj (~), 
r 
(33) Hj(r = [M, 0~1 e~ ,~ + . . .  + [M~'] e'~ )r 

We denote here by 

the real exponents and by 

certain constants which may be easily expressed in terms of the ex- 
ponents 2k (j~ and of the constants Ai~ , B~  respectively. We no~e only: 

(0 ,  if z~=O.  

(~) s + .  + 
m * i ~  O, if 

, . . , , . . . . , �9 , �9 

where the index z~. is determined as follows: if some of ~he quart,fries 
3~e.~w~ remain always < 0 on ( ~ ) ,  then %. is the greatest value of the 
index i for which 3~e ~ w~ < 0 on (~Ej). Otherwise z:. = O. I~ is obvious 
that x~ ~ 5" 

21. Theo rem 8. Suppose the conditions 1~ ~ o /17  ~o be satisfied 
and all the constants 

to be dil/erent / tom zero. In th,:s case the problem ( L ) has in/initely 
many characteristic values, which can be distributed into 2l ,  groups. 

M~ j) 
! An. . .AI~B-j§ I... B~. i 

~j 
--I A.1. . .A,.~B..~+ I. .:  B.~ 
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The values, o] the i tn group lie in a stri~ (De) o/ ]inite width, 
parallel to the ray de and including this ray. DenOting the numbers o/ 
the i th group by 

we  have 

( 3 5 )  I~$1 = 2 k ~  . , , , _  + o ,.) 
a i 

We omit the index j in (33) for the sake of brevity, so that  

(36) Hj (~) ~ H (~') ~ [MI]e m,~" + . . ,  + M,,] em,~':, 

M I + 0 ;  M ~ 0 ;  m ~ < m ~ < . . . < m ~ .  

In  order to prove Theorem 8 "it is enough to  show that :  1 ~ All the 
roots of the equation 

(a~ ~ (,:) = 0 

which are in the sector ( 2 )  can be included in a strip (D) of finite width, 
parallel to the imaginary ~-axis and including the positive par t  of it. 

2 ~ . I f  these roots are denoted by 

~ ,  ~,, ..... t,,, . . .  ( I t ,  l s 1 6 3  
we have 

(38) Ir ~_~---~ 

22. The proof is based upon the following important 

L emma.  Given a ]unction 

(39) F ( z, ~x . . . . .  x,) 
continuous in x, 1 . . . . .  x .  on a /inite dosed region ( ~ )  of n.dimensional 
gpace and analytic in z on a finite dosed region ( ~ )  o[ the templar 
z.plane, and such that /or every fixed poin$ (x x . . . . .  x,,) in ( ~ )  the 
equation 

F ( z ,  ~ t ,  . . . .  x . )  = 0 

Ass no more thatt 1V distinct roots, IV bet'~ independent ol the poMt.ion 

tg) This ftmt was proved independently and by different methods by Ch.E: Wilder 
and by the Author [s) pp. 419-438; 1) pp. 160--176]. Our proof is reproduced in a 
note which is going to appear in the Journal of the London Mathematical Society. 
We use here Wi ldcr ' s  proof because of its greater simplicity and because of its 
applicability to more general cases. In 1920 aaalogous resrUs were obtained sub- 
sequently by G. P f lya ,  Geomctrisches iiber die Verteilung der Nulistellen etc., Miinch. 
Ber. 1920. Cfr. siso the Thesis of E. Sehwengle r ,  Geometrisches fiber die Ver- 
toilung dcr Nullstollen etc., Zfirich 1925. 
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o~ this point in (~3~). I /  /or any point in (~x) z is at a distance 
greater than ~ /rom zeros el (39) and ~rein the boundary of (~),), then 

where F o is a positive constant which depends only on 8, but does net 
depend on the position o/ the point (x, . . . . .  xn) in (~3~,). a) 

~3. Theorem 8 can be proved immediately for the simplified 
equation 

(40) Z(~ ' )  -=- M l e ~ , r  . . .  -+- M,~ em,~r = O. 

Let ~ ----- ~ + ~ ~-~--1. Since 

M,,e'~*~ 1 +  2e(',,~-m,,)r if ~ 0 ,  

(41) z ( r  = '=' 
M~e,~,r l + 2 e ( m , - m , )  , if ~NO,  

a positive constant h can be determined such that 

which proves that all the roots of the equation (40) are within the 
strip (D) of the width h between the two straight lines 

h 

Hence we can confine ourselves to the discussion of the values of r inside 
the strip (D). Now it is easy to prove that in every rectangle of '(D) 
of the form 

h 

the number N of the roots of (40) i s  contained between the limita 
1 

(4z) ~ ( m , , -  m~)(, ,  - ,~)  =t= ,,. ~") 

The number i n  question is expressed by the ratio of the increase 
of the argument of Z(r to 2~, when r describes the contour of (I/h) 
counter-clockwise. In other words, if we set 

Z (~) = Re *~ X + i Y, 
we have 

(44) ~ - - •  
(Ha) (//,~ 

where g is any constant greater than h. 

5) p. 422. 
20) We suppose that no roots are on the boundary of (//a). 

297-298;  b) pp. 420--422. 
Cfro *) 168-170; 
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The expressions (41) show that the parts of the integral f taken over 
(//g) 

~he vertical sides of (/-/g) contribute 

1 (me -- ml) (~Ts - 71) ~- s~; ~g --~ 0 when g --~ co. 

On the other hand, if we write the integral (44) in the form: 

~ f d  arctan -Y X '  

we see at once that each of the horizontal sides contributes ,in absolute 
o~'+ 1 

value no more than - ~ ,  where 5) denotes the number of real roots of 

the equation 
7) = o 

the left hand member being considered as a function of ~ alone, for fixed 7. 
This equation is of the type: 

O 

(45)  , o, 

where A i and ~i axe real constants. Or, using the complete induction, 
it is easy to show that the equation (45) has at most a -  1 real roots, 
so that ~ ~ 1 ~ a. The number N being independent of g, we have 

( 4 6 )  2-~(m~ -- m,)(Tg -- 7~) - - a  ~ N ~  ~,, (too -- m l ) +  a, Q: E. D. 

24* Now we can prove that, if the interiors of small circles of the 
radius 8 centered at the zeros of Z(r  are excluded from the strip (D), 
then in the remaining part (D~) of the strip: 

(4v) I z(c)l > > o,  

where Zo is a positive constant depending only on a. .  This fact can be 
proved by a simple application of the lemma of 22, if we observe that, 
r being in any of rectangles 

h 

the function Z(~) can be brought to the form: 

Z (r Z ,  M,  e m'z+| = 2 ' ( z ,  x l ,  x 2 . . . .  , x.)., 
i . : l  

where z denotes the corresponding point' of the rectangle 

and xl, x2, . . . .  x~ are real parameters, whose values are on the interval 
(0, 2g )  and which depend only on 1. 
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Returning to our function H ( r  the same reasoning a~ 
before shows that all the roots of the equation 

(48) H (r = o, 
which are in the sector (~E), lie in the interior oi the strip (D) fo~ ,~ 
sufficiently large. Moreover, if ~ is in (D~), we have 

(49) H (~') = Z (r {1 q - ~ } ,  

where ~v(r is bounded on (Da). I t  we take a rectangle (Ha) whose 
boundary has no points in common with excluded small circles, and which 
is so far from the origin, that on its boundary 

a known theorem asserts that equations (48) and (40) have the same 
number of roots in this rectangle. The formula (46)-thus being proved 
~or the number of roots of (48), a simple geometric consideration proves 
the evaluation (38) of i ~ [ .  x) 

~5. Denote by (~:~)) the part of the sector (~j), which remains 
afte~ the interiors of small circles of radius 3 centered at the roots 
of (48) are excluded from (~j). The ray d~ divides ( ~ ) )  into ~wo 
parts; denote by w the sum of those of the numbers 

W 1,waz.,~ 

which satisfy the condition 
 teewi_  o, 

when ~) remains in one of those parts. Using the formulas (32), (33), 
(36), (41), (49) and the property (47) of the function Z(~), we have 

(50) l a(o) (e) >= > o, 
where Na is a positive constant which depends only on 8. 

26. We need to make but slight modifications in ~he preceding argu. 
merits, in order to discuss the more general case of the operators Li(y):  ~1) 

b 
(51) L, (y )~  ~'.e ~ [y)~--A,(y, ~)-4-B,(y, e)-r-f  a,(x,e)y("-~)(x)dx 

$-.~0 a 

where now 

i(s)r , B~*). , 

5n this ease we replace the condition 1 ~ of 17 by a more restrie- 
~;ive one: 

1) pp. 170-171. 
~) C~r. (5) of 5. 
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The [unctions (6) are continuous and o[ bounded variation on ( a: b), 
and the/unctions as, ( x) possess first derivatives continuous and o/bounded 
variation on ( a, b ) . 

In order t5 evaluate 
U t 

we can use now (14) 3 and apply the following 
Lemma.  I] the ]unction ~(z)  i s  o[ bounded variation on (0, Z),and 

the constant c + O, then 
g 

(52) f v,(z)e~o-~dz= ~+e~oz ~_. 
0 @" 

# ~(~) i~ ~erau int~r~ble, th~n 
Z 

(58) f ~(z)e~zdz = E +  Ee~o~. 
0 

Using the notations of 18 and integrating by parts, we obtain: 

b 
(54) y,~,.(,~) u~,-l' (~)a~ 

' -  ~ - - "  { [ -  ,~,. (a ) , l~(a)  " - "  -- q~k(a) "] ~- e.o'~[a,,(b)qk(b)q~(b)n-']}: , 

The number /~ is defined now as the maximum term of the sequence 

(55) st-}- n -- 2, li(')+ s -- 1 (s ---- O, 1, .... , n) 

where s~ denotes the maximum value of the index s, for which 

a , , ( x ) ~ 0  on (a ,b)  

and only terms with l~(')+ 0 a r e  taken into account. The constants A~k, 
B~, must be changed accordingly. 

Mter these modifications Theorem.8 remains true in the more general 
case (51) of the operators L,(y).  *~) 

Theorem 8 remains true for all the problems (L) with the same 
functions p~o(-X), pi l(~)  (i~--1, 2, . . . .  n) and the same numbers 
l~ s~, si, A~k, B ~ .  We can even say that, if $ is any given positive 
number, arbitrarily smal|, and circles �9 of radius ~ are described around 
all the characteristic values of the problem (L) then all the characteristic 
values of the problem (L) sufficiently large, lie inside these circles, the 

gs) The case .where the operators Li (y) contain singular values of t ,  instead o f  
integral terms, has been discussed by W i l d e r  ~), In  the same paper a theorem analogous 
to the theorem 8 has been proved under shlightiy-more general suppositions con- 
cerning t h e  coefficients M. For a detailed disoussion of some of the most important  
special eases see x) Ch. IV. " 
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number of the characteristic values of either of the problems (L), (L) 
being the same. 

w 

Expansion o[ the Green's .function in partial fractions. 

27. The results of w 4 enable us to deduce a formula for t he  cx~ 
pansion of the Green ' s  function in partial fractions. 

T h e o r e m  9. ,Suppose the conditions o/ Theorem 8 (21, 26) to be 
satisfied and denote by 

(i) 
the characteristic values o~ the problem ( L ) ordered so that 

}QlJ ~_ie, i < . . .  < ]e,I < . . . .  
t /  the interiors o/ small circles o/ radius ~ around each o/the points (1) 
are excluded #ore the e-plane, then on the remaining part ( ~ )  o/ the 
"plane we have 

<2) a ( ~ , t , e ) <  a~  le l~ - , '  

where G~ is a, positive constant depending only on J. 
For all values o/ e dif ferent/rom (1): 

(8) O(~, t, e)=~.G(~)(~,t,e), 
that is the Green's  /unction is equal to the sum o/ all its principal 
parts. I/  n ~ 2, the series (3) converges uni/ormly in x, ~ on (a, b) 
and ~in e on (~)~). 1/ n-----1, the series (3) converges uni]ormly in e 
on (~)~) and in x, t on every portion o/ the region 

a ~ x ~ b ,  a ~ t ~ _ b  

which has no points it( common with the lines x ~ t ,  x ~-a,  x ~ b. 

28. The boundaries of the sectors (~)  and (~:) divide the whole 
e-plane into sectors (~) ,  each of them being simultaneously and entirely 
in one of the sectors (~)  and in one of the sectors (~) .  Consider one 
of these sectors'(91) and denote b y ( ~ )  the part of (9t) remaining after 
the small circles of Theorem 9 are excluded. Tl~e numbers 

i4) . . . .  

can be ordered so that on (91) 

(5) ~eew~ <_91eew., < . . .  <=91eew, <_ o <91eew,+~ < . . .  ~!!teew,,. 

Then the number w of 25 is equal to 

(6) w = w,+, + . . .  + w~. 
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There exists also a fundamental system of solutions of L ( y ) =  0, which 
is of the form [on.(~R)]: 

m 

dsy~(z,e) ~S~~ x)a= 
dx s 

( i =  1, 2, . . . .  n; s = I ,  2 , ,  .... n .-- 1). 

We shall use this system instead of the system u~(z, 5) of w 3, i n  
order to express the Green ' s  function, and we shall conserve other nota- 
tions of w 8. We have:  

(8) G (m, t, 5) : (-- 1)" A (•, t, e) (e) ' 
where 

(9) ~ (~, t, 5) = ='' (5), . . . ,  u~, (5), L,  (g)= 

u,,(5),  ~..., u , , ( 5 ) ,  L,(g)= 

The function g(x,  t, 5), by virtue of (10) 6 ,  can be written in the form: 

(10) g(z't"5)=-:-: ~Vy'?l'(z'5)z'(t'5) if :c< t " 
k=1 

w h e r e  

(II) z~(t, e) = r~(t, ~) 
(t, Q) 

and Yk(t, 5) denotes the cdactor of the element yl ~-*) (t, 5) in the deter- 
minant ~(t, 5). It ,  is easy to show that 

-~f~,k<,~a= [~( t ) ]  (k = I, 2, ~t), z~(t, 5 ) =  e " ~ . _ ,  . . . .  (12) 

where 

(13) 
1 

~ ,  (t) = 
~(t) m'(~(t))" 

Adding to the last column of A (x, t, ~)the 

l ' t ,  2"~ . . . . .  T th, (~ + l)th, , . . ,  , h  

columns multiplied respectively by 

: a (t, 5), 8) 1 (t, 5) , . . . ,  ~z,(t ,  5), - : z , + l ( t ,  ~),  . . ,  :~. l ' z l ( t ,  e), ~z2 �9 - 

a) p. 892, 
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we obtai~ 

' w h ~ r e  " 

, a )  

a (~, ~, e ) =  u ~ ( ~ ) ,  ., u , , ( e ) ,  g~( t ,~ )  i, 

*, . , (~,)  . . . . .  ,* . . (o ) ,  ~ . ( t ,  o) i 

k = l  

�9 - fa 

�9 1 1 
gi (t, e)-~ L, (g)~.  g.~, ui, (e)z~(t, e) -- 5 Z ui, (o)z~ (g, e) 

k----I k=~+l 

__ _ .~v A , ( v .  ~).~ (~, e ) + 2 B , ( u ~ ,  ~).~ (t, o) 

}=r+! a 

b 

+ Z ~(t ,  e)f~,(~,  e) y't-~'(., e)e~. 
k = l  t 

The functions 

e f ge k (*) d~  

being bounded on 

(17) 

(18) 

( 1 9 )  

f tph ($:) d x 

( k = I , 2 , . . . , ~ ; z 2 ~ ) ,  e~ ( k = ~ + l  . . . . .  n ; . ~ )  

(}R), the preceding formulas show that: 
E 

go (x, t, e) = ~ . -~ ,  

g,( t, e) = e" S_-~ (~ = *, ~. . . . . .  ~), 

el(x, t, O) e t-"+l e~'~ E. 

Since the determinant el (~ )  in this case coincides with zl~.(~) of 18, we have 

(2o) ~ (e) - -  e ~ ~o, (e) ,  

and finally, using (50 )  25:  

1 G ( z , t  e ) ] =  !'A(z,t,e)i < I~} 
' ' ,I (e) . . . .  2~alet ~' 

which proves  the inequality (2) .  

Now we can construct a system of closed contours 

( e d ,  (v..) . . . .  , (<v) ,  . . .  
Mathemat i sehe  Zeitsvhrlft .  X X V I L  3 



34 J. Tamar•m. 

such that the length Cz~ of (G~v) is of the order O(Rzr R~ denoting 
the shortest distance of (G~) from the origin, and such that one and only 
one characteristic value of the problem (L) lies between two consecutive 
contours (Clv), (C.v+l). Such a choice of (C~) is always possible because 
of the theorem 8, 21. 

Let 
~1, ~ ,  . . . ,  ~v 

be all the distinct poles of the Green ' s  function, within (C~). On the 
one hand we have 

iV 

1 f O ( z , t , O ' ) d ~ , = . G ( x , t , ~ ) _ _ ~ O ( , ~ ( x , t , ~ ) .  J(x, t, e ) =  ,=1 
(~) 

On the other hand, if n > 2, by virtue of (2) we have 

= 2-~ l e ' - e l . l e ' l " - '  = 2~ 2 ,  f l - f e l h  --~ O, 

when N--~ or, uniformly for x, t in (a, b) and Q in ( ~ ) ,  which proves 
Theorem 9 in the oase n ~ 2. 

If n =  1, the Green ' s  function G(x, t, O) has a very simple exa 
pression and the corresponding statement of Theorem 9 may be easily 
proved in this case by applying Lemma 1 ,38 .  

29. T h e o r e m  10. I! F(x)  is an arbitrary function which has an 
absolutely continuous derivative o/the order ( n -- 1 ) o n  ( a, b) and satis- 
fies the conditions: 

(21) L I ( F  ) = 0 ( i n  1, 2 , . . . ,  n) 

/or a certain value o] ~, different /tom the characteristic values of the 
problem ( L ), then 

b 

this expansion being uniformly convergent on (a, b). The conditions o/ 
Theorem 9 are supposed to be satisfied. 

The formula (22)follows immediately from the expansion (3~) o f  the 
Green ' s  [unction and from the formula [(22), 8]: 

b 
= yL( , t,  )dt. 

t t  

We shall call (22) the "preliminary form of the expansion of an 
arbitrary function". 
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w 

Equieonvergenee Theorem. 

30. In this section we shall transform the preliminary form of the 
expansion of an arbitrary function F(x) so as to get rid of most of the 
restrictions imposed on F(x) ,  and even as ~o be able to draw some general 
conclusions concerning the general ca~ of an integrable F(x).  

We shall suppose here that all the conditions o/ Theorem 8, 21 are 
satisfied, that the operators L~(y) o/ the problem (L) do not co~ain inte- 
grals, and tha~ the /unctions 

pi~(x) (i = 0 , 1 , . . . , i ;  i = 1 , 2  . . . . .  n) 

possess continuous derivatives o/ the order ( n -  i), so that the ad~oin$ 
problem exists (9).. 

Let q ~ 0 be not a characteristic value, and F(x)  b e a n  arbitrary 
function which satisfies the conditions of Theorem 10 (29) for ~ = 0. The 
function F ( x )  can be expanded according to Theorem 10 as follows 

b 

~1'~ F(x)  = ~ f Lo(F),G('~(x, t, O)dt; Lo(Y ) ~ L(y){e=o, 
~,~1 a~ 

the serie~ being uniformly convergent on (a, b). Denote by 

Z~- (F)  

the sum of the N first terms of the expansion (1). Applying Green ' s  
identity (9) we have: 

b 

f G  ~'' (~, t, 0) Lo (~)~dt = f ~ ( t ) s  (a ")), dt + Q~o (~, G ~')~, 

whence 

(2) ~:~ (F) = Z~(F) + ~(F), 
where 

~r b 

(3) :Z(~P(F) = 2 f F(t~L;(G~'~),dt, 
~=1 a 

N 

(4) )" t ) = .~Q~o(F ,  a~'~), 

31. Since 

(5) G('~(x, t, q) ---- R e s  G ( x ,  ~, e') 

3* 
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we have: 
2V b 

�9 v (F) = - -  F ( t )  Lo Res G (x, t, o') 
,=1 ~ ~e'=~, o' " td t  

b 

--1 --  L o { G ( z ,  t, e )}  dt  
( C  b,,) a 

where (Clv) denotes the contour of 28~s). 

T h e  function G(x,  t, Q), as function of t ,  satisfies the adjoint pro- 
blem ( L ' ) ,  and therefore 

L ' {O(~ .  t. e), ~), = o. 

so that  in (6) we can replace 

-- L'o{O(x, t, Q)}t by L ' { O ( x ,  t ,Q),  e } t - -  L'o{.a(z, t, q)},. 
Taking into account the definition of the operator L ' ( y )  we obtain 

easily: 

(7) z~)(~ 
b t t  

- 2 ~ V 2-i: at"-"  (~'YN) a m=l 

where o~ ) (F) denotes the sum of, terms of the form: 
b 

1 /de fz(t)~(t)e.o.o(x,t,o)dt, 
�9 , ~ t  ~t 

Z( t )  being a continuous function and integers x and /x satisfying the 
condition : 

(9) ~ t q - ~ s  

32. In  an analogous way we shall transform the sum 2:~ ~ (F). Here 
we have to consider three different cases: 

1 ~ The matr ix  of the coefficients of the operators Li (y  ) contains at  
least one determinant of the n th order, which is free from the elements of 

g3) The integration with respect to Q must be taken also over a small circle 
around the origin, because of the singularity of the integrand at the point e = 0. 
The corresponding term vanishes, however, because of 

L~ {G(~,  t, 0)}, = 0. 
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either of the cohmns corresponding to y(a), y(b) and which is no~ 
identieally zero. 

2~ All the determinants of 1 ~ are ident'ical]y zero, but there exists 
at I e~ t  one determinant of the n t~ order which is free from the eIeo~ 
men~  of one of the two column6 corresponding to y('a) or to y (b), and 
which is not. ident'ically zero. 

3 ~ Among all the determinants of the n t~ order of ~he matrix iu 
question only ~hose are not identically zero which contain bo~h columns 
corresponding to y ( a )  and y(b). 

Without loss of generality we may suppose ~ha~ the determinant in 
question is different from zero for o ~---O. 

33. Suppose we have the case 1 ~ The formula (86), 9 show~: 

(10) Qzo(U, v)=Z{L~~ (o~' r(0, (u)L~O!'(v)} L,~+i(v) + - , + i  

where 
L U  (v) (i  = I, 2, . . . ,  ~o) 

are the operators of the adjoint problem (L  p) for e = O, and where each 
of two sets of linear forms 

�9 L ( o / ,  - L~ ~ (Y), , tY) (i = .1, 2, o.., 2n) 

represent-a complete set of 2 n linearly independent forms in 2 n variables: 

(11) v(~),.. . ,v("-~)(~), v(b) , . . . ,v("- ' (b) .  

Suppose that the function u(x) satisfies the conditions: 

(12) L~ ~ = 0 (i = 1, 2 , . . . ,  n) .  

We can express n of the 2 n quantities 

(la) u (a )  . . . .  , u~"-~(a), u ( b L  . . . ,  u ' " -" (b)  

in terms of the n remaining ones, which may be taken as 
(o) i .+ , (u)  ( i = 1 , 2  . . . .  ,~)  

and we can see: 

L ,+I  (u) ~ u (a), L (~ tu~ 

If we suppose tha~ the function u(x) satisfies the conditions 

L,+~(u) ~- 0 (i = 3, 4, . . . ,  n) ( 1 4 )  ( o )  

in addition to the conditions (12), the values u(a), u(b) remain arbi- 
trary and we obtain: 

Q~o (u,  v) = u (a) Li ~ (v) + u (b) L~ ~ (v), 
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which entirely determines the operators 

The same calculations may be made for any value of  ~, and so we can 
define the operators 

as the coefficients of u(a),  u(b) in the expressions of Q~(u, v), if all 
the quantities 

are expressed in terms of u(a) and u(b), according to the conditions 

L,(u) = 0 (i ----- 1, 2 , . . . ,  n); L,,+,(u) == 0 (i = 3, 4 , . ,  n). ~') 

Suppose now that F (z )  satisfies the conditions 

. . . .  L ~~ (15) Z,~'~ 0 ( '  1 ,2 ,  . , n ) ;  , + , ( F ) = O  (i-----3,4 . . . . .  n). 

O n  substituting 
u(t7 = U t ) . ,  = t, o7 

in (10) we have: 

(16) qzo(F, G~"), -~- F(a) LIo)'(Gr + F(b)L~~ (G"7,. 

The Green ' s  function G(x, t, Q), as function of t, is a solution of 
the adjoint problem (L'). Hence 

L'(G,  ~o)t = 0 (i "-- 1, 2 7 
and 

(17) L~o), (O(,,),= L~O,,{Res a ( , , t , q ' )  ^, ' e ' ) t -q~  

~I'he function under the sign Res is a linear combination of the 
function G(x, t, ~o r) and of its first (n -- 17 derivatives with respect to t,  
taken at t = a ,  t~-b,  the coefficients being rational functions in ~ ' .  
Expanding every coefficient in descending powers of ~', we shall retain 
only those terms for which the exponent of ~o' plus the order of the 
derivative is at least (n ~ 2 7. Computing the Res of the sum of these 
terms we obtain a perfectly defined function of x, which we denote by 

~,(~)(x) (i ----- 1, 2; ~ ~- 1, 2 , . . . ) .  

From this definition o f  -=~(i)(x) it is obvious that 
27 

(18) ~ff~(F7 = x~{F(a)3(, , l ' (xT+-F(b) =(''(x~x-," , / ,-+- off ) (F), 

t*) The eodficients of the operators am in genox~l rational funetio~ in ~, so 
that it is necessary to suppose thal~ 0 is different from any root of their denominators. 
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where a~ (F )  is a sum of products of R(a) or F(b) by the terms of 
the form: 

1 o f  dqO~(e )a 'O(x , t , e )  = a (19) ~ - z i  ~ at .  o~ ,=b' 

O.(e) denoting a function of the order 0 (e ' )  for large values of [ e [, and 

(203 . + #  < n - -  2. 

a4. In the  ease 2 ~ of 32~ if tim function u(x`) satisfies the con- 
ditions (12), only one of the quantities u(a), u(b) can be considered as 
arbitrary, and this quantity may be taken as equal to L(n~l(u). 

I t  is obvious also that, if iv(x,) satisfies the conditions 

(21) L ~ ~  ( i = l ,  2 , . . . , . j ;  L~~ ( i =  2, 8, .. ., ~) ,  

there must exist a relation of the f o r m :  

(22) F(b)~.aoF(a ) or _~(a)---~boz~(b ), 
do, b~) beeing constant factors, which in special cases may reduce to zero. 
Instead of (16)now we have respectively 

(24) Qr~o (9, (7 (')), = P(b) L~ ~ (G("), 
Using the operator L~ ~ we can construct the function ~ ( x ) i n  the 
same way as the functions Z.(~)(x) have been constructed above using the 
operators L~~ According as we have the t~st or the second case of 
(22) we set: 

(~) ~.(!)(~) = x . ( ~ ) ,  x .(~(~)  = 0, 

o r  

(26) 

and we obtain for ~v~)(p) the same expression (18) as in the ease 1 ~ 

In the ease 3 ~ we set 

and the formula (1~) remains true, if F i x  ) satisfies the conditions 

(27) (~ = . . .  L~ ( ) o, L~.~,(~) = o (i----- 1, ~, , ~). 
35. We see finally that for every function P (x )  which possesses an 

absolutely continuous derivative of the i n -  1) t~ order, and which satisfies 
the conditions (15) in the case 1 ~ (21) in the ease 2 ~ and (27) in the 
case 3~ the sum ~'~(E) can be transformed as follows: 
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~'~v (F)----- d t F ( t ) ~ ( - -  B-M 8~-m~(z, t, ~) 1) P,,,o (~) Res O ~ - I  ..... at " - m  , 
(28) ,=,,, ,,,=I ~=e,, / " 

+ Z ( F ( a ) e , ( l ' ( ~ ) +  f (b)~;" (~1}  + o,V~(~)+ d ' (e ) .  

The right hand member of this equality has a definite sense for every 
integrable mnction P(x) ,  which takes o n  definite values at t h e  points 
a,  b. We shall prove moreover that o(~)(F) and o~)(F) tend uniformly 
to zero for every integrable function F ( z ) ,  so that the whole discussion 
is reduced to that of the two first terms. 

It  is important to note that the assumption that ~ ~ 0 is not a 
characteristic value of the problem (L), is not essential. If ~ ~ 0 is a 
characteristic value, we can start from a certain initial value ~ = ~o 
different from any characteristic value, and it is obvious that all the 
terms of the first sum of the right-hand member of (28) are independent 
of the particular choice of this initial value of ~o and the samescan be 
proved concerning the limit of the second sum, as N-*oo .  ~5) 

The following discussion is based upon a detailed study of the 
asymptotic character of the Green ' s  function G(z,  t, 0) and of its deri- 
vatives for large values of I~t. 

36. We shall use the notation of 17, 18 /28  taking into account 
that the operators L~(y) do not contain integrals and that, under the 
conditions of 30, the expressions (12) 28 for the functions z~(t, Q) can be 
differentiated ( n -  1) times with respect to L 

We have 

- 0  f ~v# (z) dz 
(29) dm zk (t, 9 ) ~  ~Ora-n+le, ,~ ~,,, [v,~, ,,, (t)], 
where 

(30) v,~.,,, (t) = ( -  ~)," { q,~ (t)},,, ,7~(t) ~ ' { ~ ( t ) }  ' v,~,o(t)=,e~(~). 

We saw in 17 that the conditions 1 ' ' 3  ~ involve either 4~ or 4~, 
and in both cases we can write: 

(31) ~ , (z)  = ~,~,(~);  ~,(~) --~ ~o > O. 

For the sake of brevity we set: 
t b 

(32) x,= f q,(~)d~; ,~,=fg,(~)da:; Xo,= f g,(z)d~; 

25) Cfr. 45 below. 
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---- " ~ t~  go,o ~ go( x ,  g, O)'~ 

(34) ~,,,(~, e) ~ ~,,. e'a,(~, e). 
~t~ , g~,o~ g~(~,~)" 

Then we have 
o~ 

b 

(86) me(e~l).<_...<_~e(e~,)___o~ ~e(e~,+~) _<,,~ on (~) ,  

I ,o~-"+~ ~e~ ~x ~-~n~(z )N '~ , . ( t ) ] ,  i~ �9 > t ,  

~ = t + l  

{ - (as) a,,,.= e ~'+"-"+~ - 27 ~-~,~.[A,~. , . ( t ) '~ 
k = v + l  

37. In what follows we shall use the notatien: 

In particular the numerator o~ the G r e e n ' s  ~unetibn is: 

(40) ( - i ) " ~ ( ~ , t ,  e ) = ~ { v , ( ~ ,  e); g~(t, e); ~o(,~,~, e)}, 

and, more generally, 

(41) ~ G ( ~ ,  t , e )  ' ~ {Y ,~g~. . ;go ,~}  

We have. ob~nously: 

(42) z(,~,; ~; z) = z z ( e ) +  2: ~,~,(e) 
i , j = l  

where A~,(~) denotes the cofaetor of the element u~(.~o)~) in the deter- 
mJnant A(e  ). Now (16) 18 shows: 

(.43) ~J~(r ~-~,e~(W-~~ it  i ~ + ! ,  n ,  

(m ----- 0,  ~, . . .  n - 1). 

~6) Here we writ~ uj~ (e) instead of u s, (e) of 18. 
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E~,(Q) depending only on e and being bounded on (~ ) .  Substituting 
in (41) we have. 

(44) om G(x, t, e) = go,,~ + e m-~§ K=(x ,  t, 0), 
, otto 

where K,. (x,  t, q) is a bilinear form in the two sets of que.ntities: 

(45) e~ "~x~ ( i = 1 , 2 , . . . , * ) ,  e-e~,(Xo,-X,) ( i = z + ~ : . . . , n ) ;  

(46) �9 eo ~,czo,-~) ( i  = 1, 2, . . . .  , ) ,  e-~' ,~,  (i  = z + 1 , . . . ,  n) .  

Denoting these quantities respectiicely by 

(47) oJ,-', co,~ " ( i - -  1, 2 . . . .  . n)  

we have: 

(48) K~(x, t, o) --= 2 0 ~ , ~ ( x ,  t, o a,~" 
/ ,k=l 

where 

( 4 9 )  Q(m), r ~ (")" , , . t ~ , t , q ) = <  ,..t'~, t)]~,(,'~>(q) �9 
Here the functions Ei(~ ) (0) depend only on ~ and remain bounded 

on (~a) .  The functions ,(m), wi.t tx ,  t) depend only on ~:, t and each of them 
is equal to a sum of products of a function of x by a function of t, both 
factors having a second derivative continuous on (t~ b). 

38. T h e o r e m  11. Under the conditions o/ 30 the integrals 
b 

(O_,V) a, 

f ( x )  being an arbitrary integrable /unction, and the integrals 

(51) i,~ '~')" 1 _ [ '0 .  a~'6~(x't'-~ (~ < n  g) 
a~ I~ t a t = b  

where 
O~(~)=o(Q ~) for ~rge IQi, 

tend to zero uni /ormly on (a, b) as N---* oo: 

First let us state certain lemmas, which are z~ecessary for further 
considerations 1). 

L el~_ ma  1. Let e (0, z, x a . . . . .  , x,,) be a/unetiov,, ~/ a complex vari- 
able O, ~)] a real variable z, .and o/ a certain n,~,nbe~ o/ 2aarameters 

zl., . . . .  x m, which i s  determined on the ha!l-plane 

(52) ~e(cq)  < o (o constant + o),, 

/or all values M z in  the interval (0 ,  Z)  and /or all values o] xl . . . . .  x,. 

1) pp. 216--217. 
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in  a closed region (D).  Let (F~) (~ ~ 1, 2 . . . .  )' be a sequence of drcular 
arcs in (52) with centers at the or ig in  and respective radii R~, where 
R,--~ c~ as ~, ---, co. Then, ~] on the arc (F,), ~ (e,  z, x i . . . . .  , xm) is 
analytic in 0 and Iends ~o zero uniformly in e , z ,  xl  . . . . .  x,,,  a~ 
~, ---. ~ ,  the integral 

f e ( e , z , x , , . . . , z , ) e ~  as ~,--~cc, 
tr,~ 

uniformly with r~?ec~ w z~ . . . . .  x,~ ~n (D) ~ and with respect ~o z in the 

interior o/ (0, Z ) .  ~) " 

We have on (F, ) :  

I~(~, z, ~ . . . . .  ~.~i < ~ -  

where e, does no~ depend on (e,  z, x~, . . . .  xm) and lira ~, = O. 

Hence, setting 

c~ = - R, (cos ~ + r  sin ~)  
�9 we have �9 

I I 
(i;) _~ 

2 
which proves Lemma 1. 

L e m m a  2. Under ~he conditions of Lemma 1, i f  E (O, z, x~ . .o x,~) 
is  uniformly bounded, and yJ(z) is an arbitrary integrable ]unvtion, she 

integral 
a 

a (r~) 

uniformly with respect to xl . . . . .  ~m and 'to ~, ~ in (0,  Z) .  

If  E o denotes the upper bound of [E(e, z, ~1 . . -~ . ) t ,  we have: 
B Z 

7" =Eo 
a (I~} 0 

0 O 

iI ~ tends  to zero so that  

~) Tha t  is uniformly with respect to z on any  interval which is in the  intgrior 
6f ~0, z ) .  
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(s~) 

L e m m a  3. ]] V,(z) is an arbitrary integrable [unction, the integral 
P 

r 

as I pl---~ov and ~ e ( c o ) ~ 0 ,  the convergence being u~i]orm for all 
. ,  ~ in (o, z). 

This lemma can be easily proved if we approximate the function v/.(z) 
by a suitable step-function, for which the  proof is immediate. 

I t  is important to observe that Lemmas 1 and 2 hold true when. 
arcs of bounded length of the contours (F~) are slightly deformed, the.  
variation of length being also bounded. I t  is obvious that the contours (C 0 
of 28 satisfy this condition and they can replace (F,) in the statements 
of Lemmas 1 and 2. 

NOw the first part of Theorem 11 concerning the integral (50) follows 
from the formulas (44), (37), (48), (49), (50), if we apply Lemma 2 in a 
suitable way. The statement of Theorem 1I concerning the integral (51) 
is obvious, since the  integrand ,is of the order O . 

39. The preceding discussion shows that if F ( x )  is an arbitrary 
/unction which possesses an absolutely continuous (n -- 1) th derivative and 
which satisfies suitable boundary conditions, we always have the expansion 

/ ~ (* )  = lira z ~  (F )  

/ b 

(53) ----__# - -  1) p . o  (t) Res Q or,_ m d t  
~ = 1  tt t ~ t = l  0=@~,  

at, 

+ ~(~)2 zf, (~)+ ~(b)~ ~2 (~). 
't'----- 1 ' e~ IL  

We now shall consider-the first term of this expansion separately, 
and we shall suppose only that F ( x ) i s  integrable. De'note 

b n ' 

a ~  F(t)Z (- i)"-~ p.o (t) Q~'~ (x,t,e) at 
�9 O t n - m  

~V b n 

= P(t)"~' (-- 1)mTnP~~ ~ a t " ' '  d r .  
- -  l r n = l  @ = B e  

T h e o r e m  12. Let (L) be a problem analogon~ to the problem ( L) 
with the same ]unctions 

P,o (x), p,~ (~) (i -~ 1, 2 . . . . .  n) 
(s) /.(s) and with the same numbers ~z(s~ and the same coe//icients a~,), ,,.6s)., 



Linear differontia~ equations. 

Denoang by ~ ( $') 
difference 

~ends to zero uni[ormly 

~5 

the integral J~-(F) for ghe problem ([,), ~e 

on (~, b) a~s N--*~, ]or every integra&ie 
]unction F ( x ). Denoting by ~ )  ( x ) the Junction8 corresponding 30 F~ ~ ( x ) 
[or the problem (L) ,  the series 

(i,= 2, 

converge to zero uni[ormly on i s ,  b), i f  the operators L~ ~ o/ 33, 34 
coincide /or both problems (L)  and (~)1). 

Under the conditions of Theorem 12, the prineipai terms in the ex- 
pressions (44) of 

0raG(z, t, e) am~(x,  ~, e) ~s) 
~t m ' ~t m " 

are ~he same, so that the difference (55) can be reduced to a sum of  
terms, to each of which Lemma 2 is applicable. This proves the first 
s ta tement  of Theorem 12. 

The second statement of Theorem 12 will be proved, if we 6bserve 
that,  according to 33, 34 both series 

, , , a ( ' ) ) ,  Z{Li ~ . 
v:l v.-~--~ I 

converge uniformly to zero and that  the functions 

are of ghe order 0 \ ~  on (C,~,). 

Theorem 12 enables us to compare the expansions of an ~rbitrary 
Junction F(x)  for various problems (L)  and therefore this ~heorem may 
be called equfconvergence theorem. 

For the' special ca~e of Sturm-Liouville~s ~unctions an analogous, 
theorem was proved by W. S t e k l o f f  ~e) and by A. HaarZ<~). For the 
equations of the n th order, a theorem which essentially coincides with 
the equiconvergence theorem (for interior points of (a~ b)) was proved first 
by the AuthorS1). 

~) Ch. V. This result was net explicitly stated but might be derived immediately 
from the formulas therein given. 

~s) G(x, t~ 9) denotes the Green 's  function of the problem ( i ) .  
~) Sur lee expressions aeympt, etc., Prec. Charcoff Math. See. l0 (I907~!908)~ 

pp. 96--97. 
,o) Zur Theorie der orthog. Funktionen-Systeme, Math. Ann. ~9 (1912), p. ~55. 
~) Sur quelques poin~ de ]a theorie des equal, differ, etc., Rend. di P~I. ~. 

(I912), pp. 345--382. 
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7. 

Expansion P r o b l e m .  

40. Now we can compare our expansion J~ (F) with the classical 
D i r i c h l e t ' s  integral of the theory of F o u r i e r ' s  series, or with the ana- 
logous integrals. This comparison is furnished by the following 

Theo rem 13. Under the conditions o] 30 there exists a set o/ con. 
8rants N~, N~ . . . .  , N, depending on N such that i] 

b n 

a k=l 

(2 )  ~ ( t )  = { ~ ( t / } ~ - ~  �9 ' { ~ ( t ) )  ( k =  I, 2 . . . .  , n ) ,  
the dU/erence 

(3) J~v (F) -- T.v (F) 

tends to zero as N---~oc, /or every integrable /unction F(~c), and uni- 
/orraly on the interior o/ (a, 5)39. 

We have 
Jzc(F)=J~(F) + J~(P), 

w]lere 
b -~ 

(5 )  ~ . 

~'(F, x, e ) =  f F ( t ) Z  ( -  1)"-'~pmo(t)K._~,(x, t, e)dt. 
a m = l  

Here (e~) denotes the part of (C~) intercepted by (9~), and the sum- 
mation is extended over all the sectors(~R). Using(48), (49) of 37 and 
Lemma 3, we see at once that ~ ( x ,  t, ~) reduces ~o a sum of terms 
of the form 

~(x,~)e~.-,~, ( i = L 2 ,  . . . .  ~); ~(x,~)e-~,(zo,-~,) ( i = ~ + l  . . . . .  n), 

where e(x, 0)--*0 uniformly on (c~,). & suitable application of Lemma 1 
proves that the integral J~(F) tends to zero uniformly on the interior 
of (a ,  b ) .  

") I t  follows immediately~from here thst the dififerenoe (55) 89, -~ 0 as N--~ob, 
uniformly on the interior of ( a ,  b) ,  for any integrable function F ( x ) a n d  for any 
pair of problems (L) satisfying the conditions of 80, provided the functions Pie (x) 
a r e  the same for both problems. 



/ 
the, difference 

Linear  differential  equat ions .  4 7  

Now, using the formulas of 36 and remembering that ~vk(x ) satisfies 
the characteristic equation, we easily obtain 

dQ 
a~f--  (~) . ' a k=l  " (c~r 

~ 'J  Ok (t) 
x k = , ~ + 1  (c,v) 

A simple application of Lemma 2 shows that the omission of the brackets 
introduces an* error which -*  O, uniformly on (a, b), so that setting 

b n 

J~t(F) -- J~) (F) --* O, uniformly on (a, b). 
In (6) the integration with respect to Q can be,performed immediately, 

and a simple consideration shows that 
b n 

(7)  = qk(t)dt, 
a k = l  

where r.~ denotes the distance from the origin to either of two points 
of intersection of (Clv) with the imaginary ~-axis~n). Now, using well known 
properties of F o u r i e r ' s  ~odfieients of an integrable function, we can 
replace ~(x) by 1, the error thus introduced tending to zero uniformly 

. -7(6  
on (a, b), so that finally 

uniformly on the interior o~ (a, b). 
41. The integral T~v(F) replaces the classical integral 

b 

a 

of the theory of F o u r i e r ' s  series. Taking into account the relation 

~) I t  is tac i t ly  a s sumed  here t ha t  these  poin ts  are  equidistan~ ~rom the  origin. 
Obvious modifieationu in the  a rgument s  of t h e  t ex t  suffice to mee t  t he  general  r 
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it is easy to show that if the integral S ~  (F )  tends to a limit as iV-* ~ ,  
the integral T~v(F)tends to the same limit*). Analogous conclusions can 
be drawn concerning the summabili ty of the integral T.v(F). On the 
other hand i t  is possible to show that, ir general, the difference 

T~r (F) - -  ~ .v  (F) 

does not tend to zero for every integrable F(x). This means, that the 
integral T# (P) has its own theory of convergence and of summability, 
which is  not essentially different, however, from that of the ordinary 
F o u r i e r ' s  series~ The various details of this theory will be ommitted 
here. They have been previously discussed by the Author*). 

42. With this we leave the case of the interior points of (a, b), 
and proceed to the discussion of the integral J~(F) at the end points 
z = a,  z = b. We suppose that  the /unction F(z)  ia o/ bounded varia- 
tion in the neigbourhood o] z = a, z = b, so that there exists a positive 
number J,  arbitrarily small but fixed, such that F ( z )  is of bounded varia- 
tion on both intervals (a, a + J), (b -- ~, b). 

The results of 40 concerning the integral J~v($) hold tree at the 
points x = a, x = b also, and since 

0);  

we have 
, 1 

( 9 )  - - .  

F ( b  - -  0 ) ,  b 

t 1 
J_v(F)/==b---* ~ F( b -- 0). 

I t  remains only to discuss the integral J~ (Y)/s=a. b" We denote by 

the integral which we obtain from J~(F) ,  if we integrate between the 
limits a and fl, instead of between a and b. 

Using the previous notation we have obviously 

1 x -  

where 

(11) ~.,a~F,x.O) f F(t)  s  P.,o~ j K . _ . , ( x , t , e ) d t .  
a ~ t t = l  

43. The integral (10) enjoys following properties: 
1% For every integrable [unction F(z)  and /or every 1~air o/values 

o/ t~, fl, satis/ying the condition 
a < a s  

2) pp. 284--236. 
t) ChaptEr V. 
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~he integral J.~,'~(F, x) tend~ ~o zero a.s N - ~  co, uni/rffmly uqth respect 
to x in (a, b). 

2". The integral J~'~(1,~)  is uni/ormly bounded lot all values o/ 
a, fl, x in (a ,b) .  

3 ~ . I[ a, fl have any fixed value8 in the in~erior o/ (a, b), the 
ezpression~ 

tend to de/inite limits which are independent o/ ~, ft. 

The formulas (48), (49) of 37 and Lemma 3 show that (I0)reduce~ 
~o a sum of terms of the form 

(%') {r 

~ e ( c O ) ~  O; e(x,e)---~O uniformly, 

whereupon She proof of the statement 1 ~ is given by Lemma 1. 
The proof of the statemen~ 2 ~ follows if we observe Chat the integral 

J~'~(1, x ) =  f E  ~ 
(C~] 

is bounded~ 
In order r prove the statement 3 ~ let us take for instance 

~t f~ ; /  - -  de ~ ( - - 1  p ~ o ( t ) K . . ~ ( a , t , e ) d t .  
2 ~  ~ ' -  1 " " - {~) (%,) m = i  

Using the expression (48) 37 for K~ (x, t, Q) and integrating by par~, 
we obtain under the sign f dq an expression of the form 

where A~ is a constant which depends on .the sector (~) ,  and e(~) tends 
tO zero uniformly on (c~). 

Hence, denoting by ~ the angle oi ~he sector (~) ,  we have: 

J'~"(l' a) ~-- Z 9.~L-I f Vde {A~.j_.(~)} ..~ZA..(~.. 

The constants A~, 0,~ depend on the sector (9~) and therefore they depend 
o n  the arbitrary choice of the rays d~ (i9). Nevertheless the final result 
~ 'A~ttn does not involve any arbitrariness, because the order of the 
(.~} 
numbers w~, w~ . . . .  , w,, can change only when e crosses one o~ the rays 

:~athematlache Zeltschrift. X ~ V I I .  4 
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so that the constants A~ remain the same for all the sectors (~)  which 
lie between any two consecutive rays of the set (13). 

44. Using the r@sults of 43 and a known theorem of Lebesgue 84) 
we e~n be sure, that for every integrable hmotion P ( x ) ,  which is of 
bounded variation in the neighbourhood of x ~ a , x  ~ b, 

(14) ~ J~(F) / '= ' ' 'Aa  P(a q-O) + Ba P ( b - ' O  )' 
(a~ ( e ) / , = : .  a. F(a + 0) + B .  F(b -- 0) 

where A., B~, Aa, B b are perfectly determined �9 which do not 
depend on the function F(x) .  :Moreover, it is easyto show that q . ~ ( x )  
is a continous /unction o/ bounded variazion on, ( a, b) and 

(15) ~(a)  = 0, ~(b)  = 0 ,  

the integral Jlv(~) converges to ~ (x) uni/ormly on ( a, b ). 
Taking into account that 

J, (r =J2 (r + Jg (r 
and that the difference 

t ~ ((b) -- T~ (~/i). 

tends uniformly to zero and the integral Ts (~)  tends uniformly to di(~v), 
it remains only to prove, that for our function ~ ( x ) ,  the integral 

J.~ (~) =Jf,'~(~;.~) 
tends uniformly to zero. This fact follows immediately from the formula 

j~, b(~, x) = J~"+~ (~, ~) + J~+~' b-~ (~; ~) + jb-~, b (~, X), 

where the middle term .tends uniformly to zero for �9 ~, and the 
extreme terms can be made as small as we please by choosing 6 .~ufllciently 
sm~ll (applying the second law of the mean). 

45. Now everything is prepared for th@ proof of the 

'Theorem 14. Let P (x) be an arbi|rary /unction injectable on (a, b), 
and denote, by 

N b+ n 

-I-~ r {F (a + O) Z, (x, (a:) at- F (b "O) Z, (" (a;)}, 

where t~ lae, to,s F(a+O), h'(b--O) ma~, /~ ,e~ea b~/ zero"in ease 
�9 lh~e lwo limils do no~ exist Then 

a) Buries int~gmles singuli~res, Ann. F~c. Toulouse 1 (set. 3), 1909, pp. 65, 69--70. 
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1 ~ The di//erence 

ozr (F, x) - T~ (F) -~  0 as N--~ c~, 

uni/ormly on the interior of (a, b). 

2 ~ I] F ( x )  is o] bounded variation in she neighbourhood o/ x = a, b, 
w e  have 

(17) o ~ v ( F , a ) - - - ~ F ( a + O ) ,  a : v (F , b ) - - -*F(b - -O) ,  

with no /urther restrictions 1or F ( x )  in the case 1 ~ o] 32. 

In the case 2 ~ o/ 32 the equalities (! 7) hold true i] F ( x )  satisfies 
one o/ the corresponding boundary conditions 

F ( b - - O ) = a o F ( a + O  ), 
(18) 

F ( a - -  O) = b o F ( b - -  0). 

In th~ case 3 ~ o/ 32, (17) is true i/  

F ( a + 0 ) =  0, F(b--O)=O. 
3 ~ . The series 

a (F, x) -~ lim a~ (F, x) 

converges to F ( x ) unilormly on ( a, b) /or every continuous/Unction F ( x ) o[ 
bounded variation, satis/ying the conditions o/ the preceding statement 2% 

The statement 1 ~ is obvious. Denote now by F 1 (x) the auxiliary 
function, which was used in 33--~"5. The results of 33--35, 38 show 
immediately that 

(19) ~ ( x )  = o($'1, x) 

_ lim J~c(F1).+_ Fl (a) ~ "z(1)rx ~ - -  . ,  ~ ) + F l ( b ) X X ~ ( ) ( x ) '  

Putting here x = a or x ~  b, we have in virtue of (14):  

{ 2~ S2'(a)+Ao=x; 2:--~'(a)+Bo= O; 
( 2 0 )  , = l  ~=~ 

..~ z;"(b)+ ~, = 0, 2 zY'(b) +B~=~. 
~=~ ~=1 

These relations prove the assertion 2 ~ of our theorem. The proof 
of the assertion 3 ~ follows if we set 

and use the results 44 and the fact that the sum a.v(~, x) reduces 
to Jiv(~), because of ~ ( a ) =  r  and that the series a (~ ,  x), 
( o F  1, x) are uniformly convergent. 

4* 
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46. I t  is interesting.to observe that the statement 1 ~ of Theorem 14 ~ 
holds true if we replace o~v(F, z) by the simpler expression 

I -b Z f -F ( t )  ~,,o(0 Res r 0 (,,,, t, o) 
,(21 ) "=~ ~ o = e , ,  b 

= 1 ~. ,~_~do/F(t)V,~o(t)O(x, t ,O)dt=i~(F,=)~5 ) 
2 ~ ~ (c3 ~" 

and at the same time replace ~%(z) in (1) by 

. . . . . .  .p.o (~) ( k  = I ,  2, n) .  Zk(z)  --- ~ ( ~ )  ~ '  { ~k (x))  " ' "  

The statements 2 ~ and 3 ~ of Theorem 14, however, do not hold 
true after t~is replacement in the general case; unless F(a ~ - 0 ) ~ 0 ,  
F ( b -  O)~ O. If these conditions are not satisfied, the integral l,v'(F, x) 
wilI not converge uniformly on (a, b), even for F(x)  continuous and of 
bounded variation. 

47. Some special cases of the expansion of Theorem 14 deserve 
to be mentioned separately: 

1 ~ The operators of the problem (L) are of the form: 

X L ( y ) - - - L o ( y ) + e  ~( ).~; q(~)~_~o.>O; 
L,(~) - -  Li~ + ~ ' L i " ( y )  .(~ = I, 2, . . . .  ,~)  

and all the conditions of 16 are  satisfied. We suppose moreover that 
the matrix of the forms L~ ~ (y) has at least bne determinant of the n th 

order which is ~ 0, and which is free from the elements corresponding 
to y(a), y(b). For the sake of brevity we shall consider a special case 
only, namely that in w h i c h  

L,("(~)=y(~) ,  L~)(~) - -yCb);  L~"(~)--=0 (i = 8, 4, . . ., n). 
The quadratic form (16) 

�9 T(y) ~ T(y, y) = ~, LiZ'iy) M,(~t) ~-- fdtlabM, (y) -t- Y (b).M, (y) 
t = 1  

being semidefinite, we must ~" h a v e :  

M,(y)~--k , ,y(a)+k,2y(b);  M~(y)---k,,y(a)-t-k~,y(b); k ,~=k, , ,  
so that in this case 

~(,~)(x) ffi - -Res  e"-X (ki~ O(z ,  a, ~ ) "l- k.n O(x, b, 0 ) } ,  

~")(:v) = - -  e e s  0 ~'-' {k l ,  G (z,  a, 5) .4-knn G (z,  b, 0)} ,  
O--_91, 

s~) This integral was:used by G; D. Birkhoff. 
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and finaily 

(22) , e=e~ e=e~ 

= q (t)  v ( t )  +,  ( t ) d t  - % 

where ~ l (x )  . . . .  , ~ , (x)  . . . .  denote ~he set of fuudamen~t f~nctions o~ 
the problem (L)~ which are supposed to be orthogonalized according W 
(aO), 16. 

The series 

enjoys the remarkable Pr0Perty that its sum is zero at every interio~ 
point of (a, b), and is not zero at the end-point~ a, b. 

�9 This fact shows ~hat the theorems of Cantor  and Du Bois R e y m o n d  
are not true for our general expansions in  series of the fundamental 
functions. 

~ .  When all the operators Lr reduce to zero, Vhe form T(u, v) 
vamshes and we get the ease, which was t~eated by B i r k h o f f  s) and 
by the Author~): 

b 
f q (t) F(t) ~, (t) at 

"=~ f q(t)e,(t)'at 
~g 

b~ i curious example of am expansion containing fundamenSaI and 
principal �9 simultaneously ~s furnished by the problem: 

L(y)~$/ '+e~y; L , ( y )~y ' ( l ) - - y ' (O) ;  L..(y)~y(1)+2y(O). 
Here. we obtain : 

~(F,x)  = 2 ( a x -  1) F(t)dt+2Icos2~,nxfF(t)cos2,n~dt 

t +4 IsinZv~t~ f ( 2 -  3t)F(t)sin2v=tdt, 
v=l 0 

the fundamental functions being 

3 x - -  1, s i n 2 ~ z ,  

and the principal functions 

(3x = 1)cos 2va x. 

aa) In the expression of the bilinear form T(F~ v) we maa~ replace ~ ( a ) ,  F ( b )  
by F ( a  + 0), F (b  - O) respectively: 
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The series (23) represents the arbitrary function F ( x ) o n  the interior 
of ( 0, 1) under the same conditions as the classical F o u r i e r ' s  series, the 
difference between the sums of  the N first terms of both expansions 
tending to zero for any integrable function, uniformly on the interior of 
(0 ,  1). At the end-points the sum of (23) is equal to F ( +  0), E ( !  -- 0), if 

2F(-q- O)--k F(1  -- 0) --  0. 

We have not touched here the expansion problem in the case where 
t h e  operators L~(~) contain integrals. This problem, however, has been 
discussed by the Author1). 

1925, Dec. 9. Dartmouth College. 

1) pp. 231-235. 

(Eingegangen am 23. Dezember 1925.,) 


