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Summary 

The kinetic theory provides constitutive equations of ideal gases and it can therefore 
be used to confirm or reject the axioms and principles of the phenomenological constitutive 
theory. Thus the kinetic theo1"y provides a limit for the validity of the principle of material 
frame indifference. It generalizes the laws of Fiek, Fourier and Navier-Stokes and provides 
finite speeds of waves of concentration, temperature and shear. Moreover the theory permits 
the calculation of entropy and entropy flux in non-equilibrium and it confirms Onsager 
relations in a rotating mixture of ideal gases. 

Introduction 

This paper is an investigation into the kinetic theory of gases but it is intended 
to be read by researchers in the fields of continuum mechanics and thermo- 
dynamics. Four common questions are answered: 

i) Is material frame indifference a valid axiom, and if not, is it approximately 
valid and what is its range of validity? 

ii) What are the proper forms of the constitutive equations for entropy and 
entropy flux in non-equilibrium? 

iii) What  are the speeds of propagation of diffusion waves, thermal waves and 
shear waves? I t  will be recalled that the classical theories of Fick, Fourier and 
Navier-Stokes predict infinite speeds. 

iv) What  is the form of the Onsager relations for diffusion and thermal 
diffusion in rotating gases? 

The paper documents that  the principle of material frame indifference is not 
supported by the kinetic theory of gases. However, it also indicates that the frame 
dependent terms are extremely small and that  they will only be noticed in very 
dilute gases. We show further that the same terms which violate material frame 
indifference also permit finite speeds of diffusion, heat conduction and shear 
waves. The values of these speeds are calculated. These observations use a level 
of description on which the entropy has non-equilibrium contributions and the 
entropy flux deviates from the quotient of heat flux and absolute temperature; 
the extra contributions are calculated. 
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All this is exhibited here for mixtures of an arbi trary number of one atomic 
gases. The plan to write this paper was conceived when the confusion about 
material frame indifference in the kinetic theory spread among engineers and 
mathematicians to the extent tha t  the issue was distorted beyond recognition. 
The topic is restated properly here and it is related to other items on which the 
kinetic theory and common phenomenolegical thermodynamics are at variance. 

In  the early 1970's M@er  [1], Edelen and MeLennan [2], and SSderholm [3] 
demonstrated that  the kinetic theory contradicts the principle of material frame 
indifference; in fact Chapman and Cowling [4] had already m~de the same obser- 
vation in 1936. Truesdell [5] disagreed and Wang [6] blamed the whole effect on 
the approximation, even though the frame dependent terms are also present in 
the exact equations of transfer. In a recent paper Speziale [7] misquoted Mfiller's 
equations and confused material frame indifference with the requirement that  
stress and heat flux be an objective tensor and vector respectively, a fact tha t  has 
never been disputed by  any one. 

Mixtures were chosen for a demonstration of the salient ideas about material 
frame indifference, because they have not been treated before under this aspect. 
Also, the frame dependent terms in the diffusion fluxes are clearly just the ordinary 
Coriolis forces and there can be no doubt tha t  they belong where they occur. In  
particular, it would not make sense to a t t r ibu te  the frame dependence of the 
diffusion fluxes to the approximations of the kinetic theory. 

At the same time the t reatment  of mixtures makes it clear that  the consti- 
tutive equations of thermodynamics of mixtures are but  truncated versions of the 
equations of balance of relative momenta  of the constituents and of their fluxes 
of momentum and energy. The frame dependent terms occurring in the consti- 
tutive relations come from the inertial terms in the equations of balance. This 
observation has recently motivated Liu and MiJller to reformulate Extended 
Irreversible Thermodynamics so as to provide a phenomenological basis for the 
results of the kinetic theory that  are reported in the present paper, see [15]. 

1. Boltzmann Equation and Equations of Transfer 

1.I  Basic Concepts of the Kinet ic  Theory 

The state of a mixture of v men-atomic gases is characterized by the set of 
distribution functions 

/,(x~, c f  , t), c, = 1 . . . . .  v. 

/ ,  dx de, := / , ( x i ,  ci% t) dXl dx~ dxa de1 ~ de2 ~ de, ~ determines the average number 
of a-particles of velocity q~, position xi and time t. 

1.1.1 TypieM Times and Lengths 

For a dilute gas of 1017 particles per cm 3 (say) we may derive the following 
ratios of characteristic times and lengths. 

mean time of free flight ~ 3 000 - mean duration of collision 

mean free pa th  ~ 3000 �9 range of interaction forces 
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At  room t e m p e r a t u r e  the  du ra t i on  of a collision is a p p r o x i m a t e l y  10 -~z sec. Thus  
i t  follows t h a t  ex te rna l  and  iner t ia l  forces can be neglec ted  dur ing  the  collision. 

1.1.2 Dynamics  of B ina ry  Collision 

The veloci t ies  
CiCt Cifll Cior" Cifll" 1 

of two par t ic les  of cons t i tuen t  ~ and  fl before and  af te r  a collision are  re la ted  b y  
the  conserva t ion  laws of m o m e n t u m  and  energy 

m~ci ~ -[- m~ci ~1 - m~ci ~'" -F m~ci ~1" 
(1.1) 

m~, G' 2 _~ m~ me, ,~ m E ( c y ) 2  

because  the  effect of the  ex te rna l  forces on the  ou tcome of the  collision is neg- 
l igible as we saw in Sect ion 1.1.1. 

1.1.3 Bo l t zmann  E q u a t i o n  

The  d i s t r ibu t ion  func t ion / , (x i ,  cd ,  t) obeys  the  Bo l t zmann  equa t ion  

G, G, d. a--/ 
v c l 

a~i~ (1.2) 
v oo 2 ~  ~ / 2  

= S f f f  f f (/at/Y 1 - -  la/fl 1) ffa~ ~r sin 0p: dOz: de dc~'. 
~ 1  --co 0 0 

]i ~ - -  specific ex te rna l  body  force. I n  the  sequel we shall  t a k e / i  ~ to be the  same 
force for each cons t i tuent .  

ii ~ - -  specific iner t ia l  force on a molecule  of cons t i tuen t  ~. 
c 

~,,  ~ - -  va lues  of the  d i s t r ibu t ion  funct ions  for the  a rguments  Ci ~, 
Cifll~ Ci~'~ t i f f  1". 

xz~ --~ ~ - -  208, - -  sca t te r ing  angle.  
G ~  - -  effect ive cross sect ion for ~f i ' sca t ter ing  into  the  solid angle  e lement  

sin 0~, doz ,  de.  

g ~  ----- c ~ - -  c zl - -  re la t ive  ve loc i ty  of molecules ~ and  ft. 

The  iner t ia l  force ii ~ consists of the  centr i fugal  force, the  Coriolis force, the  
c 

Eule r  force and  the  force of re la t ive  t r ans l a t ion  and  we wr i te  

il ~ = - W ~ ( z j  - b~) + 2W~j (c s  - -  b~) + W~j(x~ - b~) + ~,  

where W i j  is the  ma t r i x  of angu la r  ve loc i ty  of the  observer  f rame wi th  respect  to 
an  iner t ia l  f rame,  and  b i is the  rad ius  vec tor  be tween  the  origins of the  two 
frames.  Wi~ is an  a n t i s y m m e t r i c  ma t r ix .  

1 The index 1 on ci~ and ci~' is redundant, if the colliding particles belong to different 
constituents, but  it  must be written, because it serves to distinguish the two particles 
when they belong to one constituent, or when a single gas is considered. 
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1.1.4 Maxwellian Molecules 

The form of the cross section as a funct ion of the relative speed g~  and of the 
scattering angle depends on the interatomic potential.  I f  this potential  is a 
repulsive potent ia l  inversely proport ional  to the four th  power of the interatomie 
distance, the product  a,~g'~ ~-: ]~  is a funct ion of 0~ alone. This is the case of the 
Maxwellian molecules for which manipulat ions with the collision integral in (1.2) 
are considerably simplified. 

I t  is expected tha t  the choice of a part icular  interaction potential  does not  
influence the equations quali tat ively;  in part icular  we shall therefore expect 
general val idi ty  of the results below, even though they  were calculated for Max- 
wellian molecules. 

1.1.5 ~ o m e n t s  m'~*l. �9 i~. and Me,1. �9 �9 i,. for the Consti tuents 

The definition of the distribution funct ion/~ implies tha t  

vT~ ~ = m--2-~ f ~/~ dc~ (1.3) 
J 

is the local mean value of a funct ion ~(xi ,  ci% t). I n  part icular  for ~ = c(' we 
identify ~ = vi ~ as the (macroscopic) velocity of const i tuent  ~. 

The peculiar velocity C~ ~ of a molecule is defined as 

Ci ~ : =  ci ~ - -  vi ~162 (1.4) 

The components  ci ~ and Ci ~ are used to define moments  mi~.." i., and central 
moments  M .~ viz. 

m .  ~. .. ~. : =  m~ f l,ci~ . . .  c~,. dc~ (1 .5)  

M~ - f / ~  ~ . . .  c ~  aco (1.6) �9 ~...iN'~- m~ C ~ 

With  (1.4) one gets the following relations between m~,.. ~ and M~,..i~ 

M .~. + ~ ~ (1 .7 .1 )  - -  O~VitViz m i d ~  ~1~,~ 

v"v"v ~ (1.7.2) tZ$~Z3 

. . . . . . . . . .  (1.7.3) 

A round  bracket  enclosing N indices indicates a sum of all N!  permutat ions  of 
these indices divided by  N !. La te r  in the paper we shall also indicate ant isym- 
metric and traceless symmetr ic  tensors of second rank by  brackets, viz. 

(A~j + A j 0  1 A[ii] ~ ~.1 (Aii  - -  Aii)  and A(ii) = "~ -~ Aubii. (1.8) 

1.1.6 Moments m~ .... iN and M~ .... ~ for the Mixture 

I t  will tu rn  out  in chapter  1.2.3 tha t  

m~ .... ~ = ~ m~:...~ 
a = l  

(1 .9)  
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is a p rope r  def in i t ion  for  the  hrth order  m o m e n t  of the  mix ture .  The 0 th order  and  
the  I st order  m o m e n t  are  

m0 = ~) - -  dens i ty  of the  mix ture ,  
mi = o~vi - -  m o m e n t u m  dens i ty  of the  mix ture .  

vi is cal led the  ba rycen t r i c  veloci ty .  
I n  ana logy  to (1.7) we def ine cent ra l  momen t s  M i .... i~ for the  mix tu re  b y  

mi~i~ = M q i  ~ + ~viv~ (1.10.1) 

mh~i ' = Mis,~ ' + 3v(hMi~ ) + ~ v i v i v ~  (1.10.2) 

mi~i~i~i, = Mhhi,~, + 4v(i Mi~i~a) + 6v(~ v~ Mi ,~  ) @ Qvi vi vi v~ . (1.10.3) 

Their  re la t ion  to  the  cent ra l  moments  Me of the  cons t i tuents  is g iven b y  the  
equat ions  

M~,~, = ~ (M~I~0 + ~ ; ~ L )  (1.11.1) 

Mi~i~i~ = 2 (Mg~i~i~ - -  33("/Mi~i~) + ~'tti~ui~ui~ ) (1.11.2) 
a = l  

Mh~hi~ = 2 (Mi~i~i~i~ @ 43(~21/1i~i~i0 @ 6u(~ui~Mi~i~) @ e,ui~ui~ui~ui~), (1.11.3) 

where the  di f fus ion veloci t ies  ui ~' : =  vi ~ - -  vi have  been in t roduced.  

1.1.7 T h e r m o d y n a m i c  Quant i t ies  in the  K ine t i c  Theory  

The  kinet ic  t h e o r y  assumes  the  fol lowing def ini t ions  

Mi~ - -  m o m e n t u m  f lux of cons t i tuen t  oc wi th  respect  to  a f rame moving wi th  
ve loc i ty  v~, 

- - M ~  - -  t o t a l  s t ress  t ensor  in the  mix ture ,  

1 
p~ : =  -~- Mi~ - -  pressure  of cons t i tuen t  ~, (1.12.1) 

1 
Q~s, : =  -~  Mii  @ ~fi~ - -  dens i ty  of in te rna l  energy of cons t i tuen t  ~ 2, (1.12.2) 

1 M u  + ~Y7 Q, fl, - -  dens i ty  of in te rna l  energy  of the  mix tu re  ~, (1.12.3) 
qe:= T a 

1 
qi ~ : =  -~  M i j  J - -  heat  f lux  of cons t i tuen t  c~ wi th  respec t  to  a f rame moving wi th  

ve loc i ty  v,, (1.12.4) 

1 
qi = -~  M i j j  + ~ ~,fl~ui ~ - -  f lux  of in te rna l  energy  in the  mixtur@, (1.12.5) 

a 

T~ . - -  m~ p~ t e m p e r a t u r e  of cons t i tuen t  r (1.12.6) 

2 a. and fl~ are additive constants in the specific entropies and internal energies respec- 
tively. 

a qi as the flux of internal energy with respect to the baryeentrie frame contains the 
convection of internal energy with the diffusive motion; hence the terms with ft.. 
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I n  this paper  we consider only the case tha t  all consti tuents of a mixture have 
the same temperature,  thus 

T:  = T - -  m~ p~ (1.12.7) 
k e~ 

k f ]~ In ]~ dc~ + cr - -  specific en t ropy of const i tuent  ~ 2, (1.13.1) 

v 

'~1 = 2 o__~ ~, + ~ ,  ~o~ --  specific en t ropy of the mixture 2, (1.13.2) 
a = l  ~O a = l  

q~(' = - - k  f / ~ C i  ~ I n / ,  dc, --  ent ropy flux of consti tuent  ~, (1.13.3) 

tt~ = e~  - -  T ~  @ P_e_~ _ chemical potential  of constituent, ~. (1.13.4) 

All these quantit ies are objective. This means tha t  under  a change of frame 
represented by  the Euclidean t ransformat ion xi* = Oij(t) xi + bi(t) they  trans- 
fo rm according to the formulae 

s* = s, Vi* = OiiVj, Tii  = OikO~tTk~, 

if they  are scalars, vectors  and tensors respectively. 0 is a time dependent  ortho- 
gonal matrix.  

1.1.8 Equil ibrimn 

The Maxwellian distr ibution 

/Mo~ o~, l~ m~ 3 m~ (c~a_v~) (c~,_v 0 
- -  e 2kv (1.14) 
m~ V 2 ~  kT 

makes the collision integral in (1.2) vanish. (1.14) considers equilibrimn as a state 
where all const i tuents  have the same velocity vl, the veloci ty of the mixture.  

Not  for all fields ~o,(x, t), v ( x ,  t) and T ( x ,  t) is the distr ibution /M ~ a solution 
of the Bol tzmann equat ion.  That  is the case, however, if these fields satisfy the 
following conditions 

0T = 0 (1.15.1) 
Oxi 

o.. Ox~ -iT \ ~t + vj ~xj/ - -  ~ (h + i~) = O. 

(1.15.2) 

(1.15.3) 

The inertial force ii now contains the Coriolis force Wij(v i - -  bj) on the fluid rather  
than  on a molecule. 

According to their definitions (1.12.1, 2) p~ and e~ are always given as functions 
of ~o, and T by  the equat ions  

k 3 k 
p ~ = 9 ~ - - T  and e~- -  T + f l ~ .  (1.16) 

m a 2 m a 
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~, and #~ are not  funct ion of Q~ and T alone, except  in equil ibrium where, according 
to (1.13.1, 4) and (1.14) we have  

and  

U~IE-- 3 k l n T - - k l n @ ~ + ~ y ,  (1.17.1) 
2 m~ m a 

# . [ E - -  5 ~ T 3 k _ _ T l n T @  k _ _ T l n @ ~ @ ( f l  _ T ~ . ) .  (1.17.2) 
2 m~ 2 m~ m. 

1,2 Equat ions  o / T r a n s / e r  

1.2.1 General  Equat ions  of Transfer  

Mult iplying the Bo l t zmann  Equa t ion  (1.2) with ~b. and  integrat ing it over  ci ~, 
we obta in  the general equat ion of t ransfer  4 

( ~ci r 

= +~ .~. f (~." - ~.) l d ~ %  sin o8~ d G  & & ?  d~. 
a = l  

(1.18.1) 

m. I (~b. - -  ~bc,' ) (/.'/81' - -  / J 1 )  ga~o.fl, sin O& dO~. d~ dc~ 1 dG 

8"~ (1.18.2) 

-}- --~ m ,  ( G  q- ~'~ - -  G '  - -  G ~') ( / ~ ' ~ '  - -  ]~]I) gr sin 0 dO de dG 1 dc,,. 

The right  hand  side of (1.18) has been wri t ten  in different versions: 
The first  form (1.18.1) will be used to calculate the collision integrals of the 

m o m e n t s  m-" whereas the  expression (1.18.2) is suitable for  considerations 
concerning the en t ropy  product ion.  

1.2.2 Collision Integra ls  

Wi th  G = c'~ c -~ the integrals on the right hand side of (1.18) become 
$i " ""  ~N 

. . ""  ~ 61 ""  ci~)/,/81]~8 sin 0Z, dO~ de dcz I dG.  

Chapman  and Cowling [4] describe a me thod  for the calculation of these integrals.  
Only a few collision integrals are of interest  in this paper .  These are listed 

below for Maxwell ian molecules. 

N = O: W~ = 0 

v v--1 (1) 

N = 1 : Z ~ = ~ Ros(u~ - -  u~ ~) 
8 = 1  8 = 1  

~ 8 = 1  

Derivation of the right hand sides see Chapman and Cowling [4, p. 64, 65j. 

(1.19) 

(1.20.1) 

(1.20.2) 
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N = 2 :  
(trace} 

v v (2) 

#=1 #=1 ~q% flye=l 

~ = o 
c~3=1 

(1.21.1) 

(1.21.2) 

N = 2 :  
{traceless part l  

N = 3 :  
(contracted) 

r e3 ~ [ a(~afl a(~@\ = tv<i~j? -+- 
,5'=I 3-=1 

+ 
~ a  fl=l ~7"~a 37e=1 

- -  3v<i~ ) 3v~,~vf~])~ + o~ _ _  _ _  :~,=~ ( i j , o ~ )  f 

v (3) v (3) 
@ ~ 2 R:zM~ii + e: 2 R:3M~i>ui ~ 

a 3=1 m, z 3e=l 

-t- i ~ ,  (a) 
~na2 37 ~ e = l  

(1.22) 

(1.23) 

The matrices R whose definit ions can be found in  the appendix  are funct ions of 
(1) 12) (2) (2) (8) 

the  par t ia l  densities Q,, . . . ,  o~. R,~, -Y~ ~ R ~ ,  R, 3, R~ 3 and  R ~  are symmetr ic  in  ~, fl, 
(a) (3) 

whereas R ~  and  ~ ~ 3  are an t i symmetr ic  in  ~, ft. 

1.2.3 Equa t ions  of Transfer  for the Par t ia l  Moments  mS 
21 �9 �9 �9 ~N 

and  for Moments  m i .... i~. of the Mixture 

For  ~b. = c. ~ c .~ E q .  (1 .18 )  becomes 

- -  2Nm~(~ .... ~_ Wi~), = ~ ~dg.. i  ~, 
fl=l 

(1.24) 

where it  was necessary to split the inert ial  force ii ~ into two parts.  

ii ~ = z i @ 2Winch ~, 
c 

i.e. into a par t  independen t  of the velocities cn ~ and  a par t  depending on cn ~. 
The sum over all c~ of (1.24) gives 

Dmnil . .ix 
at ax n 

,3=1 

where the defini t ion (1.9) has been used. 

(1.25) 

5 For the bracket notation see (1.8). 
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As an  example we evaluate the Eqs. (1.24) and (1.25) for the ease N = 1. 

aq~v~" + ~m~j _ ~(z i  + / i )  - -  2Wi~v~ ~ = ~ r (1.26) 
at ~x i #=~ 

aOvi. ~mi] 
at + ~ - -  ~(z~ + / ~ )  - -  2Wiiv i  = O. (1.27) 

We note t ha t  in (1.24) and (1.25) the two inertial terms zi and Wii appear.  For  the 
purposes of section 3.1,2 below it is appropr ia te  to eliminate zi ~nd W~i as far as 
this is possible, zi m a y  be eliminated f rom (1.24) and (1.25) by  use of (1.26) and 
(1.27) respectively. Wii, however, cannot  be removed.  

~m~... 
at ax~ ~ m(i .... *~-~ St + ~xn / 

+ 2 N(m~  .... ~_Wi~)~v~ ~ - -  m~( i .... ~ _ W ~ ) n  ) (1.28) 

~{~#  N ~ m  ~ } - -  ~ ~ )  ~h. . .  i~ -- (i~ . . . .  
#=i ~a 

�9 (~Pv~N) ~miN)n I 
a~st. . ~ + a~ax,, . . . .  ~ N • . . . .  ~_, \ - - - - ~  + - - ~  / 

+ 2N(m(i ..... ~_W~)~v~  - -  m, (  ~ .... i~_Wi~),~) ---- ~ cdg. .  i~,. 
afl=l 

(1.29) 

1.2.4 Equat ions  of Balance of Masses, Momenta,  Energies, 
Stresses and Hea t  :Fluxes 

For  N ~ 0 through N ~ 3 the Eqs. (1.28), (1.29) contain the equations of 
balunce of mass, m o m e n t u m  and energy of the consti tuents and of the mixture.  
These equations assume their most  familiar form when we replace the moments  
n~'~l...~ and mi,.., i~, by  the corresponding central moments.  I n  this w~y we get 
the following equations of balance:  

N ~ 0: Conservation of the masses of const i tuent  ~ and of the totM mass 

~q--~ aq~vi~ ~ 0 (1.30.1) 
0t + ax~ 

ae ~vi :_ 0.  (1.30.2) st + ax~ 
N = 1 : Balance of m o m e n t u m  of const i tuent  ~ and conservation of tota l  momen-  

t um 

a V--1 (1) 
~q~v~ ~ + a(~o~vi~vj ~ + M~j) _ ~(/~ + z~ + 2Wijv~ ~) = ~ R,#(ui# - -  ud)  (1.31.1) 

St axj # = 1 

~Ovi. _[_ ~(eviv s + Mij) _ o~(/i + zi + 2W~vi )  ---- 0. (1.31.2) 
St ax i 

N : 2: For  N = 2 is convenient  to write (1.28) and (1.29) in two parts,  one for 
the trace and the other  for the tr~celess pa r t  of the equation. 



80 Maria Heckl and I. Mflller: 

Trace: Balance of internal energy of constituent ~ and first law of thermo- 
dynamics. 

2M ~ avi~, ~ (2) aM~i -4- a(M~v~ + M~d) + - - - r  - -  = ~ - ~ e s u i  ~ (1.32.1) 
at ax i ,1 ax i 8=~ 

aM~i a(Mi~v~ 4- M~I) + 2M~1 av~ = O. (1.32.2) 

Traceless part :  Balance of stress deviators of constituent 

a et M a r162 aM~o)at + a(M(~>jV,~x~ + <0>,) + 2M,~(< 1 ,  , 8vi>)ax~ 4M~((iWi>)n (1.33) 

oa v (2) 1 v (2~a8%(iU~).__ 

ma 8=1 ma ~ye=l 

N = 3: Balance of heat fluxes of constituent c<. 

The only equation of interest among the balance equations for Mi~ k is the one 
for the trace Mi~ ~. since the other components have no interpretation in thermo- 
dynamics. 

aMi.--at~ ~ a(M#iV'ax~ + ~i],,) + 3Mn(~i~, ------Sx, o~= M(#" axn --  2M~iJWi" (1.34) 

13) 8 v (3) 1 v (3) 

ma2 8 =1 ma2 8 e=l ~r~r162 876s=* 

To obtain the relation (1.34) in the form given we have used the lower order 
equations of transfer (1.30), (1.32) and (1.33). Equations corresponding to (1.33) 
and (1.34) for the mixture are not needed. 

1.2.5 Equations of Balance of Entropies of the Constituents 
and Ent ropy of the Mixture 

k 
I f  we choose for ~b, the expression - - - -  In [, and insert it into (1.18.2) we get 

~r~ a 

a~o,~, + a(~,n=v~= + 4~ ~) 
at ax i 

1 / L' = s ~- k In - -  (]~'/y -- ]=/~) g~r sin 0~ dO~. de dc~ 1 dc~ (1.35) 
8*, 

§ T k J h12 "~ "~ --/~ g~=a, 8 sin 0 dO d~ de, ~ de,, 

with the quantities ~ and qbi ~ defined in (1.13.1) and (1.13.3). This equation 
represents the equation of balance of entropies of constituent ~. 

The total  entropy balance for the mixture results from summing (1.35) over 
a ] l  ~x. 

ae---~-~ + a ( ) (1.36) 
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where inspection of the production term 

1 [ h'#" = 2., ~-/c j In ( / , ' /Y - - / J Y )  g~Z~ sin 0~ dO~ de dc~ i dc~ 

(1.3'7) 
1 /" [a ' ]al '  f~ '~ 1' 

+ ~ ~-/~ j In - -  _ / . / 1 )  g~r162 sin 0 dO de de. 1 de~ 
u=l  L/a1 \1o: #a 

shows that  ~ is a positive quant i ty  representing the entropy production in the 
mixture. This fact supports the view that  ~ in (1.13.2) indeed represents the 
entropy. 

From (1.36) it follows that  

q~ = ~ (qb~ ~ + @~ui ~) (1.38) 
cr 

must  be defined as flux of entropy for the mixture. 
In  view of the discussion among thermodynamicists as to whether or not an 

entropy exists in non-equilibrium it is worthwhile to emphasize that  the kinetic 
theory exhibits such an entropy. 

2. Closure of Equations of Transfer and Thermodynamic Limit 

2.1 Closure o/ Equations o/Trans]er 

The equations of transfer (1.28) and (1.29) together with the collision integrals 
(1.19) through (1.23) form a system of differential equations for the moments m~l.." ~N 
and m i .... ~. However, in an equation of order N the moments  m~l.. .i . . . .  ~ni .... iN§ 
occur which ~re of order N -7- 1. One might calculate these higher order moments 
from the equations of transfer of the following order, but  there appear  moments  
of even higher order in those. Thus it happens that  at  no stage we have ~ closed 
system of equations and we shall proceed to describe possibilities for a closure. 

In  all cases the closure proceeds by  "cut t ing off" equations of balance for 
higher moments. In  the remaining equations the highest moments are ~pprox- 
imated in terms of lower ones. In  the following two sections this procedure is 
illustrated for two cases: Mixture of Eulerian Gases and Extended Irreversible 
Thermodynamics of Mixtures. In  the first ease we retain 4v -~ 1 equations and 
in the second case we retain 12v + 1 equations. 

2.1.1 Mixture of Eulerian Gases. A Closed System of 4~ + 1 Equations 

The easiest method of closure places the cut behind the first 4v -~ 1 equations 
viz. (1.30), (1.31) and (1.32.2). I t  proceeds by  calculating the highest moments 
M~ and Mi# from the Maxwellian equilibrium distribution (1.14). Thus the 
procedure provides a closed system of equations for the determination of ~ ,  
Vi% and T. 

Of course, this method is very rough, but we present the results in order 
to have a comparison with a more accurate technique described in the next 
section. 

6 Acta Mech. 50/1--2 
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For  Mi" i and M~ii we obtain wi~h the Maxwellian distribution (1.14) 

Mi~. = ~ k___T_T dO, (2.1.1) 
~ a  

till ,  = ~=1 ~ (q" makf-T (~i, + ~,ui~uF) , (2.1.2) 

= - -  u{ ~ + q~ufiui" . (2.1.3) 
a = 1 m~ 

Inser t ion of these results into (1.31) and (1.32.2) closes ~he system of equations. 
I t  can be rewrit ten in ~he following form in which the Eqs. (1.16) and (1.17.2) 
for p~, e~ and/z~ have been used for the benefit  of those who are familiar with 
the equations of macroscopic mixture theories. 

A t = O :  

clc__~ -t- ' Oq, u{~ _ O, c~ = 1 . . . . .  v - -  1 (2.2.1) 
dt o~ Ox i 

Or OOv----i/ = O. (2.2.2) 

N = I :  

j OUia OUi v 
8i~ -~d -t- Ox i~v--i - -  2W~j (u~ ~ --  ui ~) @ u~ ~ ~xi - -  u /  Ox~ 

~=1_ 
(2.3.1) 

( . ) eviv i 'F Z (p~dij § ~%ui"uj") 
OOv~ @ ,=1 
~t ~xj 

c~ = 1, . . . , ,  - -  1 

- -  ~(/~ + zl @ 2Wijvj)  = O. (2.3.2) 

3? = 2: (trace, mixture) 

~=1 + ~=1 - -  u ~  ~ +  " ~ 2 +  

Ot Ox n 
(2.4) 

~vi --__ O. 

(1) v--1 (1) 

c= : =  ~ denotes the concentrat ion of const i tuent  ~, A)=~ : =  ~" r=./Rz~r~p and 
@ 7 s = l  

r~z :=  d~z q_ 1 are symmetr ic  matrices depending on the partial  densities 

g O O stands for the material  t ime derivat ive with respect 

to the barycentr ic  motion. 
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The bMance Eqs. (2.2) for the masses are unaffected by the closure procedure. 
The Eqs. (2.2.1) through (2.4) form a closed system of differential equations 

for the 4v + 1 fields 
~ 61~ ...~ Cv_l, Vi, ~til: . . .  @iv-l: T 

in ~n ideal gas. 

2.1.2 Grad's Distribution. A Closed System of 12v + 1 Equations 
(Extended Irreversible Thermodynamics [10]) 

A method of closure somewhat more elaborate places the cut behind the 
first 12v q- 1 equations, viz. (1.30), (1.31) and (1.32.2) (1.33), (1.34). I t  proceeds 
by calculating the highest moments Mi"~. . and M~.i,  from a Grad distribution, 
by which Mi"j, and Mi~.in ~re related to moments of lower order. 

The Grad distribution represents the beginning of an expansion o f / ,  in terms 
of t termite polynomials (see [8], [9]). The expansion starts from ~n equilibrium 
state. I t  reads 

/~ = / ~ ( 1  + ~), (2.5) 

where cp abbreviates the expression 

(2.6) 

Gi ~ and Zi ~ in (2.6) are defined by Gi ~ :---- ci ~ --  v~ ~ and 

Z~ ~' : =  M~# § 2M<~j>u(' q- 5r tot '~ - -  ui ~' + e,ui~'u, ~. (2.7) 
~/'t a 

From now on all terms of quadratic or higher order in the quantities ui ~, M~#>, 

0v<~ M~# which all vanish in an equilibrium state described by (1.14) are dropped. 
~xi) ' 
This is admissible in the neighbourhood of equilibrium. Note that  ~v[--A, the anti- 

~x i] 
symmetric part  of the velocity gradient, need not vanish in equilibrium, nor 

does ~v___Az necessarily v~nish. With (2.5), (2.6) we get for the higher order moments 

3 
Mi~. . : --~ Mu(~3]~ ) (2.8.1) 

J]/d(~jjn = 5~a (]~TI2 (~in -~ 7 ]r M~in). (2.8.2) 
\ m~ l m~, 

Insertion of these into (1.33) and (l.34) closes the system of equations which 
then reads 

N = O :  
dc~, 1 8~,ui ~' 
d--/+ -- 0, a = 1, ..., v -- 1 (2.9.1) 

o tx  i 

~ q_ ~vi = 0. (2.9.2) 
S t  ~ x  i 

6* 
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N = I :  

T T e , +  p~ ' - -  e ~ +  P" -~xi~ T axi o,~ 

{ } 1 art (2.10.1) d av[-'-! - -  2Wi] (ui ~' - -  ui ~) + T (ui~ - -  ui~) ax'---ll 

v- ' l  (1) 

a e , , ~  " o = 1  - ~(i~ + zi + 2 W ~ v  i) - O. 
-at + dx] 

N = 2: (trace, mixture)  

(2.10.2) 

N = 2 :  

N = 3: (contracted,  const i tuent  a) 

avf___..j_l __ 2Win M~# 
ma 2 

~V n k M ~  a T  k T  ~M(~in) + 2 M ~ j ~ + 5 - -  �9 - - + 2 - -  (2.13) 
m~ (~n) ax n m~, ax n 

(8) __ 2 , kT  a~.__~_~ __ e.__~, ~ R~M~j j .  
~a M(~n)  mZ (::qXn - -  moil f l=l  

The balance Eqs. (2.9), (2.10) and  (2.11) for the masses and m o m e n t a  of the 
const i tuents  ~nd for the  energy of the mix tu re  are unaffected b y  the  closure 
procedure.  

The  Eqs.  (2.9) th rough  (2.13) represent  a closed sys tem of differential  equat ions 
for the  12v + 1 fields 

Q, cl . . . .  c~_1, v~, u~ t . . . .  ui ~-1, T, M<~j>, M~j (2.14) 
in an ideal gas. 

a ~ l  _}_ a = l 

at ax, (2.11) 

av---L ----- O. 

(traceless par t ,  const i tuent  a) 

\ax D 3 ax z 

-I- dindim -~ ~- dim - -  2Win -~- dim - -  2Win .M(nm> (2.12) 
\ax, l  \~xn~ 

(2) 

+ --3 M<ii> ax,~ + 5 Oxi> m~ e=* 
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For a single fluid a phenomenologicM theory with stress and heat flux as 
variables was formulated in [10] and called Extended Linear Irreversible Thermo- 
dynamics. The equations of that  theory are similar to (2.9) through (2.13) and 
they predicted finite speeds for all waves. This is also true for the present system 
of equations was we proceed to show. 

2.1.3 Finite Speeds for Diffusion, Shear Waves and Heat  Conduction 

The aim of this section is to investigate the propagation speeds of disturbances 
of concentration, temperature and velocity. For this purpose we consider special 
cases in order to uncouple the system of differential Eqs. (2.9) through (2.13) 
so tha t  we may  deal with separate equations for c~, ui ~, T. These equations will 
prove to be of hyperbolis type having wave solutions with finite speeds. 

Di//usion 

Here we consider the special case of a binary mixture with 

= const., vi = 0, M<}j> = 0, T = const., W~i = 0. (2.15) 

Moreover we neglect terms which are non-linear in ui ~' and derivatives of ~o, 
and /~ .  

We eliminate the diffusion velocities between (2.9.1) and (2.10.1) and  obtain 
an equation for cl alone, viz. 

(1) 
__0 2 ~2Cl ~(~2_____ ~1) ~2Vl ~-- ~)11~0 --0el = 0 -  (2 .16)  

0102 0t2 -~- Oc~ ~x i ~x i Dt 

Since, by  (1.17.2), 0(#2-/~1__ ) > 0 this equation is of hyperbolic type and pre- 

dicts the propagation of disturbances of cl with the maximum speed 

Shear Waves 

1/0~2 ~ ( t  ~2 - ~1)  Vc / /  
V o2 0cl 

For a single gas with 

~o = const., T = const., Miii ~- O, Wii = O, 
(2.17) 

z =O, 

we neglect terms non-linear in M<ij> and vi and eliminate M<i j between (2.10.2) 
and (2.12), thus obtaining another hyperbolic equation 

~v kT 02v 0 ~) 
- ~ t - ~  + - -  - -  + - -  av  = o .  ( 2 . 1 8 )  

m ~y2 m ~t  

This equation describes the propagation of shear waves with the maxinmm 
speed 

V ~ =  ~ .  
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Heat Waves 
For a single fluid with 

= const., vi = 0, Wij = 0, M @  = 0 (2.19) 

the Eqs. (2.11) and (2.13) may be combined to form a hyperbolic differential 
equation for T by  elimination of Mij~. 

0~f ~ k T ~ T  + .o ~ ) ~ T  
- -  ~t -'-7" + ~ ~ ~x/~xi m 2 ~t = 0. (2.20) 

In  (2.20) produc~s of gradients of T have been neglected. This equation describes 
the propagation of a heat wave with the maximum speed 

V T = ~ 3  l~Tm 

A careful analysis of the coupled system (2.9) through (2.13) also shows finite 
speeds of diffusion, shear waves and heat waves. The above Eqs. (2.16), (2.18) 
and (2.20) are merely supposed to illustrate this point and for this illustration 
we have enforced uncoupled equations by the assumptions (2.15), (2.17), (2.19) 
tha t  would be quite impossible to realize in a gas. 

In  this context it is instructive to look back upon the case of a mixture of 
Eulerian gases which was described by the Eqs. (2.2) through (2.4) in Section 2.1.1. 
In  that  case the differential equation for the concentration c~ turns out to be 
identical to (2.16). Thus we have finite wave speed of diffusion in Eulerian gases. 
I-Iowever, since in those gases M(~ h ~ 0, M~i i = 0 it is not possible to have 
shear waves or heat waves. 

2.1.4 Discussion of Complexity of System. Thermodynamic Limit 

I t  is true that,  by  (2.9) through (2.13) we have an explicit set of field equations 
for the 12v + 1 variables Q~, v{ ~, T, M<~j>, M{~? The set of equations is hyperbolic 
and yields finite speeds as we have seen. I-Iowever, it represents a more elaborate 
theory than thermodynamics, because thermodynamics is a field theory of 
only the v + 4 fields ~ ,  v{, and T 6. In  view of the difficulties of defining boundary 
values for M~j> and M~j in the extended theory, and in view of the difficulties 
of solving the Eqs. (2.9) through (2.13), we wish to go back to thermodynamics 
proper .  This may  be done by  relying on the balance laws (2.9), (2.10.2) and 
(2.11) and by  making them into field equations for ~,, v~, and T by  means of 
the formulation of constitutive equations for the diffusion fluxes o~u{% the partial 

stress deviators M~{j> and the partial heat fluxes 2 {h" Such constitutive equa- 

tions relate ~ui ~', M~ij>, Mii i~ to the fields of ~,, vi, and T. 

Linear irreversible thermodynamics as described in [ll] and [12] conforms exactly 
to this description. In contrast to this, rational thermodynamics of mixtures is a theory 
of the 4v + 1 fields ~, vi% and T based on the Eqs. (2.9) through (2.tl), and it formulates 

constitutive relations for M(~j) and ~ M e.-,~ (see [13]). 
a = l  
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The formulation of constitutive equations in the kinetic theory is based 
upon the equations of transfer (2.10.1), (2.12) and (2.13) and makes use of an 
i~erative scheme which we proceed to describe. 

2.2 Iteration within the Closed System o] 12v + 1 Equations 

2.2.1 Description of Iteration and First and Second Iterates 

We construct thermodynamic constitutive equations for e~ui% M(~i) and 
M~)i from the Eqs. (2.10.1), (2.12), and (2.13) by an iteration as follows: 

On the left hand side of (2.10.1), (2.12), and (2.13) we calculate all moments 
by use of the Maxwellian distribution (1.14) and thus obtain a first iterate each 
for  q:ui% M<~j), and Mini: 

J 

(9~Uia ~ -  (R-1),fl {T 
~x~ ( 

By (1.12.5) 

P~ (2.21.1) 

1 avl (2.21.2) 
3 ax t 

(1) v (3) / ~ 1 1  

MiSj = Z (R-~),z ~ -5/c~Ta axi ~ (~ = 1 . . . . .  ~,). (2.21.3) 
fl=l 

and (1.11.2) we have qi = Mijj ~- T ~ - -  u~ + O~fi~'ui~ 
a= l  ma 

in the present linear theory. Hence the first iterate for the flux of internal 
energy of the mixture reads 

a - -  
a ) ~ a ) ( 2 k T  ) T m T  q, = ~(_~-1)~ - -  + fi~ T + x , (2.21.4) 

where (~) abbreviates the expression 

, ((R-~):~ T 

(1) 
In (2.21.1) the original matrix (~-1)~ of (v --1) ~ elements was enlarged to contain 

v~ line ~nd row, viz. 

(~) ~-i  (1) 
(~- l )~  : _  __v' (~,-1)y B (fl ~-- 1 . . . . .  v -- 1) 

y=l  
and (2.22) 

(1) v--1 (1) 
(R-~)~ : =  -Z ( R - ~ ) ~  (~ = 1, . . . ,  ~). 

Thus Eq. (2.21.1) is valid for all a from 1 through ~. 
The next step proceeds by inserting the first iterates (2.21) of the moments 

into the left hand sides of (2.10.1), (2.12), and (2.13). Thus we get second iterates 



88 Maria Heckl and I. Miiller: 

for olui% M<~i> and Mi~ j. For  easy nota t ion we define the abbreviat ions 

I ( A i ~ =  T T ~ §  n~. 
8xi 0. ! 

E i  j _ 59v(i 1 59v l ~ii  
59xj) 3 59x l 

Ox n 
~nd obtain 

(2) [ { d 0 v i i -  2W0}__  , (~_1)`6y Ajy 0~gi ~ ~ (I} ~ v (1) 
= ~ A~ + ~j ~ + 59xj--~ 6̀=1 0̀6 ~=1 (2.23.1) 

1 E  1 ~ (1) 1 ~ (y=~/(l} )] 
__  __  ( ~ - l ) ` 6 y A i y  ~ -  - -  _ _  R ~ 1 2 1 ~ T E o  , 

~ -  3 Q~ y=l o~ Ox i 

. c r  ~ _ _  M<~j) = ~Y~ (R-~).`6 21cTE~j  + 2 l e t  59 1 (~_~)`6~, A ;  
~=1 59x(j ~̀6 

-~ m'-'2"~ (~indim ~ @ dim - -  2Win @ (~jm --  2Win 
0[~ \ 59x~ l \ 59x,1 (2232) 

(2) 5 " m`6 (2) 

y=l r=l 0,6 

Mi"/i = X (R-~)~`6 --5k~Ta q- in ~-~ -~ --  2Win 
`6=~ ~x i ) ~xn] 

�9 (R-~)`6~ --  5k~Ta 
0`6 r=~ ~xn / 

m`6 2 I v 13) 59 

/ ~ (2) ~ /c 59T 
- - -  ( R - ~ ) ~ ,  2 l c T E ~  - - -  
m~ 59X n \ r = l  ?=1 ~`6 ~Xn 

The flux of internM energy of the mixture  is calculated in this step just ~s it 
(2) 

was done in the first step; in the present  case q~ (or ra ther  ql) is given by  a very  
long expression which we do not  list here. Later ,  in Section 3.2.2 u t runcated  
form of this expression will be discussed. 



Frame Dependence, Entropy, Entropy Flux, and Wave Speeds 89 

Both the first and second iterates (2.21) and (2.23) are equations of the 
general form of the constitutive equations of thermodynamics. That  is to say 
that  the diffusion fluxes, the stresses and the heat flux are related to the thermo- 
dynamic fields ~o~, vi and T. Some properties of flux constitutive relations will 
be discussed in the next  chapter. 

2.2.2 Critique of I terat ive Scheme 

The iterative scheme described above is akin to the )/Iaxwellian iteration 
which has been used to construct constitutive relations for stress and heat flux 
in single fluids by  Ikenberry  and Truesdell [14]. This Maxwellian iteration 
does not use the Grad distribution rather it works on the exact equations of 
transfer for moments  and more and more equations are drawn into the scheme as 
the iteration progresses. In  this respect the Maxwellian iteration is more syste- 
matic than the one presented here. However, the present method is simple and 
it yields all terms of qualitative significance which we wish to discuss here. 

We recall that  the closed system (2.9) through (2.13) furnished finite speeds 
for diffusion, shear waves and heat conduction. The iteration destroys this 
feature;  indeed, if the constitutive relations (2.21), or (2.23) are introduced 
into the equations of balance (2.9) through (2.11) we obtain a set of parabolic 
equations which predicts infinite speeds. This feature is common to all i terative 
schemes tha t  lead to thermodynamic constitutive relations, in particular, the 
Maxwellian iteration and the Chapman-Enskog method share this deficiency. 

3. Implications on Thermodynamics 

3.1 Results o/ First Step o/ Iteration 

3.1.1 Laws of Fick, Navier-Stokes and Fourier 

The resul ts  of the first iterative step (2.21.1, 2, 4) represent the phenomeno- 
logical equations of Fick (generalized) for diffusion, of Navier-Stokes for stress 
and of Fourier (generalized) for heat flux. 

We can identify the following phenomenological quantities: 

(1) 
matrix of diffusion coefficients: (_~-l)~ T 

(1) ( ~aa)( )) 
P~ P_A v [ (3) 5 (]gT) 2 @ ( R _ I ) ~  5 ea ~_ gfl _~ heat conductivity: --~Y] T (R-1)~fi -~ 

~ = 1  ~o~ 

thermo-diffusion coefficient: - - T  2 er q- p~ (~)-1)~ 

diffusion-thermo coefficient: - - T  ~ G + (p-1).~ 
cr 
v (2) 

viscosity of constituent ~: 2kT ~ (R-1)~. 

The Eqs. (2.21.1, 2, 4) are of the form tha t  linear irreversible thermodynamics 
assumes for the constitutive relations of diffusion fluxes, stress deviators, and 
heat flux. 
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3.1.2 Material Frame Indifference, Onsager Relations and Infinite Speeds 

Frame Indilference 

The principle of material objectivity requires that  the constitutive functions 
for the diffusion fluxes, stress and heat flux are independent of the frame of 
reference. This is indeed the case for the results of the first iterative step, since 
no terms depending on the observer frame appear in (2.21). 

Onsager Relat ions /or  Di / /us ion and Thermal Di]]usion 

The Eqs. (2.21.1, 4) may  be slightly rewritten such that  they assume the 
form 

{ (i) 
~qi 1 1: 

{11 (11 

~x i 

T 

_ Dxi 
(3.1) 

Inspection of R~Z in (A.1) and of the definition of (R)=z below (2A) shows that  
the matrix of coefficients in (3.1) is symmetric. This symmetry  is known as 
the Onsager reciprocity relation for heat conduction and diffusion. Thus in 
particular, the kinetic theory confirms that  the thermo-digusion coefficients 
are equal to the diffusion-thermo coefficients. 

In / in i te  Speeds 

(i) i Elimination of ~lui between the constitutive relation (2.21.1) and the mass 
balance (2.9.1) yields the equation 

dc i 1 0(#i _ f~) ( I )  ~ci 
d--~ -t- (R-1)11 - -  0 (3.2)  

o ~c 1 Ox i ~x i 

for a binary mixture of constant temperature.  This is a parabolic differential 
equation for the concentration cl, which predicts an infinite speed of diffusion. 
This confirms the earlier remark that  the iteration has led to a set of parabolic 
equations. 

3.2 Result8 o /Second Step o / I tera t ion  

3.2.1 Fra,me Dependent Constitutive I~elations for Diffusion, 
Stress and Heat Conduction 

The results of the second iterative step are contained in the Eqs. (2.23) which 
relate the diffusion fluxes, the heat fluxes and the stress to the thermodynamic 
fields ~o~, vi% and T. Inspection of (2.23) shows that  the constitutive functions 
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are frame dependent, because they contain the matrix Wij of angular velocity 
of the frame. Thus the kinetic theory eontradiet, s the principle of material frame 
indifference. 

0 @~)is different In  particular, the relation (2.23.1) between 9,ui~ and Ox---~ 

in an inertial frame and in a non-inertial one, because Wi~ vanishes in one and 
is non-zero in the other one. 

In  order to anticipate misunderstanding we note that  both sides of all Eqs. 
(2.23) are objective vectors and tensors. I t  is true that  e.g. 

dii dAjr 8v[i 
dt ' Oxil A F '  and 2WiiAi y (3.3) 

are not objective vectors, but the sum of these three expressions forms an ob- 
jective vector. Similarly the operators in the curly brackets of (2.23.2, 3) form 
an objective tensor and vector respectively. 

The physical root of the frame dependence of (2.23) becomes particularly 
obvious for a binary mixture in rigid rotation with a constant angular velocity 
about the same axis about  which the frame rotates. We consider a constant 
and uniform field of temperature  and stat ionary fields of densities and chemical 
potentials such that  ~ and #, at a point depend only on its distance from the 
axis of rotation. In  this special ease (2.23.1) assumes the simple form 

'" )I * *  o~W = (-~-~h~ ~ij + 2 Q (-~-~h~ - -  W~ 

In  order to interpret this formula suggestively let us consider t h e  above 
special case for a gas at  rest between two coaxial circular cylinders as shown 
in Fig. 1, # stands for #1 - -  #2. In  order to maintain the prescribed rotational 
velocity field the two constituents must move in opposite directions. Stationarity 
will be ensured by  proper boundary conditions on the two cylinders. Let  us 
focus the attention upon a small volume element of which a blow-up is shown 
in Fig. 2 and 3. The element has dimensions of the order of magnitude of the 
mean free path. Fig. 2 refers to the case when the gas it at  rest in an inertial 
frame. 

At~ v 

0• 

Fig. 1 Fig. 2 Fig. 3 
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With the indicated direction of @ there will be more molecules of constituent 
~xi 

1 on the lower side of the volume element than on the upper one. Consequently 
within the element more molecules are flying upwards than downwards as 
indicated in Fig. 2. As a consequence there is a net mass flux of constituent 1 

in the upward direction, i.e. opposite to @ .  This is in fact what Eq. (3.4) describes 
~xl 

for the ease of an inertial frame where Wir = 0 holds. 
The situation is changed when the cylinders are taken to a non-inertial 

frame. We establish the same field of ~ as before and have again a surplus 

of molecules of constituent I at the lower side of the volume element depicted 
now in Fig. 3. 7 Again more particles are moving upwards than downwards but 
their paths between collisions are now curved by the Coriolis force as shown 
in Fig. 3. Consequently there is now still a net mass flux across the plane H--H, 
but in addition there is a net mass flux across the plane V--V, i.e. in the 

direction perpendicular to ~# and to the angular velocity just as predicted by 
Eq. (3.4). ~x~ 

An analogous suggestive argument can be presented for the interpretation 
of the frame dependent term in the heat fluxes (2.23.3). This argument has 
been described in [1]; with respect to heat conduction the argument is 
somewhat simpler, since the temperature field is not affected by the centrifugal 
force and because temperature is a more plausible quantity than the chemical 
potential. 

While the kinetic theory thus predicts frame-dependence of the constitutive 
function for diffusion fluxes, stress, and heat flux, the relevant terms are quite 

(1) 
small. Indeed, ~ (_R-1)11 in Eq. (3.4) (say) is of magnitude of a mean time of 

~1Q2 
free flight, whereas the components of ovii --  W o. represent the frequency of 

axil 
rotation of the fluid with respect to an inertial frame. Thus the frame dependent 
terms have the size of the quotient 

time of free flight 
period of rotation 

and this is a small ratio indeed for all feasible centrifuges. 

3 .2.20nsager  Relations in a I~otating Fluid 

We summarize the constitutive equations for the diffusion fluxes and for 
the heat flux of the mixture and simplify them by neglecting all terms with 
Ei~ and E. Thus we obtain from (2.23.1, 3), and from the definition 

7 This surplus of molecules is superimposed now on the natural excess of molecules a.t 
larger radii that is created by the centrifuga, t force. 
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q~ ~ (2) p~ . 

F- (2) 

1 (~) I 
L q~ J 

] ~B~ (1) (1) 
1 - -  ( /~- : )~  

= L ~>y 

(i) P'~ -~- ~,--~1 1 (1) P~ - -  ( ~ - : ) ~  0 ~  ,o + 

fl=l 

y=l ~5 
(2) 

T 

T 
~xy_ 

(3.5) 

d ~v[i 2Wii. The form of (~) does not where Oii stands for the operator 3ii ~-~ + ~xi) 
interest here. 

We abbreviate the matrix in (3.5) by T~r and observe by inspection that  
it satisfies the following symmetry relations 

y~ T~/(s, w ) =  Ty~ ( - -S ,  - -W)  (3.6) 

where S is the antisymmetric part  of the velocity gradient, often called the 
spin tensor. This symmetry relation confirms the Onsager reciprocity relations 
in the presence of axial fields, here the fields of spin and of the angular velocity 
of the frame. 

3.3 Implications [or Entropy and Entropy F l u x  

According to (1.13.1, 3) the kinetic theory defines the density and flux of 
entropy of constituent ~ by 

~o~ = - ~  f / ~  :n/odco + ~o~o, v,  o = - -k  f /oV,~ i n / ~ .  (3.7) 

I t  is important to realize that these entropic quantities are defined for arbitrary 
distribution functions, in particular these functions may characterize non- 
equilibria. In order to emphasize this fact we introduce the Grad distribution 

(2.5), (2.6) into the Eq. (3.7). In (1 + ~) is replaced by  9 --  - -  and we obtain 
2 

after considerable calculation 

M ~ i ~ 7. = ~.[E 1 (0) <iY) 1 M~jM~kk 
4 g~p.T 20 p.2T 

~ =  M~'ji 1 M<~y>~y~ 
2T 5 paT ' 

(3.8) 
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1 
where ~[~ is given by  (1.17.1). Always, of course, -~- Mi%i is equal ~o the hea~ 

flux q, of constituent a. 
The entropy and entropy flux of the mixture result from (3.8) by  summation 

according to (1.13.2) and (1.38). Thus the entropy flux assumes the form 

.~a a\ 

T ~=:t\ T 5 p--'--~ /" 

The firs~ term in (3.9) is the familiar entropy flux of phenomenologieal ~hermo- 
dynamics of mixtures. 

Appendix 

The matrices R on the right hand sides of (1.20) through (1.23) are defined 
by  the following expressions 

(1) 4z yl~ ~ 4z yl~r 

ma + m  E v=l m a + m  E 

(2) 87* YI"E 
- ~  - -  m~mE~)E(U~y ( U~, (A.2) R~ E -- UE~ ) - -  U~) (m~ + m~) 2 

R ~  = ( 3 Y ~ -  Y ~ )  
(m~ + mE)2 

q~ (3m~, Y2"Y - -  3my Yl ~r - -  2m~ Y1 ~y) 
y=l 

(A.3) 

(2) 

(m. + m~) ~ 
(372 ~ -- 71 ~)  &0E(U~r -- UEy ) ( U ~ . -  UE~) (A.4) 

(3) 
R,E = 

4:Zma2 Q_L 
16~m~2m~ 2 Y2 ~E ~G 

(m~+mEP +GZ~=I ~ (m~+my) ~ 

. (4m~my Yr - -  4m:my  Y l  r - -  mr 2 Y1 ~y - -  3m ,  a Y1 ~y) 
(A.5) 

8r 2m7 ~...L7 

(a) 32mnfmf ~2 ~fl -~- dee 2 (.Za @ m7)3 R~r = ~-- (m= + mE)3 ~:, 

I 

�9 [3Yl~r(m: + my) q- Y2~'Y(m: - -  3m~)]l} (U~ --  U~) 

(A.6) 

(a) 16zmo,2m~ y l ~  
(A.7) 
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where U~, Y1 :z, and  Y ~  are defined by  

o, 
~/2 

= f/o (0 o) sin 0p: cos 2 0r dO~ (A.8) 
0fla=0 

Yz ~z = f/ ,~(0~,)  sin 0g, cos a 0~: dO~. 
ofi~ =0 

The Y's are cons tan t s  depending  on  the s t rength  of the in terac t ion  between 

particles a and ft. 
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