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Summary 

Plane waves in a homogeneous and isotropie unbounded thermoelastic solid rotating 
with a uniform angular velocity are discussed in the context of the generaliscd thermo- 
elasticity theory of Green and Lindsay. The effects of rotation of the body on the phase 
velocity, energy loss and decay coefficient are discussed in some detail for waves of small 
and large frequencies, and for small coupling between the thermal and mechanical fields. 
Results of earlier works are deduced as particular cases of the more general results obtained 
here. 

1. Introduction 

The thermoelastic theory proposed by  Green and Lindsay [1] has aroused 
much interest in recent years. Like some other thermoelasticity theories (e.g. 
[2], [3], [4]), this theory is a generalisation of the coupled thermoelasticity theory 
[5] and predicts a finite speed of propagation of thermal signals. Some problems 
revealing interesting phenomena which characterise this theory have been 
considered in [6]--[10], Because of the experimental evidence available in favour 
of finiteness of heat propagation speed [11], these problems are of practical 
relevance too. 

The purpose of the present paper  is to study, in the context of the linearised 
theory of Green and Lindsay, the plane waves in a homogeneous and isotropic 
unbounded solid rotating with a uniform angular velocity. Since most of the 
large bodies like the earth, the moon and other planets have an angular velocity, 
this problem is practically more general than the corresponding problem con- 
cerned with a nonrotating body considered in [8]. In  this paper we confine 
ourselves to the discussion of purely dilatati0nal and purely shear waves, and 
our analysis is analogous to tha t  presented in [8]. We find that  if the axis of 
rotation of the body is not aligned with the direction of the displacement vector, 
the rotation causes dispersion of shear waves the speed of which, for a given 
frequency, is less than  tha t  of the same waves in a nonrotating body. The dila- 
rational waves propagate in two modes and we analyse the effect of rotation 

of the body on the phase velocity, the decay coefficient and the specific loss 
of each of these two modes, by  considering the cases of large and small frequencies 
and small coupling between the mechanical and thermal fields. In  the absence 
of rotation of the body, our results reduce to those obtained in [8]. 
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The counterpart of our problem in the context of the thermoelastieity theory 
of Lord and Shulman [2] was considered in [12]. We find that  the results of [12] 
follow as particular cases of the corresponding results obtained in this paper. 
Further, because of some characteristic features of the theory of Green and 
Lindsay over the theory of Lord and Shulman (see, [10]), some of our results 
have no counterparts in [12]. Such results, as also others, are recorded at appro- 
priate places. 

I t  may be mentioned that  the discussion of wave propagation problems 
in rotating elastic solids was initiated in [13]. A recent paper [14] has made 
use of the theory of Lord and Shulman to study magneto-thermoelastic plane 
waves in a rotating solid. 

2. Basic Equations and Plane Wave Solution 

We consider a homogeneous, isotropic and linear thermoelastic unbounded 
solid body rotating with a uniform angular velocity ~(2. When this body undergoes 
dynamical deformation, the acceleration at any point with position vector 
r ( w  �9 r �9 t �9 the origin of a system of axes rotating with the body) consists of two 
additional parts that  do not appear in a nonrotating body: (i) the time-dependent 
part  of the centripetal acceleration ~2 X (,(2, X u), and (it) the Coriolis accel- 
eration 2~r Xti, where u is the displacement vector and ti is the velocity vector 
at the point: Accordingly, in the context of the linearised thermoelastieigy 
theory of Green and Lindsay [1], the equation 
heat Conduction for the body considered may be 

v2~V2u + (vl  ~ - -  v2 2) V div u - -  

= ~ + ~ x ( ~ x u ) +  

V.~O ~ _ ~,~ ~Oo 
~c ~cK 

of motion and the equation of 
taken as follows: 

~ V(O + ~6) 

2~Q X t~ 
(2.1) 

ee, r __ O. (2.2) 
Ot 

The symbols and the notation in these equations are as explained in [6]. The 
thermal constants a and a* appearing in these equations satisfy the inequalities 

cr ~ ~* ~ 0. (2.3) 

I t  is evident that  if c~* > 0 (and eo~lsequently c~ > 0) the Eq, (2,2) predicts 
a finite speed of propagation of thermal signals and that  if c~ -~ 0 (and conse- 
quently 6" = 0), the Eqs. (2.1) and (2.2) reduce to those of the coupled theory 
[5]. The case ~* = 0 and cr > 0 is also a valid one; in this ease, the Eq. (2.1) 
continues to be affected by the temperature--rate,  while the Eq. (2.2) predicts 
an infinite speed for the propagation of heat. 

To investigate the propagation of plane waves, we seek solutions of the 
Eqs. (2.1) and (2.2) in the form 

u = A exp i(o~t - -  7 n .  r )  ~ (2.4) 
0 = B exp i(~ot - -  y n .  r ) ,  l 
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where A and B are arbi t rary  complex constants not both  zero, ~o is a positive 
real number, y is ~ complex number,  n is the unit  vector along the direction 

of propagation, and i = ]/~-~. 
I f  we set y = p -}- iq, the exponent in the Eqs. (2.4) reduces to 

1 (n. r)} + q(n. v), @ot - -  y n  . r)  = ico t --- -~ (2.5) 

where V = ~ is the phase speed of the waves. Obviously, for the waves to 
P 

be physicMly realistic, we should have g =< 0 and p > 0. Further,  only the real 
parts  of the Eq. (2.4) are physically relevant. T h e  Eqs. (2.4) then correspond 
to waves for which co/2sr is the frequency and 2~/p is the wavelength. 

Substituting (2.4) into (2.1) and (2.2), we obtain 

(co2 + f2e - -  v~y2) A - -  {(va~ - -  v~2) y~(A . n)  - -  ~K (1 + o&o) B }  n 

- { ( ~ .  A ) ~  + 2ico ( ~  • A)} = 0 

(2.6) 

( k~,._.~ + ico c~*co 2) #Or ( A .  n)  = O. (2.7) 

For purely dilatational waves, we have A .  n = A, the magnitude of A, 
and for purely shear waves, we have A �9 n = 0. From Eq. (2.7), it is evident 
that  the thermal field remains uncoupled with purely shear waves, as in a non- 
rotating I tookean solid. Taking the scalar product with A of the Eq. (2.6), we 
obtain the equation 

#it (1 + Mco) B = 0 (co~ -}- s92 sin 2 do - -  vl~y ~) A + ~-~ (2.8) 

for dilatational waves, and the equation 

(co2 + s92 sin g do _ v22y~) = 0 (2.9) 

for shear waves. 
In  Eqs. (2.8) and (2.9), do denotes the angle between the axis of rotation of 

the body and the direction of ' the displacement vector, and ,(2 = t~(,)1. I t  is evident  
that  if do = 0, the rotation of the body has no influence on the waves considered. 
We therefore assmne tha t  d o 4= 0. 

From Eq. (2.9), we obtain the speed of propagation of shear waves as 

vs = v2{1 + (D/co) sin g qS} -1/2. (2.10) 

We readily see tha t  due to the presence of rotation of the body, the speed 
of shear waves is reduced from v~ to vs and that  the waves are dispersive. For 
a given frequency, the speed is minimum when the axis of rotation of the body 
is perpendicular to the direction of the displacement. 
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For dilatational waves, the Eq. (2.7) yields 

flOoe)Y~cK A + \(k~--~c + io) -- cr '~) B = O. (2.11) 

From Eqs. (2.8) and (2.11), it  is clear that  in the case of dilatational waves, 
the thermal field and the mechanical field are coupled together, as in a non- 
rotating body. The phase velocity equation of these waves is obtained, by  elim- 
inating the constants A and B from Eqs. (2.8) and (2.11), as follows: 

/b~,2 \ 
(co 2 + /22  sin S q b -  V12~? 2) {'~J" -~  iE0 - -  0r 2} 

! 
fl~O~ (1 + ~io~) = 0. (2.12) 

~KZc 

In order to analyse this equation, we introduce the quantities 

= ~ ~ = rv l  D s i n  ~b, 
Z o~* ' --g, ~o = o7  

(2.13) 

where co* ---- ~cv12 is the characteristic frequency of the solid [5], [15]. 
k 

~rith the aid of (2.13), the Eq. (2.12) reduces to the nondimensional form 

[z~ + qo2 _ #~] [~ + i z  - v z  ~] - e $ 2 [ i z  - a z  '~] - -  0 .  ( 2 . 1 4 )  

In the absence of rotation of the body this equation reduces to 

~ -- (Z 2 + ~;t 2 + e6Z 2 - -  i X - -  ieZ) ~ - -  i z  a + r]% 4 = 0, (2.15) 

which is in agreement with Eq. (2:13) of [8], apart  from the notation. 
The thermoelastic coupling factor e is usually small [5]. If  we neglect this 

factor, the Eq. (2.14) yields the following two equations: 

Z2 q_ ~v2 __ ~-a = 0 ;  $2 _}_ ig _ ~]Z~, = 0 .  ( 2 . 1 6 )  

The first of these equations corresponds to a pure (nonthermal) elastic wave prop- 
agating with speed 

ve ----- vl{1 -f- (D/co) 2 sin ~" ~b} -1/2 (2.17) 

and the second equation corresponds to disturbances in Jbhe thermal field, which 
remain unaffected by the rotation of the body. The presence of rotation causes 
dispersion of the elastic wave and reduces its speed from vl to v~ given by (2.17). 
As in the case of shear waves, for a given frequency, the speed ve is minimum when 
the axis of rotation is perpendicu]ar to the displacement vector. 

For e =4= 0, the Eq. (2.14) is a quartic equation in $, the roots of which may be 
obtained as 

• ~ [(L -- i M)  1/2 =j= ( N  - -  iP)  ~/2] (2.18) 
z 
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where 

and 

L, N 

M, P 

a, b 

= Z(/"2 27 r] -+- e(~) :L (2X) 11~ Fa / 

/ = (1 + ~) • (2z?/2  Pb 

= [(1 ~- ~2X2)1/2 Z~ ~]Z] 1/2 

F2 = 1 -]- 92/Z~ = 1 + (/2~/~o 2) s in  ~ $ .  

(2.19) 

(2.20) 

Of the four roots for ~ given in (2.18), only two roots yield nonpositive values 
for the decay coefficient ~/. These two roots correspond to two modes of prop- 
agation; one of these modes is predominantly elastic and the other is predomi- 
nantly thermal in nature. We denote the value of ~ associated with the former 
mode by ~1, and the other by ~.  

The general analysis of the waves on the basis of the roots given by (2.18) is 
quite complicated. We therefore confine ourselves to the analysis of the effect of 
rotation of the body on the phase velocity, the decay coefficient and the specific 
loss in three special cases which correspond to waves of small frequency, waves of 
large frequency and weak coupling between the mechanical and thermal fields. 
Throughout our further analysis, we assume tha t /~  is a constant and that  [8] 

1 
(1 + e) 2" 

For ready comparison with earlier works, we consider the dimensionless phase 
speed V* and the dimensionless decay coefficient q* defined through the re- 
lations 

V* = V/v1 and q* = qvx/(o*. (2.21) 

We further note tha t  the specific loss, which is defined as the ratio of energy 
dissipated per stress cycle to the total vibrational energy, is given by  [8] 

L = 4~q/p. 

3. Special Cases 

Case (i) 

We first consider waves for which Z ~ 1. Paralleling the calculations in [8], 
we find in this case that  

Fz i s + (1 + ~) (~ + e~) -- (1 + e )z , / /~z ,  (3.1) 
(1 + ~)1/2 2 (1 + e)~/~ 

- -  + + (1 + s) (v + sO) (1 + i) (Z/2) ~12. 
. (1 + s)~l ~ 

(3.2) 

From (3.2) it is clear that  the rotation of the body does not influence the ther- 
mal mode. The non-dimensional phase speed, the specific loss and the decay 
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coefficient associated with the elastic mode are respectively given by 

r l  gr ~- (1 -t- e)*/2/F, 
8 

L** = 2~Z[1 -[- (O -- ~?) (1 -~- e)] ~ I,2, (3.3) 

* ~ [1 + (a - v ) (1  + 4 ] .  ql* • -~- Z 2Fa (1 + e)~/2 

From these expressions, it is clear that, due to the presence of rotation of the 
body, the speed is reduced by a factor 1/1% the specific loss is increased by a 
factor / '~  and the decay coefficient is increased by a factor/ '3 .  

In the absence of rotation of the body, we h a v e / "  = 1 and the expressions 
(3.3) reduce to the expressions (2.38)--(2.40) of [8]. 

In the special case when ~ = ~, the expressions (3.3) reduce to 

L** = [~zs/(1 + ~)~]/'2, 

VI* = (1 @ e)'/~/F, (3.4) 

q l * - -  I e Z2Fa 
2 (1 § e)5/2 ~ " 

I t  is interesting to note that  the expressions (3.4) are identical with the 
corresponding expressions obtained in the context of the theory of Lord and 
Shulman, (see, [12], Eq. (17)]. The expressions (3.4) are alSO valid in the coupled 
theory which corresponds to the ease ~ = d = 0. 

Comparing the expressions (3.3) and (3.4), we see that,  while the phase speed 
is the same in all the three theories, the energy loss and the decay coefficient in the 
theory of Green and Lindsay differ from ~hose in the other two theories. In fact, 
in the Green and Lindsay theory, the specific loss and the decay coefficient a r e  
increased by 

27cgl'2e(6 - -  ~])/(1 -[- e) and Z2fae(d -- ~7)/2 (1 -~- e) 3/2 

respectively. 
Thus, the behaviour of small frequency elastic mode in the theory of Green 

and Lindsay differs from that  in the theory of Lord and Shulman and the 
coupled theory. 

Uase (ii) 
We now consider waves for which 1 ~ 1. 

we find in ~his case that  Z 

1 i 1 

I i i 

where 

Paralleling the calculations in [8], 

[ x -  y] 

[x  + y] 

X, Y =  P ~ : ( l + e )  V~ 
§ e6)*/~ " J 

(3.5) 

(3.6) 
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It is clear that,  unlike in the case (i), the rotation of the body influences both the 
modes. The phase speed, the specific loss and the decay coefficients corresponding 
to these modes are given by 

~( ~ )  V , * : y  1 2 F ;  

( ~+'I q,* = ~ I + -yE-] 

6 + n ]  
z r--~ -YY-I (3.7) 

r~*=~ i+E~; L~=-- i-- xn ~T 

q~*=2r~ ~ ~+-Y~ " 
(3.s) 

In  the absence of rotation of the body, the expressions (3.7) and (3.8) reduce to 
the expressions (2.51)--(2.53) and (2.57)--(2.59) of [8]. 

In the special case when V = b = m, say, the expression (3.7) and (3.8) reduce 
respectively, to 

( ] 1 1 sm L1 = 2ze 1-~- 
VI*~-  "T 1 2 " g/" ~ 

q~* = ~y 1 +  

(3.9) 

v , * - - ~  I + E V ,  L~=-- 1-- ~'~ 
zm - F  

1 1 - -  
(3.10) 

As m -+ 0, we find from Eqs. (3.10) that  Vff, L~, q2* -> ~x~. This is in agreement 
with the prediction of tile coupled theory that  the thermal disturbances propagate 
with infinite speed. The expressions (3.9), which correspond to the elastic mode, 
reduce, as m --> 0, to 

1 2~e e 
V l * = 7 ,  L l - - Z f  ~, q1"=21"-- (3.11) 

which are valid in the context of the coupled theory. 
We readily verify that  the expressions in (3.9) and (3.10) are in agreement 

with t h e  expressions (21)--(23) and (24)--(26) obtained in [12]. Comparing the 
expressions (3.7) and (3.8) with (3.9) and (3.10), we find that  the qualitativ e 
behaviour of the elastic mode in the coupled as well as in the theories of Lord 
and Shulman and of Green and Lindsay is one and the same. In all the three 
theories, the phase speed, the specific loss and the dec~y coefficients of this mode 
are reduced due to the rotation of the body. The effect of rotation on the thermal 
mode in the theories of Lord and Shulman and Green and Lindsay is to reduce the 
phase speed and to increase the specific loss and the decay coefficient. 
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Comparing the expressions (3.7) with (3.11), we find tha t  in the theory  of 

1 e3/F a and the specific Ioss Green and Lindsay,  the phase speed is decreased b y - ~  
and the decay coefficient are increased by  

2~e(~ + U)/zF a and e((~ + ~)/2I ~8 
respectively. 

Case (iii) 

If  we assume tha t  e, 6, U ~ 1 with no restriction on Z, we find, by  carrying 
out  eMculations similar to those in [8], tha t  for the elastic mode the specific loss 
has a local max imum when 

1 
Z --~ ~-~ (1 ~- E -~ ~?/F'~). (3.12) 

This result is valid in the context  of the theory  of Lord  and Shulman also, as 
noted in [12]. Further ,  for the thermal  mode, the specific loss has no ex t remum 
value in the cases: (i) e = 0, (ii) e = ~ = 0, and (iii) 0 = U- I n  the case when 
U = 0, (~ =~ 0 and e @ 0, the specific loss for the thermal  mode does have a local 
min imum at  

Z - -  (1 ~- e ) / F  ~. (3..13) 

It has been noted in [12] that the specific loss for the thermal mode has no local 
extremum; this result is in agreement with our observation made above for the 

case 0 ----- U. 
Thus, unlike in the uncoupled and generalised (Lord and Shulman) thermo- 

elasticity theories, there can occur, in the theory of Green and Lindsay, a local 
minimum for the specific loss for the thermal mode. 

In the absence of rotation of the body, the expression (3.13) reduces to 

z = 1 + e ,  (3.14) 

which is referred to as the "critical f requency"  in [8] and [16]. A comparison of 
the expressions (3.13) and (3.14) shows tha t  the rota t ion of the body  reduces the  
critical f requency b y  a factor  1/F 2. 
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