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Summary

The kinetic theory provides constitutive equations of ideal gases and it can therefore
be used to confirm or reject the axioms and principles of the phenomenological constitutive
theory. Thus the kinetic theory provides a limit for the validity of the principle of material
frame indifference. It generalizes the laws of Fick, Fourier and Navier-Stokes and provides
finite speeds of waves of concentration, temperature and shear. Moreover the theory permits
the calculation of entropy and entropy flux in non-equilibrium and it confirms Onsager
relations in a rotating mixture of ideal gases.

Introduction

This paper is an investigation into the kinetic theory of gases but it is intended
to be read by researchers in the fields of continuum mechanics and thermo-
dynamics. Four common questions are answered:

i) Is material frame indifference a valid axiom, and if not, is it approximately
valid and what is its range of validity?

il) What are the proper forms of the constitutive equations for entropy and
entropy flux in non-equilibrium?

iii) What are the speeds of propagation of diffusion waves, thermal waves and
shear waves? It will be recalled that the classical theories of Fick, Fourier and
Navier-Stokes predict infinite speeds.

iv) What is the form of the Onsager relations for diffusion and thermal
diffusion in rotating gases?

The paper documents that the principle of material frame indifference is not
supported by the kinetic theory of gases. However, it also indicates that the frame
dependent terms are extremely small and that they will only be noticed in very
dilnte gases. We show further that the same terms which violate material frame
indifference also permit finite speeds of diffusion, heat conduction and shear
waves. The values of these speeds are caleulated. These observations use a level
of description on which the entropy has non-equilibrium contributions and the
entropy flux deviates from the quotient of heat flux and absolute temperature;
the extra contributions are caleulated.



72 Maria Heck! and 1. Miller:

All this is exhibited here for mixtures of an arbitrary number of one atomic
gases. The plan to write this paper was conceived when the confusion about
material frame indifference in the kinetic theory spread among engineers and
mathematicians to the extent that the issue was distorted beyond recognition.
The topic is restated properly here and it is related to other items on which the
kinetic theory and common phenomenological thermodynamics are at variance.

In the early 1970’s Miiller [1], Edelen and McLennan [2], and Séderholm {3]
demonstrated that the kinetic theory contradicts the prineciple of material frame
indifference; in fact Chapman and Cowling [4] had already made the same obser-
vation in 1936. Truesdell [5] disagreed and Wang [6] blamed the whole effect on
the approximation, even though the frame dependent terms are also present in
the exact equations of transfer. In a recent paper Speziale [7] misquoted Miiller’s
equations and confused material frame indifference with the requirement that
stress and heat flux be an objective tensor and vector respectively, a fact that has
never been disputed by any one.

Mixtures were chosen for a demonstration of the salient ideas about material
frame indifference, because they have not been treated before under this aspect.
Also, the frame dependent terms in the diffusion fluxes are clearly just the ordinary
Coriolis forces and there can be no doubt that they belong where they occur. In
particular, it would not make sense to attribute the frame dependence of the
diffusion fluxes to the approximations of the kinetic theory.

At the same time the treatment of mixtures makes it clear that the consti-
tutive equations of thermodynamics of mixtures are but truncated versions of the
equations of balance of relative momenta of the constituents and of their fluxes
of momentum and energy. The frame dependent terms occurring in the consti-
tutive relations come from the inertial terms in the equations of balance. This
observation has recently motivated Liu and Miiller to reformulate Extended
Irreversible Thermodynamics so as to provide a phenomenological basis for the
results of the kinetic theory that are reported in the present paper, see [15].

1. Boltzmann Equation and Equations of Transfer

1.1 Basic Concepts of the Kinetic Theory

The state of a mixture of » mon-atomic gases is characterized by the set of
distribution functions

fa(xii ci%, t)’ & = 1, sery Ve
fa Gz dey 2= [ {2, €%, t) day dxy dag dey® dey® de,® determines the average number
of x-particles of velocity c¢;%, position x; and time ¢.
1.1.1 Typical Times and Lengths

For a dilute gas of 1017 particles per ecm? (say) we may derive the following
ratios of characteristic times and lengths.

mean time of free flight ~ 3000 - mean duration of collision

mean free path / 3000 - range of interaction forces
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At room temperature the duration of a collision is approximately 10712 sec. Thus
it follows that external and inertial forces can be neglected during the collision.

1.1.2 Dynamics of Binary Collision

The velocities
cl“? c; b1 ci'x,’ ciﬁl' 1

of two particles of constituent « and § before and after a collision are related by
the conservation laws of momentum and energy

M +- mgePt = moc;™ + mpefV

(1.1)
m, m, m, m

s ¢, 2 B (e )2 — s 2 B ()2

oGl 5 () = e + 2R (o)

because the effect of the external forces on the outcome of the collision is neg-
ligible as we saw in Section 1.1.1.

1.1.3 Boltzmann Equation

The distribution funetion f,(x;, ¢;%, t) obeys the Boltzmann equation

%’%+Ci“af (fa_+_7/)afa

oy de;® (1.2)
co 27 f2
- Z‘ fff f f lfﬂll - f:x.fﬂl) O'aﬂg{xﬂ sin 015« daﬂa de dC/S‘l.
=1 —c0 0 0

f# — specific external body force. In the sequel we shall take f;* to be the same
foree for each constituent.

;* — specific inertial force on a molecule of constituent «.

‘ for f&4 15 f&" — values of the distribution functions for the arguments ¢;?,
Ciﬂl, Ci“,, C,;m".

#pn = 7 — 205, — scattering angle,

g,5 — effective cross section for «f-scattering into the solid angle element
sin nga d@ﬂa de.

g*f = ¢ — ¢ — relative velocity of molecules « and .

The inertial force 4, consists of the centrifugal force, the Coriolis force, the
3
Euler force and the force of relative translation and we write

6% = — Wiz, — b)) + 2Wy(ep” — by) + Wiy — b)) + by,

17
where W;; is the matrix of angular velocity of the observer frame with respect to

an inertial frame, and &; is the radius vector between the origins of the two
frames. W;; is an antisymmetric matrix.

1 The index 1 on ¢ and ¢ is redundant, if the colliding particles belong to different
constituents, but it must be written, because it serves to distinguish the two particles
when they belong to one constituent, or when a single gas is considered.
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1.1.4 Maxwellian Molecules

The form of the cross section as a function of the relative speed g*# and of the
scattering angle depends on the interatomic potential. If this potential is a
repulsive potential inversely proportional to the fourth power of the interatomic
distance, the product o,,0%% =1 f.is a function of 6,5 alone. This is the case of the
Maxwellian molecules for which manipulations with the collision integral in (1.2)
are considerably simplified. »

It is expected that the choice of a particular interaction potential does not
influence the equations qualitatively; in particular we shall therefore expect
general validity of the results below, even though they were caleulated for Max-
wellian molecules.

1.1.5 Moments m} ; and M{

i, for the Constituents

) ot

The definition of the distribution function f, implies that
ne =" [ . do, (13

is the local mean value of a function ¢,{x;, ¢;* #). In particular for ¥, = ¢;* we
identify %, = »;* as the (macroscopic) velocity of constituent «.
The peculiar velocity C;* of a molecule is defined as

Oio‘:: ;% — v, (14)

The components ¢;* and C;* are used to define moments mj  ; and central

raoments M7 , ViZ.

iy

Mgy o= M ff«czl... c§., de, (1.5)
M5 = ffaCE‘l ... 0 dC,. (1.6)
With {1.4) one gets the following relations between mf? ; and Mf .
Mg, = M, + 0050, (1.7.1)
M, = Mii, + 306 M + 0050525, (1.7.2)

Miinis = Mg, + W05 M i + DOGUEME; ) + CaViVEVEYS, - (1.7.3)
A round bracket enclosing N indices indicates a sum of all N! permutations of
these indices divided by N!. Later in the paper we shall also indicate antisym-

metric and traceless symmetric tensors of second rank by brackets, viz.

i 1 1
A[iﬂ = —2— (A” — A”) and A(ii) = -2~ (A” + Aii) — —3~ Auéﬁ. (18)

1.1.6 Moments m, _; and M; ; for the Mixture

.2

It will turn out in chapter 1.2.3 that
My iy = 2 My (1.9)
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is a proper definition for the Nt2 order moment of the mixture. The 0t order and

the 1st order moment are

my = o — density of the mixture,
m; = gv; — momentum density of the mixture.

v; is called the barycentric velocity.
In analogy to (1.7) we define central moments M, . ; for the mixture by

M, = My, 1 00305, (1.10.1)
ivinis = Miiinss 1+ 306, My 1+ 000,05, (1.10.2)
Miigini, = Miiigis + 406 M i + 606,0, Mo + 000,00, - (1.10.3)

m

Their relation to the central moments M¢ _; of the constituents is given by the
equations

M, = Z (M35, + oauiu %) (1.11.1)
M, = § (M, + 3u M + oauiugui) (1.11.2)
Mili?i”"i - Z ( 217/21324 Jr 4:21/(11_[””13“) i 6u(z U M““) + Q"‘uh 1/2 13 “) 3 (1.11.3)

a=1

where the diffusion velocities u;* := »;* — v; have been introduced.

1.1.7 Thermodynamic Quantities in the Kinetic Theory
The kinetic theory assumes the following definitions

M3 — momentum flux of constituent « with respect to a frame moving with
velocity v,

—M}; — total stress tensor in the mixture,

Py 1= % M3 — pressure of constituent «, (1.12.1)
Oube i = —;- M + p.f. — density of internal energy of constituent « 2,  (1.12.2)
pe 1= —;— M+ aZ' 0.0, — density of internal energy of the mixture?, (1.12.3)
gi* 1= — M % — heat flux of constituent « with respect to a frame moving with

i
velocity v, (1.12.4)
q; = % M 4 2 0ufui® — flux of internal energy in the mixture?, (1.12.5)

T, := ”—;:— B _ temperature of constituent . (1.12.6)
Qu

? u, and B, are additive constants in the specific entropies and internal energies respec-
tively.

8 g¢; as the flux of internal energy with respect to the barycentric frame contains the
convection of internal energy with the diffusive motion; hence the terms with g,.
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In this paper we consider only the case that all constituents of a mixture have
the same temperature, thus

R L (1.12.7)
koo
Ny = _E f f-In f, de, + x, — specific entropy of constituent « 2, (1.13.1)
O«
n= % B + i’ 0,06, — specific entropy of the mixture 2, (1.13.2)
«=1 @ a=1

¢i* = —k f £.C:* In {, de, — entropy flux of constituent «, (1.13.3)
Uy = &x — Ty + Le _ chemical potential of constituent «. (1.13.4)

@

All these quantities are objective. This means that under a change of frame
represented by the Euclidean transformation x;* = 0;(¢f) #; + b;(t) they trans-
form according to the formulae

s* =g, Vi = 0,V;, Ty = 0401,

if they are scalars, vectors and tensors respectively. 0 is a time dependent ortho-
gonal matrix.

1.1.8 Equilibrium

The Maxwellian distribution

3 Mo

0, m, — —— {ei%—w) (ci%—0i)
o — o o 2T 1.14
I m, | 27 kT ( )

makes the collision integral in (1.2) vanish. (1.14) considers equilibrium as a state
where all constituents have the same velocity v;, the velocity of the mixture.

Not for all fields g,(, 1), ©(x, 1) and T(x, t) is the distribution f* a solution
of the Boltzmann e quation. That is the case, however, if these fields satisfy the
following conditions

T _ (1.15.1)
8xi
Qi LT s (1.15.2)
o)) 27 ot
1 g m, oy o, m, .
= Yy P (OY A W N =0, 1.15.3
o 7w T T (8t T 990]-) ar Ui T8 ( )

The inertial force 7; now contains the Coriolis force W;;(v; — b;) on the fluid rather
than on a molecule,

According to their definitions (1.12.1, 2) p, and ¢, are always given as functions
of g, and T by the equations

k 3 k :
= 2T L B.. 1.16
P =0.—T and e, > m T+ 4 (1.16)

My
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1, and g, are not function of g, and 7' alone, except in equilibrium where, according
to (1.13.1, 4) and (1.14) we have

3 k k
17,,]E = E ;L:h'l T — Eln Ox + Xy, (1.17.1)

and

TMT+$Tm&+m—Tm.uﬂ&

(3

5 k
2% p_
pelz 2 m,

to e
F=

1.2 Equations of Transfer

1.2.1 General Equations of Transfer

Multiplying the Boltzmann Equation (1.2) with ¢, and integrating it over ¢;%,
we obtain the general equation of transfer?

—

lp“ Ogtxlpacl
+ = o — Qa (fz + 711 ) 20" (1.18.1)

— S [ (00— ) o S O O de de de,

3

My / (lpa - lpa’) (fa,fﬂll - fzxfﬂl) g“ﬁo‘ﬂa sin 65‘, d@ﬂa d8 dC,gl dCQ

(1.18.2)
*-maf(lﬁa—i-l/)a — ¥ — 1Y) (Y — fafal) 9%°0ss sin 0 dB de de, dc,.

The right hand side of (1.18) has been written in different versions:

The first form (1.18.1) will be used to calculate the collision integrals of the
moments m{ . _; , whereas the expression (1.18.2) is suitable for considerations
concerning the entropy production.

1.2.2 Collision Integrals
With ¢, = cf ... ¢f the integrals on the right hand side of (1.18) become

€ iy = [ (6 e — 65 08 fof iMap Sin 05 dBp, de dog de,.

k3

Chapman and Cowling [4] describe a method for the calculation of these integrals.
Only a few collision integrals are of interest in this paper. These are listed
below for Maxwellian molecules.

N = 0: & =0 (1.19)
»—1 (1)
N=1: E%W—Zﬁmﬁ—u) (1.20.1)
S @ =0 . (1.20.2)
af=1

¢ Derivation of the right hand sides see Chapman and Cowling [4, p. 64, 65].
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78
» v (2)
N=2: b @ = 2 Wt + — 3 Rluus (1.21.1)
(trace) =] My Bye=1 ’
’ 3@ =0 (1.21.2)
af=1
¥ s v
N =2: Z %(z]) = 2 (U(Z ]> + ’U<] )
(traceless part) = f=1 =1 (1 22)
Qa
77 ZR BM@])*!——-—!SZ_'RW(% 7 ®
o 3
N=3: @il = {3@ Bvivr €t qﬁ}
(contracted) p=1 " g= i 27) @D T O @
P ; RaﬁMm + 9: 2 RaﬁMWuy (1.23)
12 i’ Rzgsuﬂuj‘suf.
My, Byde=1

The matrices B whose definitions can be found in the appendix are functions of
w @ @ @ (3
the partial densities 01 -5 0sr Bap RVG, Bop R and R,; are symmetric in «, 8,

(3
whereas RZg and RZ are antisymmetric in «, f.

1.2.3 Equations of Transfer for the Partial Moments m{ ;.
and for Moments m; _ ; of the Mixture

For ¢, = ¢f ... ¢, Eq. (1.18) becomes

0 in 0 a'l..A'N &«
mh + mnazx 2 — N e (2 T i)
n
(1.24)

¥
- 2Nmn(11 zV_IWiN)n = Z %?ﬁ..iN’

p=1
where it was necessary to split the inertial force 4;* into two parts
4
lzL(x =z + 2Wincnrx;

l.e. into a part independent of the velocities ¢,* and a part depending on ¢,

The sum over all x of (1.24) gives

amg, OMini, .. . i .
za et n;x 2 — N, iy (Figy T i)
n (1.25)
- zmn(il...iNquN)n = 'g; %?,ﬁ...z'm

where the definition (1.9) has been used.

5 For the bracket notation see (1.8).
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As an example we evaluate the Eqs. (1.24) and (1.25) for the case N = 1.

69,,11

b T e+ f) — 2 = 267 (1.26)

ot x;

Ly amwi — oz 1 ;) — 2Wim; = 0. (1.27)
J
We note that in (1.24) and (1.25) the two inertial terms z; and W; appear. For the
purposes of section 3.1.2 below it is appropriate to eliminate z; and W;; as far as
this is possible. z; may be eliminated from (1.24) and (1.25) by use of (1.26) and
(1.27) respectively. Wy;, however, cannot be removed.

8¢m1 Lix ('imm1 N 1 6(_)&va) 8mm)n
— — m .

+ xn . (11. v IN-1 at + 6.7(1n

+ 2N(mG, . iy Wiyn¥n® — Mgy i W i) (1.28)
__ v qﬁzxﬂ N 1 o af
- Ot vin - m(ip--izv—l iN)

=1 QO
amh i + amml _ N i s . agv,'N) + 6miN>n
at o, o Cmeeiva | o, (1.29)
+ 2N(mg, i Winn¥n = Mgy g Winyn) = ﬁZ’l%?f..z'N-
Prel

1.2.4 Equations of Balance of Masses, Momenta, Energies,
Stresses and Heat Fluxes

For N = 0 through N = 3 the Egs. (1.28), (1.29) contain the equations of
balance of mass, momentum and energy of the constituents and of the mixture.
These equations assume their most familiar form when we replace the moments
mi . ..ie a0d m; by the corresponding central moments. In this way we get

the following equations of balance:

N = 0: Conservation of the masses of constituent x and of the total mass

3‘-’“ 4 Gt g (1.30.1)
ox;
39 2 39”’ — 0. (1.30.2)
N = 1: Balance of momentum of constituent « and conservation of total momen-
tum
Oy O &, »=1 (1)
L g Qe LMD oW = B R? — ) (131
] ot

Blovv; + My;)

89,02
+ ox

- —olfi + 2 + 2W;w) = 0. (1.31.2)

7

N = 2: For N = 2 is convenient to write (1.28) and (1.29) in two parts, one for
the trace and the other for the traceless part of the equation.
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Trace: Balance of internal energy of constituent « and first law of thermo-

dynamics.
« v (2)
oty 4 AN Mi + M) oy, ij” = X Repoui® (1.32.1)
7 £=1
%‘nﬁi . Mﬂl + 2M;; & . (1.32.2)
t o%; oo

Traceless part: Balance of stress deviators of constituent «

OMGpy | A Mipjv,® + Miijrn) e Vi .
Pt £ T2 5 — AW

v (2)
=& 5 R«ﬁM«» TRED X Rigutius,.

O‘ﬂ~‘ aﬂysl

(1.33)

N = 3: Balance of heat fluxes of constituent «.

The only equation of interest among the balance equations for M3, is the one
for the trace Mj; since the other components have no mterpretafomn in thermo-
dynamies.

oM A M550, + M) Z aM; .
177 =+ ik o7 I 3, nlij 5 ﬁ- - ﬂ/[ (if x})n —2M 12]1Win
* “n " (1.34)
Ly
aﬂﬂf”] + L ZP gU; M<1] —+- 5 , 62’1R7’,3 uzﬁ’u]au £
zx OL voe

To obtain the relation (1.34) in the form given we have used the lower order
equations of transfer (1.30), (1.32) and (1.33). Equations corresponding to (1.33)
and (1.34) for the mixture are not needed.

1.2.5 Equations of Balance of Entropies of the Constituents
and Entropy of the Mixture

If we choose for ¥, the expression _k In f, and insert it into (1.18.2) we get
m

3&% + 3(9«’7#&‘“ + d’ia)

axi

- L
5 2

2 f In B0 (14— o) 9°P0 g sin 04 d05 de dogt de, (1.35)

kfl ff’; (1Y — fufd) go0us sin 0 d0 de de, de,
with the quantities 7, and ¢;* defined in (1.13.1) and (1.13.3). This equation
represents the equation of balance of entropies of constituent «.

The total entropy balance for the mixture results from summing (1.35) over
all «.

8977 + (97]01 + Z Cua¥i® + 4)1“)) =0, (1.36)
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where inspection of the production term

¢ = k f ];,{ﬁll (fo'T5" — Il ") 970 e S0 O, A0, de deg' do
s
>f3

o

(1.37)

+E—kfl f;’;“l FLY = £f.1) g%, sin 0 6 de de,! do,
shows that ¢ is a positive quantity representing the entropy production in the
mixture. This fact supports the view that # in (1.13.2) indeed represents the

entropy.
From (1.36) it follows that

b = 2 (b + 0umaui®) (1.38)
a=1
must be defined as flux of entropy for the mixture.
In view of the discussion among thermodynamicists as to whether or not an
entropy exists in non-equilibrium it is worthwhile to emphasize that the kinetic
theory exhibits such an entropy.

2. Closure of Equations of Transfer and Thermodynamie Limit

2.1 Closure of Equations of Transfer

The equations of transfer (1.28) and (1.29) together with the collision integrals
(1.19) through (1.23) form a system of differential equationsfor the momentsmg ;-
and m; ;. However, in an equation of order N the moments mg ;.. m; .
occur which are of order ¥ + 1. One might calenlate these higher order moments
from the equations of transfer of the following order, but there appear moments
of even higher order in those. Thus it- happens that at no stage we have a closed
system of equations and we shall proceed to describe possibilities for a closure.

In all cases the closure proceeds by “‘cutting off” equations of balance for
higher moments. In the remaining equations the highest moments are approx-
imated in terms of lower ones. In the following two sections this procedure is
illustrated for two cases: Mixture of Eulerian Gases and Extended Irreversible
Thermodynamics of Mixtures. In the first case we retain 4» + 1 equations and
in the second case we retain 12» 4 1 equations.

2.1.1 Mixture of Eulerian Gases. A Closed System of 4v - 1 Equations

The easiest method of closure places the cut behind the first 4y + 1 equations
viz. (1.30), (1.31) and (1.32.2). It proceeds by calculating the highest moments
M3 and My from the Maxwellian equilibrium distribution (1.14). Thus the
procedure provides a closed system of equations for the determination of g,,
;% and 7.

Of course, this method is very rough, but we present the results in order
to have a comparison with a more accurate technique described in the next
section.

6 Acta Mech. 50/1—2



32 Maria Heckl and I. Miller:

For M3 and M;;; we obtain with the Maxwellian distribution (1.14)

o/l
M5 = 0. — 3y, 2.1.
50 Lo, @L1)
2 kT
"Mﬁ = Z (QO‘ ;;?’— 6l? + Qauiuuja) ’ (2.1.2)
a=1 ¢4
"M”f = i’ <5Qa E ui‘x + Qauazuia) . (2.1.3)
a=1 ",

Insertion of these results into (1.31) and (1.32.2) closes the system of equations.
It can be rewritten in the following form in which the Egs. (1.16) and (1.17.2)
for p., & and u, have been used for the benefit of those who are familiar with
the equations of macroscopic mixture theories.

N =0:
de, 1 g,u*
R L Ny =1, .,r—1 2.2.1
dt+ g O x ’ ( )
% 4 % _ g 2.2.2
ot + axi - ( - )
N=1
d 6”: 3 b3 “au'“ auiv
[0 35+ 5o — 2Wig| o — ) o G — B
r & ___ v 1
I )= TM » » 3?] -1 () ,
(T————-—-—T(sa __i__gv_._"_) —_— = R 0518, 2.3.1
+ 8 oz; + Os e/ 9%; ) gg’: wee ( )
x=1,..,v—1

@ (Q”ivj + 2 (paai]' + Qaui“uj“))
a=1

—a_gtli + — olf: + =z + 2W;v5) = 0. (2.3.2)

ox;
N = 2: (trace, mixture)
v v 1 1
82904 8“—!——1‘11,2 82 Qu sa—!———uf Uy + O Ea_l_—uaz.{_& Uy
a=1 2 4 o=l 2 2 Oa
ot ox,,
(2.4)
C ov;
+ X (pdy + eamoup) 2 = 0.
a=1 6957-
¢9] y—1 (1)
Cqi== -%;i denotes the concentration of constituent x, R.z:= Z’l Toylyreg and
N 54 ye=
Top'i= ] + L are symmetric matrices depending on the partial densities
473 Q,
d 0

Qi O = -+ v; % stands for the material time derivative with respect
(2

to the barycentric motion.
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The balance Eqs. (2.2) for the masses are unaffected by the closure procedure.
The Egs. (2.2.1) through (2.4) form a closed system of differential equations
for the 4v + 1 fields
05 Cay vevy Cy1, U5 Wity oo LT
in an ideal gas.

2.1.2 Grad’s Distribution. A Closed System of 12y + 1 Equations
{Extended Irreversible Thermodynamics [10])

A method of closure somewhat more elaborate places the cut behind the
first 12v + 1 equations, viz. (1.30), (1.31) and (1.32.2) (1.33), (1.34). It proceeds
by calculating the highest moments M3, and Mf;, from a Grad distribution,
by which M3, and M, are related to moments of lower order.

The Grad distribution represents the beginning of an expansion of f, in terms
of Hermite polynomials (see [8)], [9]). The expansion starts from an equilibrium

state. It reads

fo* = fu*(1 + ), (2.5)
where ¢ abbreviates the expression
— 1 m’ 2 2 R-7AN
=TT o (M’) Wfed 5 (M') w0,
) . , (2.6)
RN E RN A R P B LA e _____2
+2w( chG) k 2ga(kT) ‘G‘( G)
G and Z;* in (2.6) are defined by G;% 1= ¢;* — »;# and
Ziim M3, + 2ME + Boy on i + gaugeu,? 2.7
= Mij; + 2Mu;® + Dow —= wi® + 0ati*s” (2.7)

(3
From now on all terms of quadratic or higher order in the quantities ;% M,

gv(., M¢; which all vanish in an equilibrium state described by (1.14) are dropped.
Z5)

This is admissible in the neighbourhood of eqguilibrium. Note that i

~  the anti-
gsymmetric part of the velocity gradient, need not vanish in equilibrium, nor
does ?ﬁ necessarily vanish. With (2.5), (2.6) we get for the higher order moments
]
3 [
Mo = = Mii0;m) (2.8.1)

ijn

. kT
My = 5. (1

®

kT
) b -+ 75 Mgy (2.8.2)

Insertion of these into (1.33) and (1.34) closes the system of equations which
then reads .

N = 0:
dca i a@a‘ui“ . . _
Tl =0, A=t (2.9.1)
39 NI (2.9.2)

ox;

6*
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N=1
| " ]
T -7 Py . By _ L
ow; (Ea + 0a (CV + v)) o )>
d av[, 1 v
il — W — oy (s — vy 2oL
+{ i 2 2y W”} (i — u?) + o (i )ml (2.10.1)
_1_ aM(U) _ _1_ aM?@J) . e 8
_I_ [ 3%7 2y 306] a =1 R«ﬂ@ﬂuz
2 g (9%‘”5 + X pby + M 2};;))) ,
eY; a=1
-aT -+ P —_ Q(fi ~+ 2 -+ 2Wi,-’l)j) =0, (2.10.2)
%j

N = 2: (trace, mixture)

v 1 "
o 2 Oufa o ( é‘l (szﬁzxvn + (8a + &) Uy,® + _2‘ M"]]))

a=1
ot + ox,

(2.11)
+ Z paayn + M(]n))

a=1

N = 2: (traceless part, constituent «)

op (2 _ Lot
mu oy 3 ox 7

+ {amajm Tt Oy (B — 2W,) i (£

0xn) Tn]

m)} My (2.12)

= v (2)
2] <x 8?Jn 2 aM;;(z O _R Mﬁ
ty Moz ™5 oy om = ol

N = 3. (contracted, constituent «)

{
o —
L {—51&&’3 ]> + { o o L "Wm} i

m, OZy]
o kT 9M€in)
+ 205 2 5 MW o T 9 P (2.13)
2 « KT 8o, v )
- O« M(m> my 0%, = N2 Z RG‘EMW

The balance Egs. (2.9), (2.10) and (2.11) for the masses and momenta of the
constituents and for the energy of the mixture are unaffected by the closure

procedure.
The Egs. (2.9) through (2.13) represent a closed system of differential equations

for the 12y + 1 fields
05 C15 «00 Cy1, Uy, uil, e %iv—l, T, M?@}}’ M;‘” (2.14)
in an ideal gas.
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For a single fluid a phenomenological theory with stress and heat flux as
variables was formulated in [10] and called Extended Linear Trreversible Thermo-
dynamics. The equations of that theory are similar to (2.9) through (2.13) and
they predicted finite speeds for all waves. This is also true for the present system
of equations was we proceed to show.

2.1.3 Finite Speeds for Diffusion, Shear Waves and Heat Conduction

The aim of this section is to investigate the propagation speeds of disturbances
of concentration, temperature and velocity. For this purpose we consider special
cases in order to uncouple the system of differential Kgs. (2.9) through (2.13)
so that we may deal with separate equations for ¢,, #;#, T'. These equations will
prove to be of hyperbolis type having wave solutions with finite speeds.

Diffusion
Here we consider the special case of a binary mixture with
o =const.,, v; =0, Mg =0, T=const., W;=0. (2.15)

Moreover we neglect terms which are non-linear in w;* and derivatives of g,
and u,.
We eliminate the diffusion velocities between (2.9.1) and (2.10.1) and obtain
an equation for ¢, alone, viz.
0% d%; | AwP — pl) ¢ @ 00y
o 9 — L B0 & =0, 2.16
005 OF o, O ox; T Bue >, (2.16)

Since, by (1.17.2), w > 0 this equation is of hyperbolic type and pre-
¢y .
dicts the propagation of disturbances of ¢, with the maximum speed

EZV%NW_M'

0 ¢,

Shear Waves

For a single gas with

o = const., 7 = const., M =0, Wiy =0
(2.17
=0, =0, =/uy,0,0)

we neglect terms non-linear in M j and v; and eliminate 3 4 between (2.10.2)
and (2.12), thus obtaining another hyperbolic equation

o Mo o B

ot m oy> m o 0. (2.18)

This equation describes the propagation of shear waves with the maximum
speed
v, =1/,

m
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Heat Waves
For a single fluid with
¢ = const., v; =0, Wi =0, My =0 (2.19)

the Egs. (2.11) and (2.13) may be combined to form a hyperbolic differential
equation for 7' by elimination of M;;.
&T 5 kg @7 | o BT _
at* 3 m  Ox; Ox; m? ot

0. (2.20)

In (2.20) products of gradients of 7" have been neglected. This equation deseribes
the propagation of a heat wave with the maximum speed

5 BT
VT —_ E '7—,n_n
A careful analysis of the coupled system (2.9) through (2.13) also shows finite
speeds of diffusion, shear waves and heat waves. The above Egs. (2.16), (2.18)
and (2.20) are merely supposed to illustrate this point and for this illustration
we have enforced uncoupled equations by the assumptions (2.15), (2.17), (2.19)
that would be quite impossible to realize in a gas.

In this context it is instructive to look back upon the case of a mixture of
Eulerian gases which was described by the Egs. (2.2) through (2.4) in Section 2.1.1.
In that case the differential equation for the concentration ¢; turns out to be
identical to (2.16). Thus we have finite wave speed of diffusion in Eulerian gases.
However, since in those gases My; = 0, M}; = 0 it is not possible to have
shear waves or heat waves.

2.1.4 Discussion of Complexity of System. Thermodynamic Limit

It is true that, by (2.9) through (2.13) we have an explicit set of field equations
for the 12v 4- 1 variables g,, v;%, T, M, M$;. The set of equations is hyperbolic
and yields finite speeds as we have seen. However, it represents a more elaborate
theory than thermodynamies, because thermodynamics is a field theory of
only the v 4 4 fields g,, v;, and 7. In view of the difficulties of defining boundary
values for M, and M}; in the extended theory, and in view of the difficulties
of solving the Eqgs. {2.9) through (2.13), we wish to go back to thermodynamics
proper. This may be done by relying on the balance laws (2.9), (2.10.2) and
(2.11) and by making them into field equations for g,, »;, and 7' by means of
the formulation of constitutive equations for the diffusion fluxes o,u;*, the partial

stress deviators M, and the partial heat fluxes % M

%j- Such constitutive equa-

tions relate g.u;*, M, M§; to the fields of g., v;, and 7.

6 Linear irreversible thermodynamics as described in [11] and [12] conforms exactly
to this description. In contrast to this, rational thermodynamics of mixtures is a theory
of the 4v + 1 fields g,, v;*, and 7" based on the Eqs. (2.9) through (2.11), and it formulates

constitutive relations for M, and Zv‘ M (see [13]).
a=1
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The formulation of constitutive equations in the kinetic theory is based
upon the equations of transfer (2.10.1), (2.12) and (2.13) and makes use of an
iterative scheme which we proceed to describe.

2.2 Iteration within the Olosed System of 12v - 1 Equations

2.2.1 Deseription of Iteration and First and Second Iterates

We construct thermodynamic constitutive equations for g.u;% M, and
/% from the Egs. (2.10.1), (2.12), and (2.13) by an iteration as follows:

On the left hand side of (2.10.1), (2.12), and (2.13) we calculate all moments
by use of the Maxwellian distribution (1.14) and thus obtain a first iterate each
for g,u;*, M, Giv and M 5it

14
o ( e

outh* = > (B 1)p iT L _r (eﬂ -+ pﬁ) (2.21.1)
g=1 o%;

) v @ B
M5y, = 3 (B, {2kT (a—”(- _La ai,.)} (=109 (2219
8 ] .

- w3 om

1
M — z”’(P 1 { 5k2T 87] 1 (2.21.3
= e «ﬂi axz} (=1, ..., %). .21.3)

By (1.12.5) and (1.11.2) we have ¢; = Zv] ( M + 3 Oa fn—T w;* + Qaﬁaﬂ;f‘)

a=1 2 «
in the present linear theory. Hence the first iterate for the flux of internal
energy of the mixture reads
: o~
) v,y 5 kT ¢ w? ?
2= S (R Y (——+5)T—+,¢ L (2.21.4)
ap=1 i

k2

(1) . .
where » abbreviates the expression

)

e T (s T+ (B (5 22) (e 2)).

Laf=1 &

o)
In (2.21.1) the original matrix (R~Y),s of (v —1)2 elements was enlarged to contain

a vt line and row, viz.

[£8) —1 (1)
(R_l)vr@':: _2 (R—'l)?ﬂ (ﬁ = 1! [EETN S 1)
-1
and ’ (2.22)
w -1 (1)
(B YYo= =3 (B Yy (x=1,...,9).
f=1

Thus Hq. (2.21.1) is valid for all « from 1 through ».
The next step proceeds by inserting the first iterates (2.21) of the moments
into the left hand sides of (2.10.1), (2.12), and (2.13). Thus we get second iterates
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for g,u;*, M, and M. For easy notation we define the abbreviations

-2

% 27
Ap =T —T(s“—;—n—

L axl Qu 8901
B, = 1o
T by 3 By
B2

0%,

and obtain

v (_I) ) ..
0. = 3 R} [Aiﬂ + {6 4oy i 2Wi,-}

. . (2.23.1)

;,;12kTEi,-)J :

E
=
+
I
|
=

{2) y (2} 5 7 21 w
My, = 3 (R s [{%TEH b (L (e, )l
£=1 T(j \y=1 08

mg d .
- {W <o (

&g

o:n] awn]
(2) 5 @ (2.23.2)
(B, 2kTE;; + % E 2; %@f (R, 2kTE;;
o

1
2 mg O v (3) 8?
- 22 L 3y, 5T |

bt oxs

1
v (3 [ 8—] .
Mo = 3 (B1), [({—51027’3 8_1-7> + {5m 0% + i _ 2Win}

2; ) 0%y

y=1

oL
Y T

3 (3)
ES(RYY,, <—5Ic2T3 = )

1

e, ]

1
+ 8 lop 3 (B (—57@21738?)
03 i y=1 o oz;

) ) (2.23.3)
- 2EE (5 (B 2B ) o+ 5 5 (Y, B 2

Mﬁ 69% y=1 p=1 777ﬂ aiU"

2 &3 3o ]]
-== R, 2kTE;, —£4 .
Qﬁ ?’Ybﬁ 7=le< )ﬁy o 63:,,)}
The flux of internal energy of the mixture is calculated in this step just as it

was done in the first step; in the present case g; (or rather (32.) is given by a very
long expression which we do not list here. Later, in Section 3.2.2 a truncated
form of this expression will be discussed.
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Both the first and second iterates (2.21) and (2.23) are equations of the
general form of the constitutive equations of thermodynamics. That is to say
that the diffusion fluxes, the stresses and the heat flux are related to the thermo-
dynamic fields g,, v; and 7. Some properties of flux constitutive relations will
be discussed in the next chapter.

2.2.2 Critique of Iterative Scheme

The iterative scheme described above is akin to the Maxwellian iteration
which has been used to construct constitutive relations for stress and heat flux
in single fluids by Ikenberry and Truesdell [14]. This Maxwellian iteration
does not use the Grad distribution rather it works on the exact equations of
transfer for moments and more and more equations are drawn into the scheme as
the iteration progresses. In this respect the Maxwellian iteration is more syste-
matic than the one presented here. However, the present method is simple and
it yields all terms of qualitative significance which we wish to discuss here.

We recall that the closed system (2.9) through (2.13) furnished finite speeds
for diffusion, shear waves and heat conduction. The iteration destroys this
feature; indeed, if the constitutive relations (2.21), or (2.23) are introduced
into the equations of balance (2.9) through (2.11) we obtain a set of parabolic
equations which predicts infinite speeds. This feature is common to all iterative
schemes that lead to thermodynamic constitutive relations, in particular, the
Maxwellian iteration and the Chapman-Enskog method share this deficiency.

3. Implications on Thermodynamies

3.1 Results of First Step of Iteration
3.1.1 Laws of Fick, Navier-Stokes and Fourier

The results of the first iterative step (2.21.1, 2, 4) represent the phenomeno-
logical equations of Fick (generalized) for diffusion, of Navier-Stokes for stress
and of Fourier (generalized) for heat flux.

We can identify the following phenomenological quantities:

)
matrix of diffusion coefficients: (B~1),; 7'

o v 3 5 ) » P
heat conductivity: —}' T ((R‘l)aﬂ; (ET)? - (R71),4 (sa + —i‘—) (35 -+ i))
ap=1 O Qﬂ
v o
thermo-diffusion coefficient: —7' >’ (aﬁ -+ 2’2) (B Yup
p~1 2

54

diffusion-thermo coefficient: —7 Zv' (aa + &
4]

a=1

> (%ﬂ)aﬂ

v {2)
viscosity of constituent «: 2k7 3 (R™1),4.
=1
The Egs. (2.21.1, 2, 4) are of the form that linear irreversible thermodynamics

assumes for the constitutive relations of diffusion fluxes, stress deviators, and
heat flux.
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3.1.2 Material Frame Indifference, Onsager Relations and Infinite Speeds

Frame Indifference

The principle of material objectivity requires that the constitutive functions
for the diffusion fluxes, stress and heat flux are independent of the frame of
reference. This is indeed the case for the results of the first iterative step, since
no terms depending on the observer frame appear in (2.21).

Onsager Relations for Diffusion and Thermal Diffusion

The Eqgs.(2.21.1, 4) may be slightly rewritten such that they assume the
form

B ~ N Y
) w » A 2
el || —T(®R Y, 7 5 (e + ) (B | | -
g=1 ] ox;
s 1
[¢h) e
(¢3] L4 = (1)
g; —TX (6‘x + &> (B # =
e - a=1 o — axi
(3.1
(1) (1)

Tnspection of R,; in (A.1) and of the definition of (R),s below (2.4) shows that
the matrix of coefficients in (3.1) is symmetric. This symmetry is known as
the Onsager reciprocity relation for heat conduction and diffusion. Thus in
particular, the kinetic theory confirms that the thermo-diffusion coefficients
are equal to the diffusion-thermo coefficients.

Infinite Speeds

Elimination of gﬁll between the constitutive relation (2.21.1) and the mass
balance (2.9.1) yields the equation

de, 1

) ((1) o0,
dt 0

2t =) (e, Ta g 3.2
dey Ju ou; dx; (3.2)
for a binary mixture of constant temperature. This is a parabolic differential
equation for the concentration c¢;, which predicts an infinite speed of diffusion.
This confirms the earlier remark that the iteration has led to a set of parabolic
equations.

3.2 Results of Second Step of Iteration

3.2.1 Frame Dependent Constitutive Relations for Diffusion,
Stress and Heat Conduction

The results of the second iterative step are contained in the Egs. (2.23) which
relate the diffusion fluxes, the heat fluxes and the stress to the thermodynamic
fields g,, ;% and T. Inspection of (2.23) shows that the constitutive functions
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are frame dependent, because they contain the matrix W;; of angular velocity
of the frame. Thus the kinetic theory contradicts the principle of material frame
indifference. .

In particular, the relation (2.23.1) between g,u;* and % (%) ig different
in an inertial frame and in a non-inertial one, because W;; valnishes in one and
is non-zero in the other one.

In order to anticipate misunderstanding we note that both sides of all Egs.

(2.23) are objective vectors and tensors. It is true that e.g.

d4; vy,
a0 oy

A7, and 2Wydy (3.3)
6ij

are not objective vectors, but the sum of these three expressions forms an ob-
jective vector. Similarly the operators in the curly brackets of (2.23.2, 3) form
an objective tensor and vector respectively.

The physical root of the frame dependence of (2.23) becomes particularly
obvious for a binary mixture in rigid rotation with s constant angular velocity
about the same axis about which the frame rotates. We consider a constant
and uniform field of temperature and stationary fields of densities and chemical
potentials such that g, and y, at a point depend only on its distance from the
axis of rotation. In this special case (2.23.1) assumes the simple form

W w o
ol = (B [0y +2 L (R (26— W) | 8 3
0102 ) ox;

In order to interpret this formula suggestively let us consider the above
special case for a gas at rest between two coaxial circular cylinders as shown
in Fig. 1, p stands for u' — p? In order to maintain the prescribed rotational
velocity field the two constituents must move in opposite directions. Stationarity
will be ensured by proper boundary conditions on the two cylinders. Let us
focus the attention upon a small volume element of which a blow-up is shown
in Fig. 2 and 3. The element has dimensions of the order of magnitude of the
mean free path. Fig. 2 refers to the case when the gas it at rest in an inertial

frame.

Fig. 1 Fig. 2 Fig. 3
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With the indicated direction of P £ there will be more molecules of constituent
xl

1 on the lower side of the volume element than on the upper one. Consequently

within the element more molecules are flying upwards than downwards as

indicated in Fig. 2. As a consequence there is & net mass flux of constituent 1
in the upward direction, i.e. opposite to ZE | This is in fact what Eq. (3.4) describes

for the case of an inertial frame where W” = 0 holds.
The situation is changed when the cylinders are taken to a non-inertial

frame. We establish the same field of ai’i as before and have again a surplus
T

of molecules of constituent 1 at the lower side of the volume element depicted
now in Fig. 3.7 Again more particles are moving upwards than downwards but
their paths between collisions are now curved by the Coriolis force as shown
in Fig. 3. Consequently there is now still a net mass flux across the plane —H,
but in addition there is a net mass flux across the plane V—V, ie. in the

direction perpendicular to 37” and to the angular velocity just as predicted by
Eq. (3.4). ’

An analogous suggestive argument can be presented for the interpretation
of the frame dependent term in the heat fluxes (2.23.3). This argument has
been described in [1]; with respect to heat conduction the argument is
somewhat simpler, since the temperature field is not affected by the centrifugal
force and because temperature is a more plausible quantity than the chemical
potential.

While the kinetic theory thus predicts frame-dependence of the constitutive
function for diffusion fluxes, stress, and heat flux, the relevant terms are quite

)

small. Indeed, —%- ((_*1)11 in Eq. (3.4) (say) is of magnitude of a mean time of

vy
.70]]

rotation of the fluid with respect to an inertial frame. Thus the frame dependent

terms have the size of the quotient

&
free flight, Whereas the components of — W; represent the frequency of

time of free flight

period of rotation

and this is a small ratio indeed for all feasible centrifuges.

3.2.2 Onsager Relations in a Rotating Fluid

We summarize the constitutive equations for the diffusion fluxes and for
the heat flux of the mixture and simplify them by neglecting all terms with
E;; and E. Thus we obtain from (2.23.1, 3), and from the definition

7 This surplus of molecules is superimposed now on the natural excess of molecules at
larger radii that is created by the centrifugal force.
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@) v (2)
qizf,( M:;,+( n )g)

a=1
T o v w
01" '-Z (B)ap T | 0105, + 017 (R Yer
- s L v ()
2) a
9 “‘Z R )ve [ if (Eﬁ + pq) + 2 o (B- Yps O <3a + & )J
— x=1 &3 <
v (1) _ - y —
— 2 (BN T |0y (8 + 2@-) g %
£=1 e _
v q (L P ox,
3 (R O (o + 22)] . (3.5)
y=1 98 3% 1
O —
(2) T
| ox; _|
where 0;; stands for the operator 6” ~ g”—f" — 2W . The form of % does not
interest here. !

We abbreviate the matrix in (3.5) by 7' and observe by inspection that
it satisfies the following symmetry relations

Ts(S, W) = T(—S, —W) (3.6)

where § is the antisymmetric part of the velocity gradient, often called the
spin tensor. This symmetry relation confirms the Onsager reciprocity relations
in the presence of axial fields, here the fields of spin and of the angular velocity
of the frame.

3.8 Implications for Eniropy and Entropy Flux

According to (1.13.1, 3) the kinetic theory defines the density and flux of
entropy of constituent « by

Galis = —k f fm n fadca _I" Bully, ?Qia = —k f faoilx In fadca. (3.7)

It is important to realize that these entropic quantities are defined for arbitrary
distribution functions, in particular these functions may characterize non-
equilibria. In order to emphasize this fact we introduce the Grad distribution

(2.5), (2.6) into the Eq. (3.7). In (1 + ¢) is replaced by ¢ — %—2 and we obtain
after considerable calculation

1 MuMGy 1 MM
4 op T 20 ptT

Na = 77“’1'7 -
(3.8)

2T 5 pT
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where 4|z is given by (1.17.1). Always, of course, — M}; is equal to the heat

flux g, of constituent o.
The entropy and entropy flux of the mixture result from (3.8) by summation
according to (1.18.2) and (1.38). Thus the entropy flux assumes the form

S I s 3 (M 2 Mipar) (3.9)
‘ T i\ T 5 pT

The first term in (3.9) is the familiar entropy flux of phenomenological thermo-
dynamies of mixtures.

Appendix

The matrices R on the right hand sides of (1.20) through (1.23) are defined
by the following expressions

(i) dn Y ¢ Y 4nY,” .
Ra = (.1 o 3 A-l
P oy 0 ﬁ,é‘m%—mﬂ“g’ (A.1)
e . 8nY,*f
Rzﬁ =5 m— m, ”’LﬂQaQﬂ(U Uﬁy) (U” - Uﬁe) (A.2)
(@)
= T (3Yy — YY)
\ =T (A.3)
) darm, QL
Y, — Y — 2m, Y
“5,,2; —— my)ﬂ (3m, Y, — 3m, ¥y e ¥ 177
(2>y€ 47t’mmm/s P o8 p : 4
R = e+ BYy? — Y1) 0u0p(Usy — Upy) (Use — Upe) (A4)
4azm, 2 Q’
3) 167wm,2mg? ¥ ,°F
R = S B v2 S, By
8 (ma + mﬂ)3 —l_ ﬂyz; (m, + m ) (A,S)
< (dmem, Y % — dmam, Y% — m2Y % — 3m, Y %7)
8am,>m &
3) [ 327, 2my? 7
= T T Y by 3 ————
b (m, + mg)® ﬂ,,zl‘ (m, + m,)? (4.6)
|
[BY 7 (my 4+ my) + Yoot (my — Smy)]}) (Use — Upe)
@ 2y of
R = 280 YT Uy — Up) (Uss — Ugs) (Use — Ug)s (AT

(e + mgpp %
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where U,,, Y%, and Y,*# are defined by

Uay - 6n<y - g‘y' 5av
9
[2
Y6 = [faﬂ(eﬂa) sin 0, cos? 04, dig, (A.8)
0ﬂrx=0

{2
Y = | fupl0s) sin Og, c0s* O, db.
Bﬁ“=0

The Y’s are constants depending on the strength of the interaction between
particles x and g.
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