Some general problems of the theory of ordinary linear
differential equations and expansion of an arbitrary
function in series of fundamental fanctions.

By
J. Tamarkin in Hanover, N. H. (U.S. A

This paper reproduces a paper which was published in 1817 under
the same title!), with considerable abbreviations and generalizations.
A detailed discussion of some questions which are explained here but
briefly, as well as extended references, may be found in the above men-
tioned paper.

§ 1.

Asymptotic expressions of solutions of differential equations containing
a parameter.

1. We begin with a discussion of the system of » differential equations

"
d
(I) R%=2an.-(x9 ) Yr»
k=1

whose coefficients are functions of a real variable « in the interval ¢ <2 <5
and of a complex parameter g. Suppose the functions g, (v, p) admit
of expansions

(1) au(z, 0)= T el (@) (hk=1,2,..0,m)
for || sufficiently large, 1. e. for

R, being a given positive constant.

(=)

If the functions a;x () possess derivatives of all orders in (g, )
and if the “characteristic equation”

1) Petrograd 1917 (in Russian).
Mathematische Zeitschrift, XXVII, .
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11) 0 a7 (z . (”)‘
(3) @ (0) = '.1.(?). ) .a.( ) oo o) =0
Cfal(z)  ai(x )-..- a,‘,’ii(x)—

has simple roots

(4) g (), ..., P (2)
for every value of x, then a matrix of formal solutions of (I) can be
found of the form

(5) e 0t By (a) e,
where d

w; (%, ) = e @ (x)+ ...+ o9 (x)
and the coefficients

e (), 9 (=)

are determined by immediate substitution of (5) in the system (I). The
series (5) are divergent in the general case, but they can be used for
approcximate representation of certain solutions of (I), as it is shown by
the following theorem:

Theorem 1. Suppose the coefficients a,,(x,¢) of the system (I)
lo satisfy the foilowing conditions:
1°. Series (1) are convergent on the region (2) and the functions
alv N e) (5, k=1,2,...,m; »=0,1,2,...}
are continuous and uniformly bounded on (a,b).
2°. If m denoles a given positive inleger, and integers s and r are
determined by the condition

m=s8x+r—+1 (0LrLx—1),
tt 1s assumed that the functions
gett “i(’l? (z) d5t a‘f’i_”(z)
dzttr 7Y dzttl
dcai{:—r—l) (x) d’a..‘;’) (x)
dx® ’ ’ dx®
a( m+n)(x) - a;(k m+1)(x)

possess continuous derivatives of the first order on (a, b).

3°. The roots (4) of the characteristic equation (3) are distinct for
every value of = in (a, b).

4°. There exists such an infinite part (D) of the region || = R,,
in which the inequalities :
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(6) Rew, (z,0) L Rewy(2,0) L ... SRew, (2, ¢)
are satisfied for every walue of z in (a,b).
Then there exists a mairix of solutions of the system (1), of the form

fw(:v,e)dx —  E(z,
O g (z, 0) =€t ” {Zy“"(x)g + (:me)}’

where E(z, o) are bounded and continuous functions of z ¢n (a, b) and
of ¢ in (B).7)

The theorem 1 was proved in the paper?) using a generalization of
the classic Dini’s method %).

2. In the most important case, when the system (I) iz equivalent
to a single differential equafion of order n, and » =1, we obtain:

Theorem 2. Suppose the'coesz'cz'ents of the differential equation

(1) Iy P2, Q) ot .. Py (z, 0)y =0
to satisfy the following conditions:

1°. The functions P,(z, o) can be expanded in descending powers
of ¢ on the region (2):

(8) Pz’(x’ Q) = Qi-ézpij(x)g‘jz Qipi(xs 9)' . (i*——“l, 25000 n):
J:

the coefficients p;;(x) being continuous and uniformly bounded on (a,b).
2°. The functions

P (%) (1=1,2,...,n)
possess contsnuous derivatives of the second order, the functions
p;y () (i=1,2,..,%)

Ppossess conlinuous derivatives of the first order on (a, b).
3°. The characteristic equalion

(9)  (O) =0+ pyo(2)0" .. 4 Dy (2)0F pyo (2) = 0

has roots Prs e Py which are distinet for all values of « in (a, b).

%) We e shall use the symbol E(p,...) in order to denote functions of g and of
other variables, bounded on (D) or, more generally, bounded for large values of |g!.

1) Chapters I and IL

#) The particular case of & system with coefficients linear in ¢ was discussed alsc
by G.D. Birkhoff and R. E. Langer, The boundary problems and developements ete.
Proc. of Amw. Ac. of Arts and Sc. 58 (1928), n° 2. The theorem holds true when the
series (1) are not convergent, but only a.symptotic in (D), and when the inequalities (8)
are replaced by more general ones: Rew, < Me(wy+ )L ... < Re (wot (n—1) ),
where « is a constant. In the case, when the functions a’;) have derivatives of all
orders on (a, b) the matrix (7) can be chosen as to be independent of m. Cfr. our
paper (in collaboration with A. Begicovich), Math. Zeitschr, 21 (1924), pp. 119~125.

1*
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4°. There exists such an infinite part (D) of the region (2) on whick
(10) Re(eg,) < Fe(epy) <. S Re(ep,)
for every value of z in (a, b).

Then there exists a fundamental system of solutions of (II), which
on (D) can be represented by

e.rw;(z)dz E
(1) pme)=es  {n(x)+ 220,
where the functions
D, (9y)
1 bf T "
7, (x)=— e o i=1,2,...,n),

?'(6) = ﬁéO); -451(0)51711(3:)0"-’1—1—...—[—-pn_u(x)ﬂ—{—pm(x)

POSSESS  CONLENUOUS derz'vatz‘ves of the second order, and the funclions
E;(z, o) are continuous and bounded.

The jormulas (11) can be differentiated (n — 1) times with respect
to x, conserving each time the highest term tn g only, so that

xz
y, (z g) efoimaz
(13) —=——=e¢® o’ [o, ()] {17, x) + } )(s—~0 1,...,n~1).
3. A detailed discussion shows that ¢f the condition 2° of Theorem 2
s replacéd by a more resirictive one:
27, The functions

& pi ©odpy ( .
Pof) Gpulf) 4o (2)  (i=1,2,...,n)

are continuous and of bounded variation on (a,b), and the arguments of
all the differences

@ (x) — ; x) (2,7=1,2,...,n)
satisfy Dirichlet condition on (a, b), then
efzp;_(z)dz ¢ (x) E(z,
(14) y,(z,0)=€* { (&) + = +—(U’—)} i=1,2,...,n)

0
and the functions
dz’?;_(x) ag, (x)
dx* dx
are continuous and of bounded variation on (a, b).?)

(A=1,2,...,n)

%) An analogous theorem was proved by G. D. Birkhoff, On the asymptotic
character of solutions of certain linear diff. equat., Trans. Am. Math. Soc. 9 (1908)
1) pp. 76—179.
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4, If the conditions of Theoreme 1 and 2 ere not satisfied, the
discussion of the asymptotic character of solutions of (I) and (II) pre-
sents considerable difficulties, and even the formal character of the series
(5) may change. For instance, if the characteristic equation has multiple
roots [of the same multiplicity throughout the whole interval (a, b)),
then instead of formal series (5) we obtain series, which contain, besides
integral, also fractional powers of . : '

In the speciai case of an equation of the second order

+gp1(x Q)dz+9 Py (%, 0)y =0,
P, (%, Q) =J_.§)9'Jpxj (m)a ps(%s @) :Jg.z) 277 Py (),

suppose that the characteristic equation has a multiple root ¢ () = — 1 p,. (2}
for all values of @ in (@, b), so that

pm(m)? — 4Py (2) =0 on (a, b).
Then it can be proved that ejther:

v(@)=—g =g — Epzo(x) Pia (#) + P (%) =0, .

in which case the equation has two solutions of the form

eftp(x)dx *
Dy (z)er ; (A1=1,2),

v=0

the infinite series being convergent on (2), or: w(x)= 0, in which case the
equation has two formal solutions

4 % '
efpmaztVe [Tomar & .
y;,(x, Q)ze 8 a 2.7/;(7)(3“)9 2)
r=0
where the sign (--) corresponds to 1= 1, the sign (— ) correspondg to 4= 2.
It is easy to prove the asymptotic character of these formal series.

§ 2.
The Green’s function in general.

5. The “boundary problem (L)” consists in the determination of a
function y(z), which satisﬁes the differential equation

(D) Ly)=y™+ P (2)y"V+...+ P, (z)y=f(2)
and n supplementary vconditions

.'}cr'

(amy Liy) =3 [y*2(0)de, (1) (i=1,2...,n)

-
‘
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We suppose that
10, The functions

(1) P,(2), ..., P, ()
are continuous on the interval (a, b) and the functions
(2) o, (x) (6, k=1,2,...,m)

are of bounded variation, the integrals being taken in the sense of Stieltjes.
2°. The linear operators ’

Li(y)s Ls(9)s -5 L,(9)
are linearly independent.

If we replace the operators (Il) by any n linearly mdependent linear
combinations with constant coefficients, we obtain a problem which is
eqmvalent to the problem ( L), a.nd we shall make no distinction between
all these problems.

If the function f(z) is not equal to zero identically on (a, b), the
problem is non-homogeneous; in the contrary case the problem is called
homogeneous.

If the homogeneous problem admits of at least one solution, which
is not ldentlcally zero on (a, b), such a problem is called compatible; if
only y = 0 can satisfy the homogeneous problem (L) it is mcompatzble.

‘Denoting by
(8) th (5,k=1,2,...,0;v=1,2,3,...)

the points of discontinuity of the functions e;,(t), the end-points a, b,
inclusive, we can write the operators L;(y) in the form:

(4) L(y) = 225"’ "‘“’(t"‘>+2f Y- (1) dB,, (

where the constants §; -are determined by the jumps of the functions

e, (t), and the functions B, (¢) are continuous and of bounded variation.
Finally, integrating by parts, we reduce L;(y) to the form:

(5) Ly =3 Sy )+ [y mdn)

where y{; are constants and y,(¢) are continuous functions of bounded
variation on (a,b).?) '

8) A special case of the operators (1I), where the number of the points of
discontinuity was finite and the funetions 83 (¢) were absolutely ‘continuous on (a, b),
was discussed in my paper 1). A more special case, where all 8;;(¢) =0, was con-
sidered in two papers by Ch. E. Wilder, Trans. Am. Math. Soc. 18 (1917), pp. 415--442,
and 19 (1918), pp. 157—186.
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6. Definition. The Green’s function of the problem (L) is a
funciton G (z, t) of two variables x, t, which is determined and continuous
with respect to each variable on (a, b), except for

=10 (5, k=1,2,..,n;v=1,2,...)
and for
: x=1, when n=1,
and which enables to represent the solution of the non-homogeneous. pro-
blem (L) in the form of a definite integral

(6) y(z)= j G (z, t) f(t)ds

for ‘an arbitrary choice of the function f(x).

The existence and the properties of the Green’s function have been
discussed by many authors in special cases. It is not difficult to make this
discussion in our general case. Denote by

{7 u, (), %, (), ..., u, (%)
a fundamental system of solutions of the homogeneous differential equation:
(8) L(y)=0,
and let
u{n—l)(x) u'f}n ”(.’E) .
(n—2) (n~-9) ~J P @at
(9) 5(&:)——-— U (x)u,, "(x) =6(a)e“
| u (@) ()

. _ 1 u{"—ﬁ)(t) ceou ‘-’0(;) + i z>1i,

(10) 9(& )= g5y | = 10 ™ ; _ ¥ st
Uy (2) 4, (?)

(11) wy, = L, (u,) (P, k=1,2,...,n),
(12) A =u,l.

7. Theorem 8. Only two cases are possible: either v

1°. The determinant A4 is equal to zero, ¢n which case the homo-
geneous problem (L) is compatible, the Green’s function does not exist
and the non-homogeneous problem (L) is impossible for an arbitrary
function f(z). Or

2°. The determinant 4 40, in which case thé homogeneous pro-
blem (L) ¢s incompatible, the Green’s function exists and is determmed
umquely (at the points of continuit;) by the formula
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u () ... u,,(z)l g(z, 1)
I L

nl . unn Ln(g):c

where the sub&crzpt x indicales, that the operation L, s performed on g (z,1)
as on a function of x. The non-homogeneous problem (L) for an arbztrary
chmce of f{x) has a unique solution

(6) ’ y(x) =ufG(z,t)f(t)dt.

In order to prove this theorem we write the general solution of the
non-homogengous equation (I) in the form ‘

(14) y(@)= S o) + ()
where ¢; are constants and
(15) Uy (2) = f g(z, t)f(t)dt

is a particular solution of (I). Substitution in (II) gives a system of
equations for ¢;:

(16) ké\j;-uikc,‘=——L,.(uo) (t=1,2,...,n)

If the determinant A of this system is different from zero, we can
-determine ¢, uniquely. Substituting the values of ¢; in (14) and using
the relation

b b
L [1()g(z,t)dt] = J1(t) L(g).dt, )

we obtain formulas (6) and (18). Using the fact that f(z) is arbitrary,
we easily obtain the proof of the statement 2° of Theorem 3. The
statement 1°.can be proved, by considering the case f(z)=0. and the
corresponding homogeneous system:

n
(17) Lzuikc'k=0; 4 =|u,|=0.
=1

) This relation is a corollary of the following lemma: If e(1) is of bounded
variation on 1, <1< 4,, (8) is an integrable function on a K 8<b, and w(s, 1) is

bounded on the recbangle hs 1, <, a <s<b and cont.muous w1th respect to 4 for
.

almost all values of s, then fda(l)jf(s)w(s J.)ds_ff(s)dslfw(s, Dda(d).

This lemma can be proved 1hke an analogous (but non equlva.lent) lemma of

T. Carleman, Sur les éguations integrales singuliéres, Uppsala Univeisitets Arsskr.

1923, n° 3, p. 8.
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8, Theorem 4. I} the conditions 1° and 2 of b are satisfied, the
'Green’s function G (x, 1), as function of x, has the following properties:
°. @(a,1) is delermined for all values of ¢ = ty. It is determined

for t=-_a, =B also, if we agree io replace the terma:

gz, a) | a"lg(m, B)

R—-1 L n—1
iz s=a oz =h

tn the expressions of the operators L;(g),, respectively by

. " ig(z,a) . tg(a, &)
lim ——22rl limp 22 7
z2->a+9 333”-‘1 ’ 2> b0 Je®—1 - )
2°. For all non-singular values of t the junciion G(z,%) ts com-
#inuous (n = 2) and has continuous derivatives up fo the order (n — 2)
tnclusive, with respect to z. The derivatives of orders (n — 1) andn are
continuous for x =t. When z =1, the limils

. mlg (e, t) . I G (a, )
g _G=y lim 28
(18) z}:ﬂo gzt ’ s—:ﬁl-o g1
extst, and their difference is:
(19) i OTNGE 0y, 6@

g>t+0 Dz ? Zi—0 6:8" -1

3°. For all non-singular values of ¢ and for x == i the function G (z, )
satisfies the equations: .
(20) ‘ L{@),=0, L(G),=0 (7=12,...,0).
4°. The Green’s funclion G(z,t) ts snvariani with respect o all
linear transformations (with comstani coefficients and nonm - vanishing

determinant) of the fundamental sy.stem of solutions (7) and of the
operators (II).

 5° If the Green’s function G (%, 1) exists, and F (x) ¢s an arbitrary
functz"on, which has an absolutely continuous derivative of the order (n—1)
on (@, b) and satisfies the conditions

{21) L(F)=0 (i=1,2,...,n)
the function F (x) can be represented in the form of a definite integral:

(22) F(x)'=fba(x, t) L(F)dt.

") Thus the Green’s function remains undetermined only for the values §=¢"
interior to the interval (a, ). We shall call these values of ¢ singular, and all
others as non-singular. ’
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The statements 1°—4° follow immediately from 7 and 6. The state-
ment 5° follows from the definition of the Green’s function G (z, ), be-
cause the function F(z) is a solution of the non-homogeneous problem (L),

where
f(z)= L(F).

9. A more detailed study of the properties of the Green’s function
is based upon the notion of the adjoint problem, which was introduced in
the general case by G.D. Birkhoff®). Suppose that

1°.  The functions

P,(x) (#=12,...,2n)
possess continuous derivatives up to the order (n — ¢) inclusive.
 2°  The operators (II) contain no terms corresponding to singular
values of t and no integrals, so thai -
(23) L(y) = 4,()+ B,(s) (f=12,....m),

where
ki p . ”
(24)  A(9)= Z0,y%0(a),  Bi(y)= 3bsy*(b)

and a,,, b,, are given consianis.
Integration by parts gives the so called .,,Green’s identity“:

(25) :’f{vL(u) —ul'(v)}dz = Q1 (u, v),
where

(26)  L(y)=(=1)"y"+(=1)"P(By)" V4...+ Py
is the operator, adjoint®) to the operator L(y), and

n i »
(27) Qi (u, )= Jus=y I (—1/(P,, ;o) ; (Po=1)
i=1 §=0 .
is a bilinear form in two sets of arguments
(28) u(a), u'(a), ...; u"V(a), u(B), w'(),..., u®-V(b),
(29) v(a), v'(a), ..., v (a), v(b), v'(d), ..., v»-1(b).
The identity (25) gives us at once
(30) QL'(“: ‘l)) = - QL(”: u)-
Definition. The problem (L'):
(31)  L(y)=f(2); Li(y)=0 (i=1,2...,m)
%) Boundary value and expansion problems etc. Trans. Am. Math. Scc. 9 (1908),
p. 375, :

%) Frobenins, Cfelle’s Journ. 85 (1878).
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is adjoint to the problem (L), if the operators Li(y) are of the forms
(2) L(y)=4i(5)+Bily)  (=12...n)

(33)  Al(w)= Sahy 0@ Bly)= Jbiy 0 (0)

and dre such that the bilinear form Qz(w,v) is zero for every pdz‘r of
functions u(x), v(x), whose derivatives of the order (n — 1) are absolulely
continuous on (@, b), and which satisfy the conditions

(34) L(w)=0; L{(»)=0 (i=1,2,...,n).

In order to obtain the operators L{(y) of the adjoint problem (L’),-
we have only to introduce n forms

(35) Ly i(u) (¢=1,2..,n),
in 2n variables (28) which, taken together with the forms
L,(u) (1=12,...,n),

constitute & complete system of 2n linearly independent linear forms in
2n variables. Setting:

U, = L;(u) (i=1,2...,2n),

we can write ¢z (%, v) in the form:

(38) Qu(w, )= S0 L0 s(9)= SHLW) L)+ Ly (0) i)
The forms ‘

(37) O Li(v) (1=1,2...,2n)
;n 2n variables (29) constitute a complete systemt of 2n linearly inde-
pendent forms, and the % first of them:

(38) Li(y) (6=1,2,...,n)
represent the n linear operators of the adjoint problem (L) in question,

The adjoint problem (L) is uniquely determined (in the sense of 5,
because every linear transformation of the forms (85) with non vanishing
determinant merely replaces the forms (38) by linear combinations of
them, which are linearly independent.

10, Theorem 5. Under the conditions of b and 9 the adjosni pro-
blem (L') exists and is uniquely determined, and we have moreover:

1° The problem adjoint to (L') coincides with the problem (L).

2°. The homogeneous problems (L) and (L') are compatible or in-
compatible simultaneously and they both have the same number of linear-
ly independent solutions.
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8°. If the homogeneous problem (L) is compatible, the non-homo-
geneous problem (L) has a solution, when and only when the junction
f(x) satisfies the condition:

(39) aff(x)v(m')dx=

where v(x) denotes any solution of the.homogeneous problem (L').

4°, If the Green's funciion G (x,1) of the problem (L) exists, then
the_Green’s function G'(z,t) of the problem (L) exists also, and these-
two Junctions are connected by the relaiion;

(40) G (z,t)=(—1)"G(4, z) 10),

The probiem (L) is selfadjoint, if the adjoint problem (L") coincides
with (L). “In.this case the operators L(y) and L'(y) are identical and
the operators L;(y) are linear combinations of the operators L,(y) and

vice versa. In what followsy if we say that the adjoint problem (L")
exists, we suppose implicitly that the conditions of 5and 9 are satisfied.

11, The adjoint problem was defined only under the assumptions
1° and 2° of 9. The assumption 1° is, of course, essential for the
existence of the adjoint problemy but the assumptioh 2° is-not essential,
and in spite of the fact that the adjoint problem in the sense of Birkhoff .
‘can not exist, if the operators L,(y) contain singular values of ¢ or inte-
grals),; the notion of the adjoint problem can be generalized as to be
adapted to the most general case of the: operators L;(y), and even to
the case where, instead of a single equation of the order n, we have to
deal with a system of n equations of the first order. This generalization
is discussed in a paper which is to be published elsewhere.

Here we may state only the
Addition to Theorem 4. If the conditions 1°—2° of 5. and

1° of 9. are satisfied, the Green's function G(z,t), as funciion of t,
possesses at all non-singular points a continuous dertvative of the (n — 2)”’
order, the derivatives of the (n—1)"" and n'* orders being continuous,
except for t =z (and singular poinis).

This follows easily from (13), if we observe that, in our case, the
adjoint equation L'(z)= 0 admits of a fundamental system of solutions-:

. Y, (1 .
2, (2)= ——~'()) (6=1,2...n),
lc') Cir. Bacher, Application and generahzatlon of the ad]omt, systems, Trans.
Am. Math. Soc. 14 (1913); Birkhoff %); Westfall, Zur Theorie der Integral-
gleichungen, Gottingen 1905,
%) pp: 108111,
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where ¥,(t) denotes the cofactor of the element w* Y1) in the deter-
minant 6(¢):; The expression (10) for the function g{z, ), then, can be
rewritten as follows ’ ’
n «
1 4+ H x>,
s(m )=tz u@u0 oy .o,

After that, our assertion becomes almost obvious.

§3.

The struecture of the principal parts of the Green’s funétion at its poles.

12. In this section we suppose that the coefficients of the operators
L(y) and L,(y) of the problem (L) depend on a complex parameter g,
and that they are analytic on a closed region (D) of g-plane. The region
(®,) may coincide with the whole. g-plane, in which case the above
mentioned coefficients are entire transcendental funetions or polynomisls
in g*%). .

We suppose also that the conditions 1° and 2° of 5 ave satisfied
for all values of .

All the functions considered in the § 2, except the function f(z), are
now functions of ¢, which fact will be indicated by a slight modification
in the notation of § 2. For instance, we shall write:

Pz, 0) wlz 0), L(y,e) eto.
Pi(z), wu(z), L(y) ete
Under these conditions the functions
w(e,0), (2 0) gl t0) wyle) 4(e)
are analytic in g, and the Green’s function
Gz, t,0)

is meromorphic in g, exeept for two possible cases:

instead of

1°. 4(9)=0, when the Green’s function does not exist for any
value of o, and the homogeneous problem (L) is always compatible.

2° 4(g) has no roots at all, the homogeneous problem (L) is
always incompatible, and the Green’s function always exists and is
analytic in g. o

In all other -cases the Green’s function has poles in g, which are
called characteristic values of the problem (L). The Green’s function
does mnot exist for such values of g, the non-homogeneous problem is

1) In what follows it is assumed that o always remains in (D).
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impossible for an arbitrary f(x), and the homogeneous problem has solutiens
which are not identically zero. These solutions are called fundamenial
functions of the problem (L), corresponding to the characteristic value
of ¢ in question.
13. If o, denotes a characteristic value, we have:
Ip(a, t I, i

(1) Gt o=+ REE 4 T(a 1, 0)

where I'(z,t, ¢) is analytic in the vwinity of g=g,. The rational
function of o:

0) — I (=, t) I (w: t)
(2) SRR (LS

is called the principal part of G(x, 1, 0) for ¢ =g,.
We have obviously:

4(0,) =10
and we denote by
(3) (@ —00)% «-s (20— o)™ - (@~ 20)*
(2. 2 >ep=...=¢,=0)
the elementary divisors of the matrix
(4) (% (0),

corresponding to the factor (o — g,).

If we replace the functions (2, ¢) and the operators L,(y) by sui-
tably chosen linear combinations, we always can reduce the matrix (4)
to the canonical form ‘

0 if k<<,
5 u,' =
® o) {(e—eo)“ if k=1.
Since the problem . (L) and the Green’s function G ( z,t, 0) remain inva-
riant under all these transformations, we can assume w.thout loss of
generality, that the fundamental system

(6) ui(x’ 9)

and the operators L,(y) are chosen so as to reduce (4) to the canonical
form (5)*%).

&

(7) c;(0— )%= — Li{fg(x,.t, g)f(t)dt} : (¢t=12,...,n),
a

19) It is worth noting, that the choice of these linear combinations depends

on g,, and that the transformed system (6) might be modified, when we go over to
another characteristic value.
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which gives the expression for the Green’s function:

(8) G(x, t, Q)—— Zﬁt(m Q)Ll{.:():: 19)}x+q(x’ ,Q)-

On setting in (7)
flx)=0, e=gp
we see at once that the homogeneous problem (L) has u linearly inde-
pendent solutions :

(9) ' %, (25 Qg)s + > Un(Z, 0),

when ¢ = g,, and that every fundamental function of the problem (L)
corresponding to the characteristic value ¢, must be a linear combination
of the functions (9).

We can also prove that the u first fractions of the sum in (8) are
reduced to lowest terms, so that the numerators and the denominators
of each of them have no common factors in (¢ — ¢,). For this purpose
it is enough to show that

. . LAg(x,t, 00)}, 50 (¢=1,2,..., ).
It is evident that
o, %z, @) = 0.
Now, supposing that
Li{g(z,t 0)}, =0 (6=1,2..., 1)

and using the equalities

Li{w, (%, 0)}Homee == (06) =0 (¢=1,2,...,u, k=12,...,2),

L {% (%, 0)}e=e. = 0>
we see that the general solution of L(y, g,) = f(«) satisfies the conditions

L(y)=0 (#=1,2,...,4),
for an arbitrary f(«), which is impossible.

14. Theorem 6. If the conditions 1°, 2° of b are satisfied and,
in the neighbourhood of any root o= g, of the equation A{g)=0, the
malriz
{(4) (u; (0))
has elementary divisors
(8) (06—0,)" (E=12...,n;¢2¢e2...2¢>¢ei=..=¢,=0),
then

" The characteristic value g, 18 @ pole of the Green's function,
of the multzplwzty e,.

2° The homogeneous problem (L) has u linearly mdependeni 80~

lutions for o =g, (fundamental funciions).
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8°. The principal part of the Green’s function for o =g, iz of

the form:
e~1

G(O) z, t, — T,,-,(x, t),
( Q)= ,_20(9 @)"*

T (e, t)= 3 @;,(x) %55 (1)
: "8
and the summation is taken over all values of i and s satisfying the

conditions
1iZu; s+kLe,.

The functions @;,(x) (,principal functions of the problem (L) corres-
ponding to @ = ,*) are well determined functions of x and have conti-
nuous dertvatives of the order m on (a,bd). The functions W (1) are
well determired for all non-singular values of t in (a, b).

The functions
(10) - D, (x) (f=1,2,..., p)
represent o complete set of u linearly independent fundamental functions
of the problem (L) for ¢ = g,.

The set of principal functions coincides with the set of fundamental
functions, when and only when all the elementary divisors are simple,
that 1s when e, =e¢,=...=¢,=1. 1

4°. If the matrix (4) 18 reduced to its canonical form (5), the
conditions '

& R
(11) [HOLL9 (0t Ohlomadt =0 (i=1.2 .0 p)

are mecessary and sufficrent for the exisience of a solution of the non-
homogeneous problem (L) for ¢ == g,.

5°. If the adjoint problem (L') exists and if the matrix (4) is re-
duced to the canonical form (5), the functions
(12) : Li{g(x,t, o)} o=co (f=12...,p)
represent a complete set of u linearly independent solutions of the homo-
geneous adjoint problem (L') for ¢ =g, %).

15. The case when the adjoint problem exists and e, = 1 presents
a particular interest. In this case we have

where

(13) GO (z, ¢, Q)——————2d5(a:)![’(t)

Y pp. 117124, On the p. 124 there is given an example, in which the Green’s
funetion has multiple poles and the principal functions appear simultaneously with
the fundamental funections,
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The functions

(14) b, (), ..., Do (z)
and
{15) ¥ (z),..., E.(x)

are certain special complete gets of fundamental functions of the problems
(L) and (L') respectively.

In the applications very often we know a priory two sets of funda-
mental functions of the problems (L) and (L'), and then the question
arises, how is it possible to determine the principal part of the Green's
function, using only these known sets and without reducing the matrix
{4) to the canonical form, whick requires complicated calculations. Let

(18) o, (%), .. pulx)
and
(17) i (t)s oo v (2)

be glven complete sets of fundamental functions of the problems (L)
and (L'). The functions (14) are linear combinations of (16) and the
functions (15) are linear combinations of (17); hence we can write -

(18) GOz, ¢, 0) ———2 ()i (1)
y——]
where
&
(19) b,(x)= D) ¢, 0, ().
' k=1

It remains only to compute the matrix of the constants ¢,,. Using
* the properties of the Green’s function and the eéquations:

L'y ey=0; Li{y;e)=0 (i=12,...,0;7=012...,p4)
and mtegratmg by parts, we easily obtain:

w,(t)— f{G(x t, 0) L' (v; 0) = v; (%) L(G, ).} d= -+ Qu (G, v,)

= f G(2:t, ) { L (v @) — L' (v, 00)} 2 + Qi (G, ).,

The expression (36) 9 of the bilinear form Qg (u, v) gives us now:

» .
={G(‘t’ 2 Q){L’(%H ¢)— L'(Wj: Q)}dx

v I4 I
4 2 Ly (G, )4 L(v;: @) — L, (w5 00)}-
g=1
Mathematische Zeitschrift, XXVIL 2
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If we substitute here
G(=,t,0)=G%(z,8,0)+ I'(x, t, 0),

where G®(z, 1, ¢) is determined by (18) and I'(x, 1, ¢) is analytic in ¢
in the nexghbourhood of p==g,, we obtain, as o — 05°

v;(?) =_2'Pi (t)fﬂi(x) 5% L' (w;, 9)/e.=eo,dm

+2w¢(t) y n+a 8;’ 90)3 L('/’J’ 9)/2_9 (j=1’ 2,..., /“)~'

8=1

Now, 6, (:z:) are glven by (19) and y;(¢) are linearly independent, so that
finally we obtain a system of u? equatzons for the determination of the
matrix (c;,):

n b
(20) g’ 'vek{ fﬂ(w):—eﬂ(wj, 9)/9=._,odw}

_‘}'Zth ‘Psto) La(%v@)/9= —'6.','18) (4,i=12,...,p).

1—1

This system, which admits of a unique solutjon for ¢;,, is simplified if
the operators L;(y) and the bilinear form @z (u, v) are independent of o.
In this case the operators L;(y) do not depend on o either, and we get
instead of (20):

,, b
| il ’
(21) Do [ 0@) 2 L (03 0)lpmg B2 = 84
=1 ¢ :
Suppose finally that
L(y)=y™ +p, (2)y* 0+ ... +p,(z)y+o"y-
The system (21) reduces then to

b
.
é’lc"‘:{” o5 u(2) v (2)dz = 8.

Without loss of generality we may suppose that the sets (16) and (17)
are biorthogonal and normal, which yields:

3 (<) wi(t)-

22 @O (2,1, 0) = —prro——
(22) (=31 0) ney (e—e) jm;

18) éuv denotes, as usyally, Kronecker’s symbol: &,;=0 if i 47 and 8;;=1.
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16. In some eases it is possible to prove that all the poles of the
Green’s function are simple and real. Take for instance the self-adjoint
problem (L) of the form:

(28) L(y=y"+p(a)y™V+...+p.(2)y+ie(z)y
=L (y)+iq(z)y,

Li(y)=L®(y)+ 1L (y)  (i=1,2,,..,n),
where 1 is written instead of o", and the operators L (y), Z®(y), L ()
do not contain A.

In addition to the conditions 1° and 2° of 9 we suppose that

The matriz of the coefficients of the forms L,(y) contains ai least
one non-vanishing delerminant of the order n, whose elements do not
depend on 1.

In this case it is easy to show!) that

(24) Qz(w,9) = S{L(w) M,(0) — L(v) ()},
where =
(25) M,(y) (6=1,2,...,n)

are linearly independent forms in 2n variables .
(26)  y(a)y'(a) ...,y N (a), y(b),y'(b),...,y"""(b),

whose coefficients do not depend on 1, and which,‘ taken together with
the forms L{” (y), constitute a complete system of 27 linearly independent
forms.” Since @y (%, v) does not depend on 4, we have for i=0:

(27) Qu(n, v) = 3 {LO (u) Ms(v) — L (v) My{w)}.
Henes =

3L (w) Hy(0) — L (0) My (w)} = 0

and the bilinear form
(28) T(u, v) = 3 L& (u) Mi(v)

t=1
18 symmetric.

Using all these facts the following theorem can be proved:

Theorem 7. Suppose that the problem (L), whose operators are given
by (1) and (2), te self-adjoint and satisfies the conditions of 16, Suppose
also that the coefficients of the operators L(y), L,(y) are real. The
Green’s function G (z,t, 4) has only simple and real poles (¢n 1), ¢f

1) pp. 183134,
2*
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1°. The function q(z) s of constant sign on (a, b) and is different
from zero almost everywhere on (a, b).

2°, The quadratic form

(29) () =1y, y)= L.‘"(y)M (%),

ts semidefinite and has the szgn opposzte to that of q(x).

Introducing some supplementary conditions it is even possible to get
rid of any restriction concerning the sign of g (xz).

- The ' method of proof used!) is in essential a generalization of
Stekloff’s methods'4). _

The formulas of 15 can be .considerably éimp]iﬁed in the case of
Theorem. 7. Suppose

?2(); 92(2)s > ()
be the given set of fundamental functions of the problem (L) corresponding
to o==g,. We always can “orthogonalize” them according to the conditions:

(30) fq (2) 4() 0, (2) d& ~ T(gy, 3) =8, (kri=1,2,..., ),

and then we obtain easily:

(31) 6% (2,1, 0) = —r—— 2 @:(%) (1)

noy” (9 @) i=1

§ 4.
Existence and asymptotic expreSs‘ion of the characteristic values.

17. This section is devoted to the. discussion - of the existence and
approximate representation of the poles of the Green’s function. We
assume now. that the operator L(y) of the problem (L) is-of the form

(1) L(y= L(y,e)—y‘"’+P(w e)y‘”"’+ -+ P,(2,0)y,
(2) P,(=, 9)—9 (%, 0 ')—-Q‘Ze"pij(x) (E=1,2,...,n).

We shall first dlscuss the case in which the operators L, (y) contain
neither singular ‘values of ¢, nor mtegrals and are polynomlals in g:

(8) L(y)= L(y,e)— eL“’(y),

where L"’ (y) do. not depend on e:

1)-pp. 131141,
1) Sur Yexistence des fonctxons fondamentales, Atti d. R Acc. dei Lincei (5¢),
8 (1910), pp. 166—167.
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Lé“‘(y) = 48 () + B (9);
<4) Aéﬂ)(y) E (s) (k-—-l)(a) Bé’)(y) = -ﬁx bésggy(kwl) (b)
. =1 . k=1

and af, b¥ are given constants. We shall write also

L(y)=4i(y,e)+Bi(v. 0);
5 B . . n .
B ama=30aw:  Blno=3d B,

Ag to the functions py;(x), we suppose:
1°. The functions '

H p . . .
(6) “’;;ﬁ“’, dpgix)? p;(x) (=1,2,..,m0=2,..,8)

are continuous op (a, b).
2°. The characteristic eguation
B (6) = 0"+ Py (@) 8" + ... 4 By 1o ()84 P (2) =0
kas only simple roots
(n 9; (%), @ (@) - Pu()
-8°. The roois {7)‘of the characteristic ; equation are different from
_ zero and thetr arguments, as well as those of their differences are constant.
It is easy to prove that the suppositions 1°—3° imply that either:
4;. Theé functions {7) are of the form
) (Pi(x)’=nig(w)' (i«'=1,.29.‘.,?2:§,
where 7, are constanis which are distinct ‘and differeni from zero, and
g () s a positive function which possesses a second derivative continuous
on (a, b) and which kag a lower bound go' different from zero: .
g(2) 2> 0.
Or: 4. The junctions (7) are of the form:!
‘pz (.’L‘) = j: n()gl (ﬂ?)

where 7, 15 @ constant d%fferent from zero and g (x) are positive and
distinct for all values of = in (a,b) and have the some propemes of
contrnuity as q(zx).

Both cases may be ‘unified in"one notation:

(8) P (%) = ”&;(“’)
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The suppositions 1°—3° restriet considerably the nature of the functions
P;0(%).%%) So, for instance, in the case 4; we must have

pfo(x):“az{Q(x)}' (i=11 2"."; n):
where C; are constants such that ~; are the roots of the equation
D, (&) =&"— 0 &" ‘+ L (—1)"C,=0.

The conditions.of Theorem 2 are satisfied under the conditions 1°-3°
and the region (D) of Theorem 2 coincides with one of the sectors

(9) (61)’ (@2 : ey (61\7),
‘which are made by the straight lines
(10) Re(og;)=Re(ewp,) (5, °=1,2,...,n; ¢+k).

18, Theorem ‘2 ensures the existence of a fundamental system of
golutions ’
ef @, (z)dz B )
(11) pwe=et {n@+E} (i=1,2,..,n)
on every sector (&;) ) (cfr 2).
At the same txme we can use the fundamental system

(12) - u(z, @) (z—l 2,...,m)

of §§ 2, 8, which, in our case, is determined on the whole g-plane. This
system can be chosen in various ways, for instance we can impose the
conditions: |

dl-—l " ;

dz®? ’z=a_ o

The Green’s function G(z, ¢, ¢) may be expressed in terms of either
of the systems (11) and (12). We denote by 4, (@) the determinant which
we obtain from 4(g), if the functions (12) are replaced by (11) in the
formula (12) € for 4(g).
- We find:
nin—1)

(13) A(e)=[Cle * 4;(e)™)
where C = 0 is a numerical constant which does not depend on g.

is

(¢,8=1,2,...,n).

15} The restrictivh concerning ‘the arguments of the functions (7) is essential
for the expansion problem only. Most of the results of this section can be proved
supposing only that the arguments of all the differences of (7) are constant. Cfr D
Ch. IV.

16) In what follows the term “sector (®;)” shall be understood to mean “the
part of this sector which is outside the circle jo| < R,”.

17) We use here a notation due to G. D. Birkhoff; [«] denotes an expression

of the form o+ QE, where E is bounded for large values of |o].
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1t is not difficult to obtain an expression for 4;.0). We set

(14) Wy, = fb%: (z)d=

and denote by /{” the number which is determined as follows: &uppose

we have

a{?’ =b¥=0 when 1> lf')s

and at least one of the numbers

ae’:ls: b(s) (l s g(s)
is different from zero. If all the cofficients aff, b are equal to zero’
(1=1,2,...,n) we set I{’=0.

Now we define the number I, as the maximum term of the sequence
(15) 451 (8=10,1,...7n)
in which only terms with I/ >0 are taken into sccount.

It is easy to show that
(16) ufy = L;(y,;) = o {[4:,] 4 eem[B,, 1},

where

= (a)Za 4@ ‘Pk(“)zé -
{17)

B "ﬂk(b)zb ﬂ)‘?k(b}l' -
and the summation is made over all values of s for which
P re—1=1,.
Replacing u;; by u: in the expression (12) 6 for 4(o). we get:

. | [Ax 1] -+ eew,‘ [Bn], [Aln] + eewn [B
(18) A](e)—__-__- AT SR R _( . 1,
[Aﬂ1]+eewl [Bnl]t sees AMJ-{— getn [-B !
where e .
(19) lv"__zl'"}'le‘}‘-'---/f—ln,
and (13) gives then:
’ rin—~1)
(20) A(e)=0e T T 49(p),

(4,1 + e [B,,], . [Am] - e [B;,J |

...................

[4,,]+ e [B,,], ..., {A n.] + eeva [B )
It ought to be noted that the formula (18) is valid only on the

(e1)  4%e)=
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sector (&), but the formulas (20) and (21) are valid on the whole
¢-plane.
19. It remains now to discuss the rootz of the equation:

(22) 4% (e)="0.
Each of the equations
(23) Reow, =0 (t=1,2,...,n)

determines two rays (0—»co) on the g-plane, so that the equations (23)
together determine 2u (L 2n) distinct rays. We shall denote these
rays by

(24) dls d‘z, LRy d‘zy:

and by <uj+%) the argument of the ray d;. We suppose then. that the
rays are ordered so .that '

0y <oy <. <ty < 2a.
Let

(25) d;: k;: LR d;,u

be a second set of rays which are different from (24) and arbitrary,
subject only to the condition that the sequence

(26) . didydydy... dy dgy d

progresses in the counter—c)zlockwise sense.
The rays (26) divide the whole g-plane into 2 sectors

(27) (T1) (Za)s +o s (Tan)-
Consider one of these sectors, say (T;), and let
w? w? ..., w,f?
be those numbers of the set
(28) Wy, Wy, « ey W,
-which. lie .on the rays ‘perpendicular to d; and dy.,.*) Now, if we set
(29) | =i eV
it is always possible to arrange the numbers (28) so that
(30) Wil <<l <o<iln<.. <]
If all the numbers 4y aI:e<> 0, we set 7;==0; if all the num’b,érs i
are <0, we set r,=v;, and we must modify the inegualities (30)

18) If k is an integer different from 1,2, ..., 2u, the symbol di denotes the
ray d; where 7 is the positive residuum of k¥ mod 2u. The rays dj, dj+. constitute
thé entire straight line through the origin.
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accordingly. The remaining numbers of the set (28) can be divided into
two groups (w’) and (w”), which are characterized by the conditions:

(81) %e(gw’)»«oo; Re (o w”)— -+ o0,
as o] — oo on (T)).
20, The substitution
pe~ VT ={=f+yY—-1

transforms the rax d; to the positive part of the imaginary (-axis, and
the sector (%;) to a sector (T ) of the [-plane containing the positive
part of the imaginary {-axis. We have on this sector (T):

(82) 49 (o) = e H,(2),
where
(83) H, () = (M9 e .. [ME] ™52

We denote here by
md <md <...<m?
the real exponents and by
' MY, ..., M2
certain constants which may be easily expressed in terms of the ex-
ponents 17 and of the conétants 4,,, B;, respectively. We note only:

& o .
ml(j):'_:{ lj +"'+1‘t;, ' lf ’Kj>0,
0, if 7,=0.
(34) “
E 4) {lv?+1+---+lg), it ¢ <w,
0,

m., .
it =
| Ay dyo.. Ay Biais . Bin Au...Al,jBi,jH..'B“ |
MP=| . o , },j?zl . .o
' AnhlAﬂﬁ- . 'AnnjBﬂxj-i-l' . -Bﬂn ‘ I Aﬁl Ant Bnr ol Bﬂﬁ '

where the index x; is determined as follows: if some of the quantibies
Reow, remain always < 0 on (), then x; is the greatest value of the
index ¢ for which Re o w, < 0 on (3: ;). Otherwise », = 0. It is obvions
that %; < 7.

21 Theorem 8. Suppose the conditions 1°—3° of 17 to be satisfied
and all the constants _
M?, M? (7=1,2,...,2u)

?
to be different from zero. In this case the problem (L) has infinitely
many characteristic values, which can be disiributed info 2 u groups.



26 J. Tamarkin,

The values of the j* group lie in a sirip (D;) of finite width,
parallel to the ray d; and including this ray. Dendting the numbers of
- the 3™ group by

QF’! ng:--" Q‘(,ﬁ,... (|9{’7I§]@§”l§-~)
we have

(35) \géﬁ\=:naTj-"_-f:”Tn{1+o(%)}_m)

?
We omit the index j in (33) for the sake of brevity, so that
(36) H (O =H{) =M ]emt +... + M) ema,
M40 M=0 m<m<...<m,.

In order to prove Theorem 8 it is enough to show that: 1°. All the
Toots of the equation

(3%) H(£)=0

whish are in the sector (T) can be included in a strip (D) of finite width,
parallel to the imaginary {-axis and including the positive part of it.

2°, If these roots are denoted by
cl’ Cg, .y &-k’ e (lcllglcﬂlé")

we have
2k 1
(38) 6] = o {14 0 (3)}-
22. The proof is baséd upon the following important

Lemma. Given a function
(39) - F(z, 2y, ..., 7,)

continuous in x,,...,x, on a finite closed region (D,) of n-dimensional
space and analylic in z on a finste closed region (D,) of the complex
2-plane, and such that for every fixed point (z,,..., z,) in (D,) the
equation

F(z,z,...,2,)=0

has no more than N distinct. roots, N betng z'ndependem of the posstion

18) This fact was proved independently and by different methods by Ch.E. Wilder
and by the Author [®) pp. 419-433; *) pp. 160—176]. Our proof is reproduced in a
note which is going to appear in the Journal of the London Mathematical Society.
We use here Wilder’s proof because of its greater simplicity and becaunse of -its
applicability to more general cases. In 1920 analogous resyis were obtained sub-
sequently by G. Pélya, Geometrisches iiber die Verteilung der Nullstellen etc., Miinch.
Ber. 1920. Cfr. also the Thesis of E. Sochwengler, Geometrisches iiber die Ver-
teilung der Nullstellen ete., Ziirich 1925.
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of this point in (D). If for any point in (D) z is al a distance
greater than 6 from zeros of (39) and from the boundary of (D,), then
| F(z, 2y, ...,2,) | = F, >0,

where F, is a positive constant which depends only on 6, but does not
depend on the position of the point (z,,...,%,) wn (D,). ")

23. Theorem 8 can be proved immediately for the simplified
equation
(40) Z{l)=Memé4 .. .+ Memst=0.

Let { =&-7V—1. Since

E Maem‘;t(l_{_ ‘E,le(mx~m¢)¢), if £20,
(41) z(¢)= -
l Ml em::(l_‘._ Ze(ﬂﬂ-mx)f)’ if §§O,

i=2
& positive constant % can be determined such that

(42) Z({)+0 for ;éi;ﬁ,

which proves that all the roots of the equation (40) are within the

atrip (D) of the width » between the two straight lines
Rel=t=t2

Hence we can confine ourselves to 'the discussion of the values of { inside
the strip (D). Now it is easy to prove that in every rectangle of (D)
of the form

h
(1L, HES TR S ES
the number N of the roots of (40) is contained between the limits
-1
(43) Q}‘,(md'”mx)(%'“ﬂ:)io- )

The number in question is expressed by the ratio of the increase
of the argument of Z({) to 2=, when { describes the contour of (I7,)
counter-clockwise. In other words, if we set

Z({)=Rei®=X 437,
we have
(44) N=o fde_—_ g;fd@,
A (I
where g is any constant greater than A.
- % p. 422,

%) We suppose that no roots are on the boundary of (/I,). Cfr. *) 168--170;
297-298; %) pp. 420422,
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The expressions (41) show that the parts of the integral [ taken over
()
the vertical sides of (/1) contribute ’

1 . .
g (Mma~ my) (9, — ;) + 6,5 &,— 0 when g — co.
On the other hand, if we write the integral (44) in the form:

Y

P fd arctan % ,

we see at once that each of the horizontal sides contributes in absolute
@1

5 where @ denotes the number of real roots of

“value no more than
the equation

the left hand member being considered as a function of & alone, for fixed 7.
This equation is of the type:

(45) N A eui=0

i=1
where 4, and i, are real constants. Or, using the complete induction,
it is easy to show that the equation (45) has at most ¢ —1 real roots,
8o that & -+1<o. The number N being independent of g, we have

(46) 5 (Mo~ m,) (0~ ) — 0 S N < 5-(mo— m,) + 6, Q.E.D.

24. Now we can prove that, if the interiors of small circles of the
radius & centered at the zéros of Z({) are excluded from the strip (D),
then in the remaining part (D;) of the strip:

(47) |1Z(8)| 2 25> 0,

where Z; is a positive constant depending only on &.. This fact can be
proved by a simple application of the lemma of 22, if we observe that,
{ being in any of rectangles

]El__ oL 2ln=_<~n‘< 2(14+1)=,
the function Z({) can be brought to the form:
Z(2) =,-é Mems+aV =i F(z, 2, 5, -+ - ),
where 2z denotes the correspoﬁding point of the rectangle
[5[..2, 0<n<2n (z=¢—21n)

and z,,2,,..., %, are real parameters, whose values are on the interval
(0,2n) and which depend only on 1.
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Returning to our function H({)=1[Z({)], the same reasoning as
before shows that all the roots of the equation
(48) HE) =0,
which are in the sector (¥ ), lie in the interior of the strip (D) for %
sufficiently large. Moreover, if { is in (D;), we have

(49) HO =z + 2,

where w({) is bounded on (D). It we take a rectangle (II,) whose
boundary has no points in common with excluded small circles, and which
is so far from the origin, that on its boundary

(¢)
2 <1,

a known theorem asserts that equations (48) and (40) have the same
number of roots in this rectangle. The formula {46)s thus being proved
for the number of roots of (48), a simple geometric consideration proves
the evaluation (38) of |, ]. %)

25. Denote by (T/”) the part of the sector (%;), which remains
after the interiors of small circles of radius 4 centered at the roots
of (48) are excluded from (%;). The ray d; divides (T,”) into two
parts; denote by w the sum of those of the numbers

Wys Wy veos Wy
which satisfy the condition
Reow, =0,
when o remains in one of those parts. Using the- formulas (32), (33),
(86), (41), (49) and the property (47) of the function Z({), we have
(50) |49 (g)emew| 2 Ny >0,
where N;s is 3 pqsitive constant which depends only on 4.

26. We need to make but slight modifications in the preceding argu-

ments, in order to discuss the more general case of the operators L,{y): *}

» &
(51) Li(y)= g;e’Lé”(y) = 4,(y,e)+ B,(y. 0) + [ &(z 0)y*?(z)dz
where now
: b
LP(y) = AP (y)+ B (y) + [ o, (=) gy (2)da.

In this case we replace the condition 1° of 17 by a more resiric-
tive one:

Y pp. 170171,
1y Cfr. (3) of 5.
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The functions (6) are continuous and of bounded variation on (a,b),
and the functions a;,(x) possess first derivalives continuous and of bounded
variation on {a, b).

In order t6 evaluate

wix = L;(yss)
we can use now (14) 3 and apply the following

Lemma. If the function w(z) is of bounded variation on (0, Z).and

the constant ¢ 4= 0, then

z
(52) fw(z)e“-”dz=-_1§+e902§;

] e e .
if y(z) ts merely tntegrable, then

zZ
(58) Jw(z)ecesdz = B 4 Beeez,
0 .

Using the notations of 18 and integrating by parts, we obtain:

b
(54) [, @4l (2)dz
= 0m*{[— &, (a) ,(a) 9, (a)"*] + eom [, (B)7, (B) 9, ()" *1}.

The number J, is defined now as the maximum term of the sequence
(55) s +n—2, I4s—1 (8=0,1,...;n)
where s; denotes the maximum value of the index s, for which

a"(a:)$0 on (a,b)

and only terms with /" = 0 are taken into account. The constants 4,
B,, must be changed accordingly.

After these modifications Theorem-8 remains true in the more general
case (51) of the operators L, (y). %)

Theorem 8 remains true for all the problems (L) w1th the same
functlons Pio(x), py(x) (£=1,2,...,n) and the same numbers
l; s 8, Aiz, Bsz. We can even say that, if d is any given positive
number, arbltranly small, and circles of radius & are described around
all the characteristic values of the problem (L) then. all the characteristic
values of the problem (L) sufficiently large, lie inside these circles, the

*%) The case where the operators L, (y) contain singular values of ¢, instead of -
integral terms, has been discussed by Wilder %), In the same paper a theorem analogous
to the theorem 8 has been proved under shlightly more general suppositions con-
cerning the- coefficients M. For a detailed discussion of some of the most important
special cases see *) Ch. IV."
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number of the characteristic values of either of the problems (L), (L)
being the same.

§ 5.
Expansion of the Green’s function in partial fractions.
27. The results of § 4 enable us to deduce a formula for. the. ex-
pansmn of the Green’s function in partial fractions.

Theorem 9. Suppose the conditions of Theorem 8 (21, 26) 1o be
satisfied and denote by

(1) ) Qgs-ﬂ--; me-‘-n
the characteristic values of the problem (L) ordered so that
lal<le] L. . Lo, L

If the interiors of emall circles of radius & around each of the points (1)
are excluded from the o-plane, then on the remaining part (Ds) of the
‘plane we have

(2) G(x t’g)si [“ -1 ?
where G5 is @ positive constant depending only on 8.
For all values of o different from (1):

(3) @z, t, 9)=§G(”(¢,h9),

that is the Green’s funciton ¢s equal to the sum of all its principal
parts, If n>2, the series (3) converges untformly in z,4 on (a,b)
and tn @ on (D;). If n=1, the series (3) converges uniformly in ¢
on (Ds) and in z,t on every portion of the region

alz<h, a<Lt<h
which has no points in common with the lines r =i,z =a,z=5.

28, The boundaries of the sectors. (&) and (¥) divide the whole
o-plane into sectors (), each of them being simultaneously and entirely
in one of the sectors (&) and in one of the sectors (T). Consider one
of these sectors’(3R) and denote by (Rs) the part of (R) remaining after
the small circles of Theorem 9 are excluded. THe numbers

(4) Wy, Wey ovey W,
can be ordered so that on (R) _
(5) Reow, L Reow,<... <§Regw,§0§§ﬁegw,+,g... L Reow,.

Then the number w of 26 is equal to
(6) W= Wy .o+ W,
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There exists also a fundamental system of solutions of L(y)=0, which
is of the form [on (R)]:

e,fch (z)dz
y;(x,0)=¢e* ‘ [7:(=))
(7) 'y, (%, 0) "f""(’)“ s ¢
Sae) 1 g () ()

(t+=1,2,...,n; s=1,2,,...,n—1).
. We shall use this system instead of the system w,(z, o) of § 3, in
order to express the Green’s function, and we shall conserve other nota-
tions of § 3. We have:

o — ”A(x’t,e)
(8) G(m’ t:@)""‘( 1) —__A(Q—) >

where .
. y1(x’ 9)’“" yn(‘xs Q)’ g(x’ ¢ 9)

(9) A=, t, )= | "1 (@) o tg,(0), L), |

......... ..

Upy (€)s oves Unn(e)y  La(g),
The function g (=, ¢, 0), by virtue of (10) 6, can be written in the form:

1y +if x>
(10) 9(27, t9e)=i§£yk(z’ Q)Zk(i, 9) (__ lf w<t)’
where
(11) 2, (1, @) = ki8]

8(t,0)
and Y,(¢, o) denotes the cofactor of the element y=(t, ¢) in the deter-
minant (2, ¢). It is easy to show that
t

- ,;' 1dz
(12) alhe)=e ¢ Bl Gg9 ),
where
-1
13 =,
(13) 'Pk() ~'h¢(3)¢'(_¢k(t))

Adding to the last column of 4(z, i, ¢) the
lﬂt 2nd T.th (T+1)th nth

columns multiplied respectively by
i 1 1 1 1
"2'z1(t, Q), gz,(t, Q), ey -2'72,(t, Q), '——2'Zt+1(t, g), ceey -—--2—2”(t, @)’ 8)

% p. 392,
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we obtain '
Ly (2 0)s s Wiz, 0) go(2s 2 @)5
[ . (o (¢, z
(14 dla g =l oo tle) 6l Nt
i
(@) oes ()i Bulti0)
where {
;5 iZy,s(:c yeleg(te) i x>0,
{15) gol®, 7, Q}SB ‘
% (z, 0)2,(2, Q) if z<i.
g:(t,e)= gm—g‘g%k(e A Q)”“’" Zugk&ojzk@a@)
k=r+
= - Z’ 4;(thr0) %, (3, 0) +235(yk,e>zku,@>
k—-—z+1 k=1
(16)
- st f,(w,e ) vp=0(z,2) do
k=t+1
-+ sz(t, e)f »0) ¥V (=, o) dw.
k=1 ¢

The functions

k3
ef opimraz N eftpk(:v)dz
et (k=1,2,...,t; 2 21}, et (k=t4+1,...,n; 21

being bounded on (), the preceding formulas show that:

(17) go(xy L Q);‘—Z,;E:«T’
(18) 9,-<t,e)=e"7§~1 o (i=1,2,..,n),
(19) A(z,t,0)=gi-r+1eev .
Since the determimant 4 (o) in this case coincides with 4. ;{0) of 18, we have
(20) 4(9)= o' 4% (),
and finally, using (50) 2

e o l4l=mte)| - | B

G z, t 9) A(Q) -—-Iv:,[giu-—l’

which proves the inequality (2).
Now we can construct a system of closed contours

(C1) (Cy), ...y (Cx)s

Mathematische Zeitschrift, XXVIL 3
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such that the length Cy of (Cx) is of the order O(Ry), Ry denoting
the shortest distance of (Cy) from the origin, and such that one and only
one characteristic value of the problem (L) lies between two consecutive
contours (Cy), (Cy41). Such a choice of (Cy) is always possible because
of the theorem 8, 21.
Let
015 Qa5 + 4y ON

be all the distinct poles of the Green’s function, within (Cy). On the
one hand we have -

J(z,t,0)= J'G(a: he )dg = G (=, t, g)—-ZG"’(m 1, 0).

2 l’_—

On the other hand, if #n > 2, by virtue of (2) we have
f |de’| G, Cy

lo'—el-le' "= 2z pn[1_lel
zg(1-42]

(2.1, 0)| S 52

-0,
" n

when N — oo, uniformly for «,¢ in (a, b) and ¢ in (D;), which proves
Theorem 9 in the case n >2.

If =1, the Green’s function G(z, ¢, ¢) has a very simple exs
pression and the corresponding statement of Theorem 9 may be easily
proved in this case by applying Lemma 1,.38. '

29. Theorem 10. If F(x) is an arbitrary function which has an
absolutely continuous derivative of the order (n —1). on (a, b) and satis-
fies the conditions:

(21) L(F)=0 (¢=1,2,...,n)

for a certain value of o, dz‘//ereht Jrom the characteristic values of the
problem (L), t_hen

@ 4 .
(22) =3 S L(F,0),6"(,1t,0)dt

r=1g
this expansion being umiformly convergent on (a, b). The conditions of
Theorem 9 are supposed o be satisfied.

The formula (22) follows immediately from the expansion (&) of. the
Green’s [unctlon and from the formula [(22), 8]:

F(=z) =afL(F’ ), G(x, 1, 0)dt.

We shall call (22) the “preliminary form of the expansion of an
arbitrary function”.
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§ 6.
Equiconvergenee Theorem.
30. In this section we shall transform the preliminary form of the
expansion of an arbitrary function F(2) so as to get rid of most of the

restrietions imposed on F(z), and even as to be able to draw some general
conclusions concerning the general cade of an integrable F(z).

We shall suppose here that all the conditions of Theorem 8, 21 are

satisfied, that the operators L;(y) of the problem (L) do not contain inte-
grals, and that the functions

p{x) (=0,1,..,4i=1,2,...,n)

possess continuous derivatives of the order (n — i), so that the adjoint
problem exists (9).-

Let ¢ = 0 be not a characteristic value, and F(x) be an arbitrary
function which satisfies the conditions of Theorem 10 (29) for o = 0. The
function F(z) can be expanded according to Theorem 10 as follows

w 0
ey = 5 (L6908 L) = L)

the series being uniformly convergent on (@, 3). Denote by

25 (F)
the sum of the N first terms of the expansion (1). Applying Green’s
identity (9) we have:

b . 1)
!G"’(m, t O)L(,(F)tdt_=afF(t)Lé(G‘”’),dt—%—QLO(F, a™,,

whence
(2) Sy (F)= 3P (F)+ 3P (F),
where

(1) y ? ’ (¥
(3) =8 (F)——=v£jl";fF(t{Lo(G N dt,
(4) 3 (F) = ):QLD (F, ¢%),.

31. Since

(5) G (z; 1, 0) = Res (228

e=e, 2—€
3*
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we have:
¥ b
(1) — M

2y (F)= %’!F(t)L{Res o’ }td

1 ’ ’
) - _Zf F(5) Res 5 Li{G(=,1, ), 48

d

ﬁ:f_—, ejm Le{G(z, t. o)}, dt

where (Cy) denotes the contour of 28 %),

The- function G(x,1, 0), as function of #, satisfies the adjoint pro-
blem (L), and therefore '

L'{G(x; t, Q), Q}t £ 01
so that in (6) we can replace

— L(;{G(x, t,0)}, by L'{G(w, t,0), 0}, — L:,{.G (z,t,0)},-
Taking into account the definition of the operator L’(y) we obtain
easily:

(7) , =@
- 2—,‘=_—1 f de f F(1) 3 (= 1)"7"¢" oo () T2t 4o (),
m=1

where aN)(F) denotes the sum of terms of the form:

(8) = f defx(tmt) Llale) gy,

z(#) being a continuous function and integers » and u satisfying the
condition:
(9) ptxln—2

32. In an analogous way we shall transform the sum 33" (F). Here
we have to consider three different cases:

1°. The matrix of the coefficients of the operators L;(y) contains at
Ieast one determinant of the n*t order, which is free from the elements of

%) The integration with respect to ¢ must be taken also over a small circle
around the origin, because of the singularity of the integrand at the point o =0.
The correspondmg term vanishes, however, because of

L{G(z, t,0)},=0.
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either of the columns corresponding to y(a), y(b) and which is not
identically =zero.

2°, All the determinants of 1° are identically zero, but there exists
at least one determinant of the n'® order whick is free from the ele-
ments of one of the two columns corresponding to y(a) or to y (b), and
which is not identically zero.

3°. Among all the determinants of the n'® order of the matrix in
question only those are not identically zero which contain both cclumns
corresponding to y{a) and y(Bd).

Without loss of generality we may suppose that the determinant in
question is different from zero for ¢ = 0.

" 33. Suppose we have the case 1°. The formula (36), 9 shows:

ki ’ 3 {0
(1) Qu(w,v) = I {LE () o) + Lk () L ()},
where
LY (9 (1=1,2,...,n)

are the operators of the adjoint problem (L’) for o = 0, and where each
of two sets of linear forms

LY (), L™ (o) (¢=1,2,...,2n)
represent -a complete set of 2n linearly independent forms in 2 n variables:
(1) yla),...,y®0(a), y(b),..., y*"V(b).

Suppose that the function u(z) satisfies the conditions:
(12) LY (u) =0 ({=1,2,...,n).
We can express n of the 2» quantities
(13) u(a), ..., u"v(a), wu(d), s utmb(h)
in terms of the n remaining ones, which may be taken as

L (u) (1=1,2,...,m)
and we can set:

LY (w) =u(a), L. (w)=u(b).
If we suppose that the function u(z) satisfies the conditions
(14) L9 (u)=0 (6=3,4,...,n)

in addition to the conditions (12), the values u{a), u(b) remain arbi-
¢rary and we obtain:

Qr,(u, v)=u(a) L (v) + u(b) LY (v),
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which entirely determines the operators
Lf(0), I8 (v).

. The same calculations may be made for any value of g, and so we can
define the operators

L:l (v: o) L2 ('U,, o)

as the coefficients of u(a), u(b) in the expressions of Qy(u,v), if all
the quantities

u'(a), ..., unV(a), ' (b),...,u"V(b)

are expressed in terms of u(a) and u(}), according to the conditions

Lw)=0 (i=1,2,..,n); L, (u)=0 (i=8,4,...,n).%

Suppose now that F(x) satisfies the conditions
(15) LO(F)=0 (i=1,2,....,n); Lo%(F) =0 (i=3,4,...,n).
"On substituting
’ w(@t)="F(t), v(t)=G%(=,10)

in (10) we have:
(16) Qu(F, @), = F(a) LY (@), + F(5) L (@"),.-

The Green’s function G(z,1,0), as function of ¢, is a solution of
the adjoint problem (L”). Hence

L@, 0)=0 i=12)
and , o
O A _ 0 G(:c,t e') L; (G, e")— L;” (@), .
) LT (7= L {911,_, —e }t L,Rfj{ e’ }

The function under the sign Res is a linear combination of the
function G (z, t, o’) and of its first (n — 1) derivatives with respect to t,
taken at t=a, =25, the coefficients being rational functions in ¢'.
Expanding every coefficient in descending powers of o', we shall retain
only those terms for which the exponment of o’ plus the order of the
derivative is at least (n — 2). Computing the Res of the sum of these
terms we obtain a perfectly defined function of z, which we denote by

9 (2) ((=127=12,..).

From this definition of Z°(2) it is obvious that
18) ¥ (F)= .>:{F<a) EX (z) + F (b) ~“"(z)}+oz‘f’ (F),

34y The coefficients of the operators are in general rational functions in g, so
that it is necessary to suppose that e is different from any root of their denominsators.
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where o (F) is & sum of products of F(a) or F(b) by the terms of

the form:
" G (=, ¢, @)

; [an@reese

<1 ) 2n }FH O e ( ) atk t=a or {=b

0,‘.(9) denoting a function of the order O (p*) for large values of le], and
(20" ' %t p<n—2.

34. In the case 2° of 32, if tae function u(x) satisfies the com-
ditions (12), only one of the quantities u(a), u(b) can be considered as
arbitrary, and this quantity may be taken as equal to L1 (w).

It is obvious also that, if F(x) satisfies the conditions
(21) LY(F)=0 =12,...,n,; L(F)=0 (§=2,8,...,n),
there must exist a relation of the form: . '
(22) F{b)=a,F(a) or F(a)=1b,F(d),

@y, by beeing constant factors, which in special cases may reduce to zero.
Instead of (16) now we have respectively

(23) Q1 (F, "), = F(a) LY (6™,
ar
(24) Qu(F, @), = F(b) L' ("),

Using the operator Lf” we can construct the function &, (z) in the
same way as the functions Z,°(2)have been constructed above uging the
operators L', . According as we have the first or the second case of
(22) we set: ‘

(25) @)= 5, (x), EN(a)=
or
(26) EW(z)= 5P (2) = &, (x),

and we obtain for 37 (F) the same expression (18) as in the case 1°.
In the case 3° we set
5,‘”(3’7) =0, "‘2’(:1:) =0,
and the formula (18) remains true, if F(=) satisfies the conditions
CONE LOE)=0,  ISNB=0  (i=12...n)

35. We see finally that for every function F(x) which possesses an
absolutely continuous denvatlve of the (n —1)"® order, and which satisfies
the conditions (15) in the case 1°, (21) in the case 2° and (27) in the
case 3°, the sum Zy(F) can be transformed as follows:
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] v (F)= f‘”FU)Z( H" pma(t)Resgm—xu_mMﬂ

atn—m

(28)
l +2 {F(a) Z0(@) + F(8) 2 (@)} + o (F) + off (F).
. =

The right hand member of this equality has a definite sense for every
integrable iunction F'(z), which takes - on definite values at the points
a,b. We shall prove moreover that of (F) and off (F) tend uniformly
to zero for every integrable function F(z), so that the whole dlscussmn
is reduced to that of the two first terms.

It is important to note that the assumption that 9 =0 is not a
characteristic value of the problem (L), is not essential. If o= 10 is a
characteristic value, we can start from a certain initial value o = g,
different from any characteristic value, and it is obvious that all the
terms of the first sum of the right-hand member of (28) are independent
of the particular choice of this initial value of o, and the samescan be
proved concerning the limit of the second sum, as N— o0.2%)

The following discussion is based upon a detailed study of the
asymptotic character of the Green’s function G (z,?, o) and of its deri-
vatives for large values of |g|.

36. We shall use the notation of 17, 18, 28 taking into account
that the operators L,(y) do not contain integrals and that, under the
conditions of 30, the expressions (12) 28 for the functions z, (¢, ¢) can be
differentiated (n — 1) times with respect to f.

We have
~e]¢k(z)dz
(29) Lalio gnnste & [y, (1)
where
. ED™ g ()3 —
(30) WE,m(t)'— nk(t)¢'{¢k(t)} ’ ‘I’k,o(t) 'I’k(t)°

We saw in 17 that the conditions 1°—3° involve either 43 or 43,
and in both cases we can write:

(81) 7i(@)=mg(2);  6(®) 24> 0.
For the sake of brevity we set:

z ¢ b
(32) Xi=;r9¢(9’)d‘”§ 5:'"".!9;'(“’)‘19’; _X06=qu(z)dx;

25) Cfr. 45 below.
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o aﬂlgo (%, ¢, @),

(83)  Gom(®:t Q) =fom=""" 5"} Fo,0= (% 4: 0);
8" g (¢,
(34) Gumlts ) =g, = T8 g =g, 0).

Then we have

(85) w;=f‘1’i<“)dz=ﬂixew
5

(36) Re(om,)<...<Re(om) <0< Re(omens) <... < Re(on,) on (R),

[ omert Meemsioto g 2) [y, u(1)], it 2>,
k=1

(87 gom=| .

| _gmnet S eometison, ()0, i 5 <

k=r+1
(38) Gim= @l;+m~n+,1{ - e“en"é’{‘diky’k m(t)\.‘
' 3 =741 . *
| + 5 eemZei~S0 [B y (tﬂ}
k=1 )

37. In what follows we shall use the notation:

o . * !
% Yy oo &y X

= Aoy, s ooy %45 By Base s Bas 1)

= 4{a,;

(89) (—1)" gy Ugg e Uy :51‘
‘ Upy Upg-or Uy Byl (o5 855 2)-

In partictilar the numerator of the Green’s function is:

(40) - (—=1)"d(z,t, 0)=d{y:(z, ); 9;(t, 0); G (2: %, )},

and, more generally,

™G (2, te) - 4{Ys Gims Gom} o —1)
(4>l) Py = 1(0) (m=0,1,...,n—1).
We have obviously d
n
(42) A (e B3 1) =ZA(Q)+i;§1“iﬁjAjﬁ9)

where A4,;(g) denotes the cofacior of the element u;{g) ") in the deter-

minant 4 (¢). Now (16) 18 shows:
Qz_ljeewE'i<Q} lf imls 29*"(-afa

(.43) Aji(ﬁ?) = -1 w_:o,) i =
oY et E. (o) #t d=1v-+1...,m,

*) Here we write uy; (¢) instead of wj; () of 18,
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E,;(¢) depending only on ¢ and being bounded on (). Substituting
in (41) we have.

(44) TEELE g, e K, (o1, 0),
where K, (z, t,¢) is a bilinear form in the two sets of quentities:
(45) ee’ff.x' (¢ =12.., ), et emilZoi=X) (f=141,...,n);
(46) < ee™ =8 (§=1,2,...,7), e-embi ({=141,...,0).
| Denoting these quantities réspectiirely by
(47) ®f, of (5=12...,n)
we have: ‘
(48) Kutm—szm@mm,
where
(49) Q% (v, 1, 0) = [0} (=, 1)] B (0)-

Here the functions E{"} (¢) depend only on o and remain bounded
on-;(ﬁﬁa) The functions w7 (z, t) depend only on :, ¢ and each of them
‘is equal to a sum of products of a function of z by a function of #, both
factors having a second derivative continuous on (c. p).

38. Theorem 11. Undér the conditions of 3V the integrals

aG t, :
PEELYg (xrpgn—2)

(50) I¥M=

f(x) being an a'rbztmry mtegmble /uncnon, and the integrols

(51) 7(”") ' f . (0 )a Gzt e) dat (# ~u<n—2)
- 2= V IC"N) - att =g or t=b '

where
8. (e) = 0(e*) for large |e|,
tend to zero uniformly on (a,b) as N — oco.

First" let us state certain lemmas, which are necessary for further.
considerations?).

Lercma 1. Let ¢(g; 2,2,, ..., x,,) be a functior. of a complex vari--
able o, of a real variable z, and of a certain nenber of parameters
Ty, .., &,y Wwhich is determined on the half-plane
(52) Re(co) <0 (c. constant <+ 0),
for all values of z in the interval (0, Z) and for all valuesof z,, ..., %,

1) pp. 216—217.
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in a closed region (D). Let (I) (v=1,2,...) bea sequence of circular
arcs tn (52) with centers at the origin and respective radii R,, where
R,— o0 a8 y—00. Then, if on the arc (I,), €(o,2,2,,...,%,) %8
analytic +n o and tends lo zero umiformly in ¢,2, 2, ...,%,, as
v — 00, the integral v

fe(g, Z, %y, ..., %,,)e?*dg — 0 as » — oo,
)

uniformly with respect 10 z,, ..., %, wn (D) and with respect 1o z in the
snterior of (0, 2).%) "
We have on (I,):
(02,2, -0y Zp | S &)
where &, does not depend on (g, 2,2,,...,%,) and lime =0.
Hence, setting ‘

co= — R, (cosp+7Y—1sing)

,we have -

| ‘ » s
‘ fﬁ(g,z, Tyrven xm)ecezdelg fere-—R,zcosz’dq’gna”l——gz—”—
) ’ " ’

{
. tof

which proves Lemma 1.

Lemma 2. Under the conditions of Lemma 1, if E (o, z, Tyeo. T,)
is uniformly bounded: and y(z) is an arbitrary integrable functwn, the
mtegml

fzp(z)dsz(g,z Z ... 2, )e"e’-—-—»() as v — oo,
a Iy
uniformly with respect to x,, ..., z, and to «, B in (0, Z).
" If E, denotes the upper bound of {E(g,z, %, ...%,)|, we have:

z
1+e B

]f.,,(z)dz [Eeeez 2| < &, nf;w(zn———-—-dz

‘éEo"{jﬁ:l—(;jofl’i’(z)l'dé+J]W(z)!dz}*’0

if 8, tends to zero so that

R,8,—+x as v-+00.

27) That is umformly with respect to z on any interval whmh ig in the inferior
of (0, Z).
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Lemma 3. If y(z) is an arbitrary integrable function, the integral
8
fzp(z) eedz—0

as je|—>oo and Re(co) <0, the convergence being uniform for all
«, B in (0, 2).

This lemma can be easily proved if we approximate the function y.(z)
by a suitable step-function, for which the. proof is immediate.

1t is important to observe that Lemmas 1 and 2 hold true when
arcs of bounded length of the contours (I',) are slightly deformed, the .
variation of length being also bounded. It is obvious that the contours (G)
of 28 satisfy this condition and they can replace (I}) in the statements
of Lemmas 1 and 2.

Now the first part of Theorem 11 concerning the integral (50) follows
from the formulas (44), (87}, (48), (49), (50), if we apply Lemnma 2 in a
suitable way. The statement of Theorem 11 concerning the integral (51)

is obvious, since the integrand 'is of the order 0(1

39. The preceding discussion shows that if F(x) is an arbitrary
function which possesses an absolutely continuous (7 — 1)* derivative and
which satisfies suitable boundary conditions, we always have the expansion .

P(z)= lim 3y (F)

(58) —ZJF(‘)Z( 1" Po (1) R_e:gm- ———%i_“—,;—’i—)dt |
+ F(a)g7 20 () + F(b)Z £ (

We now shall consider the first term of this expansion separately,
and we shall suppose only that F(z) is integrable. Denote

=i [ e [0 Sar e 50
(54)
-3 f P03 (-1 Pao(#) Res -t T8 gy

y=1 4 m:l
Theorem 12. Let (L) be a problem analogous -to the problem (L)
with the same functions
' Pio(2), Py () (i=1 2,...,m)

and with the same numbers 1 and the same coefficients a' 1"” b( a0
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Denoting by Jy(F) the miegml Jy(F) for the problem (L),
difference
{55) ‘ Iy (F) — Ju {F)
tends lo zero umiformly on {(2,b) as N-w-o0, for every s"ntegméie
Junciion F(x). Denoting by '"(”(x) the fum:twns corresponding to E (x)
for the problem (L), the series
’"m(x) (x)} (f.=1,2)
converge o zero umformly on (a, b), if tke operators L of 33, 34
coincide for both problems (L) and (L))
Under the conditions of Theorem 12, the principal“ terms in the ex-
pressions (44) of
™G (=, ¢, 0) 3"8(s,%,0) ag
atm at™ ’
are the same, so that the difference (55) can be reduced to a sum of
terms, to each of which Lemma 2 is applicable. This proves the first
statement of Theorem 12.
The second statement of Theorem 12 will be proved, if we observe
thas, according to 33,34 both series

2L (@)~ P @), S (@) - FP @)
converge umformly to zero and that the functions
‘ L(.())'{G(x’ t, 9)""’ @(1}, £, 9)}

[

i’

are of the order O\ ) on (Cy).

Theorem 12 enables us to compare the expansions of an arbitrary
fanction F(z) for various problems (L) and therefore this theorem may
be called equiconvergence theorem,

For the special case of Sturm-Liouville’s functions an analogous,
theorem was proved by W. Stekloff®) and by A. Haar®). For the
equations of the 't order, a theorem which essentially coincides with
the equiconvergence theorem (for interior points of (@, b)) was proved first
by the Author“)

Y "Ch. V. This result was not explicitly stated but might be derived immediately
from the formulas therein given.

). G (x, t, o) denotes the Green’s function of the problem (L).

) Sur les expressions asympt. etc., Proc. Charcoff Math. Soc, 10 ('i 907—-—3908)9
pp. 9697,

30y Zar Theorie der orthog. Funktionen-Systeme, Math. Ann. 89 (1912}, p. 355. -

) Bur quelques points de la theorie des equat. differ. etc., Rend. di Pal. 34
(1912), pp. 345—382.
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§7.
Expansion Problem.
40. Now we can compare our expansion Jy(F) with the classical

Dirichlet’s integral of the theory of Fourier’s series, or with the ana-
logous integrals. This comparison is furnished by the following

Theorem 13. Under the conditions of 30 there exists a set of con-
stants N,, N,, ..., N, depending on N such that if

b n
Y= in N, (Xy— &
o TN(F)=;!M(0£%@ () BB Tt
n—-1
(2) wk(t)’:% (k=1,2,...,n),
the difference
() Jy (F) — Ty(F)

tends to zero as N—oo, for every integrable function F(z), and uni-
formly on the interior of (a, b)%?).

We have ,
JN(F>=JN(F)+J§(F),
where
) Z (= 1™ ™ Do (1) @™o, nom (&, 1,001,
(9&)( m=1
Ix ( K (F, do;
(5) i 2”'/—_‘%’7(]) = e)de

R(E2,0)=f ) 2 (= )™ oo () Kon (st @)1

Here (cy) denotes the part of (Cy) intercepted by (), and the sum-
mation is extended over all the sectors (R). Using (48), (49) of 37 and
Lemma 3, we see at once that & (z,t, o) reduces o a sum of terms
of the form

e(z, 0)eem™ X (§=1,2,...,7); e(w,0)e esTou=Xd (§==74+1,...,n),

where ¢(z, ¢) — 0 uniformly on (cy). A suitable application of Lemma 1
proves that the integral Jy(F) tends to zero uniformly on the interior
of (a, b).

3%) It follows immediatelyf from here that the difference (55) 39, —0 as N—>,
uniformly on the interior of (a, b), for any integrable function F(x) and for any
pair of problems (L) satisfying the conditions of 80, provided the functions p;o (%)
are the same for both problems.
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Now, using the formulas of 36 and remembering that ¢, (z) satisfies
the characteristic equation, we easily obtain

To ()= -2 f - F(z)Z’ At)"""”fem‘(xk-fwmu)]de

(?R)

+ f dt-F () Sa, (t)’"‘(“) eemie-i0 [, ()] d o).
E=t+1 (e -
A simple application of Lemma 2 shows that the omission of the brackets

introduces an’ error which — 0, umformly ot (a, b), so that setting

[“”ww >{- fdt P So O3 [ nnae

2z )- lwn

i6)
l f at-5() 3 0,0 Il ee"k@rék)%-(t)de},
o 4

‘ E=c+1
the difference :
Iy (F) — J® (F) — 0, uniformly on (a, 8).

In (6) the integration with respect to ¢ can be.perfoi‘med immediately,
and a simple consideration shows that

i X
(7) | J(o) jp(t Zwk(t)’lkfzf)) sinry 7‘1;3*(5: &) qk(t)dt,

where .ry denotes the distance from the origin to either of two points
of intersection of (Cy) with the imaginary o-axis®). Now, using well known
properties of Fourier’s coefficients of an integrable function, we can
replace ""( z) by 1, the error thus introduced tending to zero uniformly
on (a, b) so that finally
Iy (F)— Ty (F)—0 (Ne=rx|n,])
uniformly on the interior of (a, b).
41. The integral Ty (F) replaces the classical integral

: b

(8) SN(F)z-};fF(t) s Nzt) gy
1]

of the theory of Fourier’s series. Taking into account the relation

P Do) =

3} T4 is tacitly assumed here that these points are equidistant from the origin.
Obvicus modifications in the arguments of the text suffice to meet the general csse.
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it is easy to show that if the integral Sy (F) tends to a limit as N — oo,
the integral Ty () tends to the same limit!). Analogous conclusions can
be drawn concerning the summability of the integral Ty (F). On the
other hand it is possible to show that, ir general, the difference

Ty (F)— Sx(F)

does not tend to zero for every integrable F(a). This means, that the
integral Ty (F) has its own theory of convergence and of summability,
which is not essentially different, however, from that of the ordinary
Fourier’s series, The various details of this theory will be ommitted
here. They have been previously discussed by the Author?).

42. With this we leave the case of the interior points of (a, b),
and proceed to the discussion of the integral Jy(F) at the end points
z=a, x=">0. We suppose that the function F(z) is of bounded varia-
tion in the neigbourhood of x =a, x = b, so that there exists a positive
number &, arbitrarily small but fixed, such that F(z) is of bounded varia-
tion on both intervals (a,a-48), (6—4, b).

The results of 40 concerning the integral Jy(F) hold true at the
points x =a, x = b also, and since

8y (F) ey — 5 F(a+0); By (F)),,— 5 F(b—0),
we have '
9)  In(E)yoa— 5 F(a+0); Tn(F),_,~5F(b—0).
1t remains only to discuss the integral Jy (F)/
Iyl (F, x)

the integral which we obtain from Jy(F), if we integrate between the
limits ¢ and 8, instead of between a and b.
Using the previous notation we have obviously

2::}’-— Zf@ 4(F, z, ¢)do,

(R (o v

We denote by

T=a,b’

(10) I (F,2) =

where

(11) a4\ F,z,0)= fF 2= D" " po (1) K,,_ (2, 1, @) d1.

43. The integral (10) enjoys following properties:
1°. For every integrable function F(x) and for every pair of values
of «, B, salisfying the condilion
a<aeLf<b,

Y pp. 234--236.
'y Chapter V.
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the iniegral It (F, x) tends to zero us N — o0, uniformly with respeci
to z in (a,bd).

2°. The integral Ji'* (1, x) {8 uniformly bounded for all values of
o, f,z in (a,b).

8°. If «, 8 have any fixed values in ihe inierior of {a, b}, the
expressions
(12) JEe(t,a); JEU(1,b) JEC(1a); JEP(L,B)
tend to definite limits which are independent of «, j.

The formulas (48), (49) of 37 and Lemma 3 show that (10) reduces
to & sum of terms of the form

Je(m,0)e® Pdo;  [e(x,0) e Vdo,
ey lew)
Re(co) <L 0;  e(z, @) — 0 uniformly,

Whereixpon the proof of the statement 1° is given by Lemma 1.

The proof of the statement 2° follows if we observe that the integral

B = [B%
€y

is bounded. v

In order to prove the statement 3°, let us fake for instance

Be=2 jd@ [ 3 a0 Ko, 1
' 0. m=1%

@ °n l/

Using the expression (48) 37 for K, (=, t, ¢) and integrating by parts,
we obtain under the sign [dg an expressmn of the form

E{Am"f*ﬁ(&’)}a

where Ay is 2 constant which depends on the sector (), and 2(g) tends
to zero uniformly on (cy). ‘
Hence, denoting by 0 the angle of the sector (), we have:

J‘i’“(i,a)-.zq (de{Agg+£(g)}——v VAm ﬂs}
6.3

oy “ !/-—

The constants Ay, 6y depend on t_he sector () and therefore they depend
on the arbitrary choice of the rays d; (19). Nevertheless the final result
S Apty does mnot involve any arbitrariness, because the order of the
o

numbers w,, w,, ..., w, cau change only when ¢ crosses cne of the rays
(13} Fe(ow,)=0; Relew,)=Re(ow,}),

Mathematische Zeltschrift. XXVIL 4



50 J. Tamarkin.

8o that the constants Ag remain the same for all the sectors (R) which
lie between any two consecutive rays of the set (13).

44. Using the results of 43 and a known theorem of Lebesgue )
we cin be sure, that for every integrable functlon F(x), which is of
bounded variation in the neighbourhood of x=a, x=D>,

{JN (F)|pay— A4, F(a+0)+ B, F(b—0),

v (F)pey— 4y F(a+0) + B, F(b—0)
where 4, B,, 4,, B, are perfectly determined constants, which do not
depend on the functlon F(z). Moreover, it is easy to show that ¢f. & ()
18 a_continous funcison of bounded variazion on (a, ) and
(15) Pa)=0, &(b)=0,
the integral Jy(P) converges to P (x) uniformly on (a, b).

Taking into account that '
Ty (B) = Jy (P) 4 Ix (®)

and that the difference

(14)

“G (@)~ Tx (@)
tends uniformly to zero and the integral Ty (®P) tends uniformly to &(z),
it remains only to prove, that for our function P(x), the integral
Iy (D) = I3 (D; x)
‘tends uniformly to zero. This fact follows immediately from the formula
b.(qs z) Ja u+6(¢ )+Ja+6 5-6(¢ x)_l_Jb-J b(¢ z),
where the mlddle ‘term ,tends umformly to. zero for fixed 8, and the
extreme terms can be made as small as we please by choosing o .sufficiently
small (applying the second law of the mean).
45. Now everything is prepared for the ptoof of the
‘Theorem 14. Let F (2) be an arbitrary function mteyrable on (a, b),
and denole. by

N b
ox(F,2)=3 [ F@) Z( 1)* pu (1) Bes g1 TG 00)
v=1

(16}
+Z’{F(a+0) EY (z)+ F(b—0) 7 (x)},

r==1

where the factors F(a+0), F(b— 0) may be replaced by zero “tn case
.theae two Imuts do not exist. Then

") Sar les intégrales singulidres, Ann. Fac. Toulonss 1 (ser. 3), 1909, pp. 65, 69—70.
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1°. The difference
oy(F,2)—Ty(F)—0 as N-—co,
uniformly on the interior of (a,b).
2°. If F(z) is of bounded variation in the neighbourhood of x =a, b,
- we have

(17) ox(F,a)— F(a+0), ay(F,b)— F(b—0),

with mo further restrictions for F(xz) in the case 1° of 32.
In the case 2° of 32 the equalities (17) hold true if F(x) salisfies
one of the corresponding boundary conditions

F(b—0)=ga,F(a+0),
(18) F(a—0)=b,F(b—0).

In the case 3° of 32, (17) ¢s true if
F(a40)=0,  F(b—0)=0.
3°, The series

o(F, z) =1}TL oy (F, x)

converges to F(x) uniformly on (a, b) for every continuous function F(z) of
bounded variaiion, saiisfying the condslions of the preceding siaiement 2°.

The statement 1° is obvious. Denote now by F (z) the auxiliary
function, which was used in 33—38. The results of 33—35, 38 show
immediately that

(19) F(z)=o(F,2)
= lim Jy (F,) + F,(a) 5}1 E0(z) + F, (b) 515,,(“”(2:).
-» y= N =
Putting here z ==a or z =5, we have in virtue of (14):

S EMa)+4,=1; 3E™a)+B,=0;
( 9 O) v:l : v=w1
2!5,‘”(6)+A,,=O; ' )315,‘2’(1») + B, =1.
These relations prove the assertion 2° of our theorem. The proof
of the assertion 3° follows if we set

P (2) = F(z) - F, (2)
and use the results 44 and the fact that the sum oy (P, &) reduces
to Jy (D), because of P (a)= D(b)=0, and that the series o(®D, x),
(oF,, z) are uniformly convergent.
g
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46. It is interesting .to observe that the statement 1° of Theorem 14"
holds true if we replace oy(F, 2) by the simpler expression
N

Zf )P0(t) Bet 016 (2, , )

=14

(a1)
n-1 — 35
5, "@f F(3)Buo() 6 (2, 4, 0)d4 = Iy (F, 2) *)
and at the same time replace w, (z) in (1) by
n(®) =~ Pro (<) (k=1,2,...,n).

7 (2) " { s ()}

The statements 2° and 3° of Theorem 14, however, do not hold
true after this replacement in the general case, unless Fla+0)=0
F(b— 0)=0. If these conditions are not satisfied, the integral Iy(F, :r;)
will not converge uniformly on (a, b), even for F(z) continuous and of
bounded variation.

47. Some special cases of the expansion of Theorem 14 deserve
to be mentioned separately:

1°. The operators of the problem (L) are of the form:

L(y)=L,(y)+e"e(@)y; ¢(z)29>0;

Liy) = L"(y) + " L (v) (G=1,2...,n)
and all the conditions of 16 are satisfied. We suppose moreover that
the matrix of the forms L”(y) has at least bne determinant of the n'
order which is == 0, and which is free from the elements corresponding
to y(a), y(b). For the sake of brevity we shall consider a special case
only, namely that in which - ’

Li(y)=y(@), L (y)=y0®); L (y)=0 (i=34,...,n)
The quadratic form (16)

T(y)=T(y, 9) = 3 Li"(y) U(y) = y20) M, (3) + y (b) 1, 9)
being semidefinite, we must have:

M (y)=k, y(a)+koy(b); M(y)=k,y(a) F Ry (B); ki = kg,
so that in this case
Z(2) = —Res ¢*~1{k,, G (z,a,0)+ k, G(z, b, 0)},

=0y
5(2)(1:) = — Res Qt—l{kuG(x’ a, @) -+ %y, G(z, b, 9)}

=0y

) This integral was used by G. D, Birkhoff.
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and finally

[ (F, z) = {IQ(t)F(t)R_eSQn—-xG(x,t g)di~ResQn LT(R, Gs}
(22) 4 piteg
i ='§_1¢.(x){{ Q’(t)F(t)qa,{t)df, — T(F )} %),

where @, (), ..., p.{x), ... denote the set of fundamental functions of
the problem (L), which are supposed to be orthogonalized according to
(30), 16.

The series

Se(@)T(, )

enjoys the remarkable property that its sum is zeto at every interior
point of (@, b), and is not zero at the end-points a, b.

. This fact shows that the theorems of Cantor and Du Bois Keymond
are not true for our general expansions in series of the fundamental
functions.

%°. When all the operators L (y) reduce to zero, the form T'(u, v)
vamshes and we get the case, which was treated by Birkhoff®) and
by the Author®).

fq(t)F(t) oo (1) At

ﬂF@~Z%u)
» fq(t)«p»(t) dt

(-]

5% A curious example of an expansion containing fundamental and
principal -functions simultaneously ie furnished by the problem:

Lig=y"+e%y; L(y=y)—-y(0);  Ly=y()+27(0).
Here we obtain:

5 o(F,z)=2(8x — l){f F(ydt -+ ZE’cOSZrﬂfo(t}OOSZvnidt}

(23)
} +4Z'sm2vn:cf(2 —_ St}F(t)sanafzztdt

N =1
the fundamental functions being
, ' 3z — 1, sin2vaz,
and the principal functions
(8z — 1)cos 2va z.

%) In the expression of the bilinear form 7 (5, .v) we must replace F (a), F(b)
by F{a+0), F({b-—0)} respectively.
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The series (23) represents the arbitrary function F(z)on the interior
of (0, 1) under the same conditions as the classical Fourier’s series, the
difference between the sums of the N first terms of both expansions
tending to zero for any integrable function, uniformly on the interior of
(0, 1). At the end-points the sum of (23) is equal to F(+ 0), F(1—0), if

2F(+0)+ F(1—0)=0.

We have not touched here the expansion problem in the case where

the operators L,(y) contain integrals. This problem, however, has been
discussed by the Author?).

1925, Dec. 9. Dartmouth College.

1) pp. 231235,

(Kingegangen am 23. Dezember 1925.)



