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A REMARK ON H 1 MAPPINGS 

Robert Hardt. and Fang-Hua Lin.* 

With B = { x ~  ~ : lxl < 1}, we here construct, for each positive 
integer N, a smooth function g : 8B -, $2 of degree zero so 
that there must be at least N singular points for any map that 
minimizes the energy t,(u) = JBIVul2dx in the family' 

~L(g) = { u E H I ( B , $  z) : ul aB = g }  
The infimum of ~, over 1J,(g) is strictly smaller than the 
infimum of ~, over the continuous functions in ~(g) .  There 
are some generalizations to higher dimensions. 

INTRODUCTION. Any smooth map g : 8B -* f,2 admits a finite 
energy extension u : B ~  $2 ; for example, u(x) = g(x/ Ix l ) .  Thus 
the existence of an energy minimizing function v in l l(g) follows 
from elementary properties of the space HI(IB). By [6, Th.2] and 
[7, Th. 2.7], such a v defines a real analytic function on B ~ Z for 
some finite subset Z of B .  if g has nonzero degree (for 
example, g = identity), then v may not, by elementary topology, be 
continuous everywhere on B,  and the singular set Z must be 
nonempty. If g has degree zero, then g does admit some smooth 
extension to B.  Nevertheless, 

THEOREM A. For any positive integer N, there exists a smooth 
.f_unction g : 8B -~ 5 2 that has degree zero so that anu mad v ~'~(g) 
that minimizes energy in 'Ll.(g) must have at least N singular points. 
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THEOREM B. For anu positive integer N, there exists a smooth 
function g -" $2., S2 that has degree 7er0 for which there is the gap 

infuE1J,(o)C,(U) <_ ItN < ! _< infuetL(g)ncO([)t,(u ) 

Our work on these problems followed interesting discussions with 
J. Ericksen and H. Brezis concerning some experimentally observed 
liquid crystals. By using the regularity theorems [3, 2.6,5.6] and 
changing constants in the proofs, suitable analogues of Theorems A 
and B may be obtained for the general liquid crystal functional 
considered in [3, 1.2]. 

PROOF OF THEOREM A. We will work with certain "lens-shaped" 
domains obtained by intersecting the unit ball with larger balls. For 
any nonnegative t , let 

Ut = BnVt  where Vt = {(x,g,z)eR 3 : x2*y2+(z*t)2< l §  

Since 81Bn8V t = S T x {0}, BUt is the union of the lower 
half-sphere 

s_ 2 = { (x ,y , z )~  s z , z <_ o} 

and the spherical cap 

8v~ = { ( x , y , z ) ~ s v t  : z ~ o } .  

Note that U 0 = IB and that limt.,ooU t is the lower unit half-ball. 

One may easily obtain a constant L along with bilipschitz maps 

f~ : Ot --,[ 

so that Lip(ft) <- L ,  

ft(a) = a for 

Lip(ft~ I ) <- L, and 

a ~ 5  z , 

for all t 2 0 .  We will also use the Lipschitz map h :R 3 - ~ I R  ~ 

which is described in spherical coordinates by 
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h(p,~,e) = (p,2~,e) 
h(p,~,O) = (p,1T,O) 

The expression 

ut = (ho ft)/ l(ho ft) l  

defines a function in H l ( ~ ,  $2). 

J !~lV~ol2dx = 8~r where ~ (x )=  x / I x l ,  

and that 

I~1 ~- 

we readily obtain the absolute bound 

JUt 12dx ~- 32TrLS lVut 

There exist (easily computed) 
so that 

for 0_( cp_~ ~/2 , 
for 1T/2 _~ cp _~ ~" . 

In fact, noting that 

<Dh(x,y,z),~:> _~ 21t~l for (cl~ ~ and z > O, 

The function ut is continuous away from the point f-i {0}.  
Concerning its behavior on aU t , note that, on the bottom, 

utl s z (o ,o , -1 )  , 

while, on the top, ut t BV~ is an orientation-preserving, degree one 
map onto S2. 

We now construct a small energg function u �9 IB -~ S 2 bg 
placing along 8B copies of ut (for suitable t) that are 
transformed by translation, rotation, and homothetg. The trace of u 
on BB will then provide the function g that satisfies the theorem. 

Fix a positive number r < I/(o4TrN2L s) , and, for i = 1, . . . ,N, 
let 

~t =(O,(1-X~) ~,Xi )  where :X i = I / 2 N  

s > O , t  > O , a  iEB,and r 
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s 2 n ~.(~:i) = {s~i(x) + a, : xEa~}. 

Note that the scale factor s satisfies r < s < 2"~r. 

Ui = {s~ i (x )+a i  : x EUt} and 

ui(g) = uto@ - l [ (g-ai) /s) for gcUi 

Then 

Let 

~(x) 
~(x) 
~(x) 

Let 

IVuilZdx < 16TrLSs < 3211"LSr < I12N z 

= ui(x) for x~Ui 
= ui(-x) for x ~-Ui '  (i.e. -x ~ Ui ) ,  

= (0,0,- I )  for x~IR~U~1[Uiu(-Ui) ] .  

Then uEHI(IB,$ z) with 

~,(u) = JlBIVuI2dx < 2N'(I I2N 2) : IIN 

Also, g = u I 81] is a Lipschitz map that has degree zero because 

~]181]~U",:,11]r(~;~)v1]r(-~i)]  -- (o .o . - I )  

and, for each i ,  g 1 81] nBr(~i) is an orientation-preserving 
(degree I) map onto $2 while c] 1 81] nBr(-~ i) is an 
orientation-reversing (degree - I )  map onto S2. 

Next we can choose an approximation g of g so that 
g E e~176 g has degree zero, and 

infu~li(g)~(u) < 

From the inequalities 

( x i -  r) - (xl + r) 

~,(v) : infu~,d.(g)~,(u) 

~(u) + [I/N - ~(u)] = I/N 

-- (112N)-2r  _> I/4N , 

< I /N ,  
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[6, Th.2], [7, Th.2.7], and Fubini's theorem, we may choose numbers 

0 < jl o < ~1-r < XI*F < Pl < X2-F < "" < XN+F < JJN < i 

SO that, on each slice, 

S i = { ( x , y , z )  EIB : Z = J J i }  , 

v is smooth with 

J IVvlZdlt'2 < ( I /N)/( I /4N) = 4 
Si 

From the area estimate 

J J IVvI2dH, 2 < 2 < 411" ~.2(v(s~)) _~ Si l l^2Ovlld.  2 _~ ,~ St 

we infer that each image v(Si) is a proper subset of $2. 
Inasmuch as v I aSi =- (0 ,0, - ! ) ,  v I $i is thus homotopic (relative to 
8Si) to Lhe constant vector (0,0,-1). Letting s denote Lhe slab 

•i = { (x ,g , z )Ee  : ~ i -1< z< jq } , 

we deduce that v 1 8Qi has degree one because 

8Qi = Si-I u S i u T i  with Ti = {(x, g, z) E SIB ; JJi-1 -< z-< JJi}, 

Ti :::) 8BnBr(( i )  , and vITi~(aBn~r((i)) - (o,o,-1) .  

Since ~ i  is topologically a closed ball, v must have at least one 
discontinuity in Qi .  [] 

PROOF OF THEOREM B. Suppose u ("d.(g) n e~ with g and 
r as above. Assuming for contradiction that 
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f 
t,(u) = JmlVulZdx ( 1, 

we would find that 

J{(x,g,z)eB:Xi-1 <z<~Xi} Ivulzdx < 1iN 

for some i . Then we could choose a number JJs § r, Xi - r }  so 
that 

3~2(U(5)) <- ~ JslVuiZdP~Z < 2 , hence $2~u(5 )~  (~ , 

where 

5 = {(x,u.z)EB : z = p }  . 

As before, we would then infer that, for 

= { ( x , y , z ) c e  : z > p }  , 

u 1 8~ has positive degree and that u would have to have a 
discontinuity in ~ This contradiction establishes the desired 
inequalities 

~.(u) -> I > tIN _> infti.(g)~ [] 

Next we will sketch the proofs of two results that indicate how 
Theorems A or B generalize to some higher dimensional problems. 

THEOREM C. For n~ {3,4, . . .  } and for anu Dositive inteQer N, 
there exists a smooth function g : 8B n -* S n- 1-that has deQree zero 
so that any map v in 

lL(g) = {uEHI( IRn,S n ' l )  : U 18B n = g }  

that minimizes energy in l l(g) must have at least N singular points. 
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THEOREM D. For n~ {3,4,. .o} and for any positive integer N, 
there exists ~ smooth convex domain ~ i__n IR n and a smooth map 
w : ~ -, S 2 so that. for g = w I ar the slngular set of any energy 
_rninimizing mad v Ln 

IJ,(g) = {u~ HI(Q,$2) : u 1 8s = g } 

must have positive n - 3  dimensional Hausdorff measure. Moreover. 

infuEtl,(g)~,(u) _< I/N < I _< infuEtl.(g)n~O(~)t,(u) 

where 

~o(~) = {u ;  u (C~ for some X c ~ with Rn'3(X) = 0}. 

PROOF OF THEOREM C. Here we can essentially repeat the 
argument from the proof of Theorem A with one modification. For 
n -> 4 ,  we c a n  no longer estimate, for any smooth function 
u : l}" -~ S n-1 , the slice volume lt.n'l{u(Si)) by the slice energy 

ISi However, the energy minimizer v , we can IVul2d~,  1 for 

assume, for contradiction, that v has no singularity in 

{ ( x , y , z ) c l B "  : Xi-1 < z < :Xi.1 } 

and then use 5choen's Interior estimate [5, Th. 2.2] (for regular 
harmonic maps) along with a boundary regularity estimate (that 
follows from [5, Th.2.6] or [7, Th.2.7]) to obtain a small volume 

estimate for ~n- l (v(5 i ) )  With r chosen sufficiently small 
(depending on the constants of these estimates), the proof then 
proceeds as before, r'l 

PROOF OF THEOREM D. We use induction on n. The case  n = 3 

follows from Theorems A and B. 

We now assume that n ;~ 4 and, by induction, that ~ ;  w', and 
g" satisfy Theorem D with n replaced by n -  1 and N replaced by 
N "= 2N . Then we may find a function u'~'Ll,(g') with 



HARDT - LIN 

f 
t.(u') = J~. lVu ' lZdx = 1 I N ' =  1 / 2 N .  

Choose a positive concave function ~ ~ C~ ") so that 
I 8~"  - 0 and so that 

is a 

is a 

that 

{(x .x , )cl~" ' lx l~ = i~ " ;  x'c and 

smooth domain in FI n . Then 

U = { (x ;x  n) : x'~s and O< x, 

Ix n I ~ ~ (x ' ) } .  

Suppose, on the other hand, that u s 11(g) n C~ for some 

X c ~ with X"-3(X) = 0 .  For almost all tE [ -2NE,2NE] ,  

bound 

Inf~!.(g)r _< ~.(~) -< 2E + 4NE. r 

= 2E + 4NE(I/N ~) = 4E 

With ~, = t,((), we now let 

s = {(x;xn)ERn-lxI~ : x'E~'1" and Ixnl < ~(x'~+ 2NE} , 

w(x;x . )  = w'(x'~ for (x :x , )  E~ . 

Clearly s is a smooth domain and w is a smooth function on ~ . 
Moreover, the function u ,  defined by 

u(x~,xn) = I~(x;xn-2NE) for (X;Xn)EO and Xn > 2NE , 

u (x ;x  n) = u'(x') for (x ;x, )~s and IXnl <_ 2NE , 

u (x ;x  n) = ((x~,-X, - 2RE) for (X;Xn)Es and x n < - 2 N E ,  

belongs to 1.1.(g) where g = w l8s . Thus we have the energy upper 

Lipschitz domain, and we may fix a function (cHi (U,5 2) such 
(in the sense of traces) 

((x;O) = u'(x') and ( ( x . ~ ( x ' ) ) = w ' ( x ' )  for x"c~" 
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f 
u(x ,t) = u'(x') = 

I IVul zd~,, n- < 1 
St 

Since U j (St ~X) E C~ 

~n-4(Xn S t) = 0 for almost all 

we deduce by induction that 

g'(x'} for x'c Bs and 

t =o where St = { ( x , x , ) c Q :  x, = t }  

and since, by [2, 2.10.25], 

t, 

Jst lVul2dRn-1 ~_ I for almost all t~ [ -2NE,2NE] ,  

and obtain from Fubini's theorem the energg lower bound 

~,(u) _~ 4NE.I 

Finallg replacing t3, w ,  and u bg 

{rx : x ~ } ,  w( ( . ) / r ) ,  and u((.)/r) with r = (1/4NE) 1/("-2), 

and taking the infimum over all such u, we see that the energg 
upper and lower bounds scale to give the desired inequalities 

inf,Ll.(g)8 _~ 1/N < 1 _~ infuElJ.(g)n~O(~)~.(u) 

In particular, v ~ ~o(~) because r = inftl.(g)~., r l  

qUESTIONS 

(1) Are there a smooth domain s in Rn and a smooth map 
g , B ~ q + 5  m with n ~_m+l _~4 for which there is the gap 

inftL(g)~. ( infuEtl.(g)ncO(~)~. ? 

(2) If there is a gap (as in Theorem B or Theorem D), then what 
can be said about a weak limit w of an energg minimizing sequence 
in 'Ll.(g)nC~ ? Which of the inequalities 
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inf,,.L(g)?, _< ~,(w) <_ infu~.d.(g)neO(~)r 

is strict ? Can they both be strict ? The search for non-minimizing 
critical points (as in [1]) seems quite challenging. See also [4] and 
[5] for other interesting related questions on harmonic maps. 
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