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Summary 

Subject of the investigation is the distribution of displacement and stresses in a tube 
with fixed ends of elastio-piastic material under the assumption of Tresea's yield condition, 
its associated flow rule and linear strMn-hardening. 

1. Introduction 

The interest in the stress distribution in a rotating cylinder goes back to 
J.  C. Maxwell [1]. For elastic behavior, stresses and displacement can be found in 
A. E. H. Love's  "Treatise on the Mathematical Theory of Elasticity" [1]. Rotat ing 
perfectly plastic cylinders were treated by  A. Ns [2] and by 0. Hoffman and 
G. Sachs [3] under the simplifying assumption of incompressibility. Thereafter, 
E. A. Davis and F. M Conelly studied rotating cylinders and tubes of a strain- 
hardening material [4]. Interested primarily in the deformation of a rotating 
cylinder are P. G. ttodge, Jr. ,  and M. Balaban [5] but their solution, which 
includes finite strain, lacks continuity of displacement at the elastic-plastic 
interface [6]. The latter two studies are based on a finite stress strain relation and 
not on an incremental constitutive relation, which is preferred nowadays. 

In  the following, the elastic-plastic stress distribution in a rotating tube with 
fixed ends is calculated under the assumption of Tresca's yield condition, its 
associated flow rule and linear strain-hardening. The more complicate plane 
strain problem of the  rotating tube with free ends will be treated in a forthcoming 
paper. 

2. The Elastic Tube with Fixed Ends 

The equation of motion and the geometric relations are valid for any  material. 
In  cylindrical coordinates they read 

da~d_..~_[_ % --r a o __ ~o~@r, (2.1) 

d n  u 
e0 = - - ,  (2.2) e~ - -  dr ' r 
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where at, a0, er, e0 mean radial and circumferential stress and strain, respectively, 
u indicates radial displacement, 9 densi ty and co angular  velocity. 

I n  the  elastic ease stresses and  strains are related by  Hooke ' s  law, and the 
problem can be reduced to a differential equat ion in the displacement with the 
solution 

A 1 -- 2~ 
u = - -  + B r  ~c@r a. (2.3) 

r 16G(1 -- v) 

Therefrom the stresses 

2G B 3 - -  2v 9oy2@ ' (2.4) 
ar = - -2G r~ @ i - 2v 8 ( 1 -  ~--) 

a s =  2 G A  2G B l §  ~@r ~ (2.5) 
7 7 § 1 - 2~ 8(1 - ~--) 

with the shear modulus G and Poisson's ratio ~ are arrived at. I n  the derivation, use 
has been made of the condition of fixed ends, e~ = 0, which leads to 

~ = ~ ( ~  + a0). (2.6) 

The preceding results can be adapted  from the solution of the corresponding 
plane stress problem of the rotat ing disk by  modification of the material  con- 
s tants  [7]. 

The unknown quantit ies A and B are determined with the help of the boundary  
conditions of vanishing stress 

a t (a )  = 0, (2.7) 

~ d b )  = 0 (2 .8)  

at the inner and outer  surface of radii a and b, respectively. 
The elastic solution shows tha t  the stresses satisfy the inequali ty 

a0 > a~ > a~ ~ 0. (2.9) 

The max imum circumferential stress occurs at  the inner boundary  r = a (Fig. 2). 
There, plastic deformation appears for a certain value of the angular velocity. 

3. Displacement and Stresses in the Plastic Region 

Since ao is the largest and ar the smallest stress, Tresea's yield condition adopts 
the form [8] 

~0 - -  ar = ay. (3.1) 

The yield stress, Cy, of an elastic-plastic material  with linear strain-hardening 
grows with the equivalent  plastic strain, e~Q, according to 

Cv = Oo(1 + ne~o), (3.2) 

where r is the initial yield limit and r] the hardening parameter  [9]. The plastic 
strain depends on ay as shown in the following. 
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Insertion of the yield condition, Eq. (3.1), into the equation of motion, Eq. (2.1), 
and integration gives 

gr = f ~r dr -- 12 o~@@ + C, (3.3) 

f 1 ~c@@ q- C. (3.4) 

According to the flow rule associated to Tresca's yield condition der p = --de0 p 
and deep = 0. Hence, ed = 0, and Eq. (2.6) holds in the entire tube. The sum of 
circumferential and radial strain is purely elastic and can be expressed by the 
above stresses via Hooke's law 

dr q- r -- 2 ~  (~Y q- 2 --r d r - -  ~o~r 2 q- 2C , 

and integration yields 

1 - - 2 ~ [  f ~ u  1 DJ U ~ 2-----~ r --r dr -- --4 Q~ + Cr -ff . (3.5) 

The equivalent plastic strain follows from the consideration of plastic work [8], 

In the case of monotonously increasing angular velocity 

e~Q = eOp (3.6) 

holds, seP is the difference of the total strain, eo, derived from Eq. (3.5) and the 
elastic strain, sd, which is calculated with the help of Hooke's law and the stresses 
gr and go, Eqs. (3.3) and (3.4). These operations lead to 

~0p - ~ gy + ~ e ~ r ~  + 77 

the equivalent plastic strain. Elimination of e~o from Eq.(3.2) gives the dependence 
of the yield stress on the radius, 

1 2o0 + (1 -- 2~) H 0m~r ~ + 
% : 2 + ( I - - ~ ) H  

with the hardening parameter H = Ugo/G. 

Now the integration in the stresses and the displacement can be performed, 
and Eqs. (3.5), (3.3) and (3.4) yield 

u -~ 16~0r log r -- (4 q- H) Qco~r s + 4(4 q- H) q- Cr, 
I - 2~ s[2 + (1 - ~) HI 

(3.9) 

[ ~ ~r = 8[2 + (11-- ~) HI 16~0logr -- {8 + (3 -- 2~)H} o~oj~@ -- 4(1 -- 2~) H ~ + C ,  

(3.10) 

4 [16g0( 1 q_logr)_{8q_( lq_2v)H}o~o92@q_4( l_2r)HD]q_C.  
~ - - 8 [ 2  § (1 - -  ~) HI 

(3.11) 

1" 
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These general expressions for the displacement  and the stresses in the plastic 
region of a mater ia l  with linear s t ra in hardening reduce to the corresponding 
functions in a perfect ly  plast ic mater ia l  for H --- 0 and, on the other  hand,  for 
H - +  c~ they  adop t  the  forms of Eqs. (2.3), (2.4) and (2.5) describing elastic 
behavior .  

Eqs.  (3.9), (3.10) and (3.11) do not  app ly  for the  plast ic zone of a ro ta t ing  solid 
cylinder, since the inequal i ty  (2.9) is not  satisfied there  (el. also [6]). 

For  co = 0, the  above equations represent  the  displacement  and the stresses in 
the  plast ic zone of a tube  with fixed ends under  external  pressure if not  too thick- 
walled or under  internal  pressure for any  d iameter  ratio. 

4.  T h e  E l a s t i c - P l a s t i c  T u b e  

After first  occurenee of yield a plastic zone spreads out  f rom the inner surface 
of the  tube.  General  expressions for displacement  and stresses in the  elastic region 
(superscript  e) and the plastic region (superscript  p) are given b y  Eqs.  (2.3), (2.4), 
(2.5), (3.9), (3.10), and (3.11), respectively.  They  contain  the  unknowns A, B, C 
and D. An addit ional  unknown is the radius z of the elastic-plastic interface.  
There, the elastic stresses reach the yield l imit  

@ ~  - -  (rr(e)(z) = ~0, (4.1) 

and displacement  and  radial  stress have  to be continuous,  

u ( ' ) ( z )  = u(~  , (4.2) 

@~)(z) = ar(~)(z). (4.3) 

Fur the r  conditions are the  ones of vanishing stress a t  the  curved surfaces of the 
tube,  Eqs.  (2.7) and  (2.8). 

In  the order  (2.7), (4.2), (4.3), (4.1) and (2.8) the sys tem of equat ions reads 

1 16% log a - -  {8 + (3 - -  2~) H} o~co~a ~ - -  4(1 - -  2v) H ~ + C ~- 0, 
812 + (1 - ~) ~]  

(4.4) 

1 [ 1 6 ~ o l o g z - - ( 4 + H ) ~ c @ z 2 + 4 ( 4 + H ) D ] + c  
s[2 + (1 - ~) H]  

2G A 2G B 1 (4.5) 

812+(11--v)  H ] [  1 6 ( r ~  {8 + ( 3 -  2v) H } ~  2 v ) H  -~ + C 

2G " B 3 -- 2v 0~o~z~ ' (4.6) 
= - - 2 G A  _~_ 1 -- 2v 8(1 -- v) 

4e ~ + i =  ?~ e~o~ = ~o, 
4(1 - v) 

(4.7) 

- - 2 G  A 2G B 3 -- 2v ~co2b~ = O. (4.8) 
b -7 + 1 -- 2------? S(1 -- v) 
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l~edundant  bu t  not  in contradict ion to the other  equations is 

[ ~ 1 2~o § (1 - -  2~,)H ~)~2z2 -~ -~ - -  (~o. 
2 + (1 v) H 

(4.9) 

I t  expresses the fact  that ,  a t  the elastic-plastic interface, where no plastic strain 
has developed as yet, the yield stress is at  the initial yield limit, % ~ a0. 

As functions of the interface radius one receives 

1 1 - - 2 v  24 2 G A  : -~  (to z2 ~ - -  -~) ~co z , (4.10) 

1 -- 2---~ -~-a0 -~ + ~o(~2b 2 3 - -  2v - -  (1 - -  2v) ~7 , (4.~1) 

C = 1 - -16a  0 log a J- 4(1 - -  v) Hao a--- ~ 
S[2 § (1 - v) //] 

z ~ ] (4.12) 
+ {8 ~- (3 - -  2v) HI  q~o2a 2 - -  (1 - -  2v)H~co2 ~7 , 

D - -  1 - 2--v a~ - -  - 4 ~ '  ~ " (4.13) 

In  the calculation of the above quantit ies no use has been made of Eqs.  (4.5) 
and (4.6). There difference gives with A and D according to Eqs. (4.10) and (4.13) 
an identity.  Inser t ion of A ,  B ,  C, and D in either of Eqs. (4.5) or (4.6) yields the  
dependence of the nondimcnsional  elastic-plastic interface radius, ~ ~ z]b, on 
the nondimensional  angular  velocity, $2 2 --~ ~o2b2/(~o, 

~ (3 - 2v) [2 ~- (1 - v) H]  - -  (1 - -  v) [8 -[- (3 - -  2v) H]  Q~ ~- 4(1 - 2v) ~2 

~4 ~ ~O2 - -  ( 1 - -  2v) [2 ~- ( 1 - -  v) H] $a + ( 1 - -  v) ( 1 - -  2v) H ~-~ 
(4 .14 )  

= 4(1  - v) [2 + (1 - ~) H ]  (1 - -  ~2) + 4(1  - -  ~ ) 2 / /  ~ _ 1 

+ 16(1 - -  v) log-~ 

with the diameter  ratio Q ~ a/b as a parameter .  
Eq.  (4.14) contains as special cases the angular  velocities for which plastic flow 

begins (~ ~ Q), 

[(1 - -  2v) QZ + 3 - -  2v] n~p  : 4(1 - -  v), (4.15) 
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and, on the other hand, the value for which the whole tube becomes plastic (~ ~ 1), 

[~(1 - -  2v) H + 2(4 § H) Q2 _ [8 § (3 - 2v) H] Q4~ #2~p 

= 4(1 - v) H(1 --  Q2) _ 16@ log Q. 
(4.16) 

,.Ozp can be calculated also from the elastic solution and does not depend on H. 

5. Fully Plastic Tube 

The boundary conditions of vanishing radial stress at the free surfaces of the 
tube, Eqs. (2.7) and (2.8), together with Eq. (3.10) yield 

1 [ 16% 
C = 8 [ 2 + ( l _ v )  H] -- b2-~a 2~ - -  (b ~ log b - -  a 2 log a) 

+ (S + (3 - 2~,) H} Oco~(a 2 + b2)], 

16% log b-- A- {8 + (3 -- 2v) H} ~c@] (5.2) 
b 2 - -  a 2 a 

can be calculated with the help of 

a2bZ [ 
D - - 4 ( I _ 2 v )  H 

and now, the displacement and the stresses 
Eqs. (3.9), (3.10) and (3.11). 

(5.1) 

6. Numerical Results 

A few numerical results are presented in the following. No complete study of 
the influence of the parameters Q and H on the distribution of displacement and 
stresses was made but only the behavior of a hardening tube with H -~ ~7,~o/G = 1 
is compared with the perfectly plastic tube, H = 0, and the elastic tube, H -+ c~, 
for the diameter ratio Q -~ a/b -= 0.5. The Poisson number, v, equals 0.3. 

0.5 0,75 I.OO 

Fig .  1. N o n d i m e n s i o n a l  a n g u l a r  v e l o c i t y  vs. n o n d i m e n s i o n a l  e l a s t i c -p l a s t i c  in te r face  r a d i u s  

Fig. 1 shows the relation between the nondimensional angular velocity 

[2 = o)b ] /~/aoand the nondimensional elastic-plastic interface radius ~ = z/b for 
perfectly plastic material and hardening material. The former curve shows the 
characteristic extremum of the load, in this ease the angular velocity, in the fully 
plastic state. 

Fig. 2 exhibits the stress distribution in elastic, perfectly plastic and hardening 
material for Y2---- 1.359555987. This angular velocity corresponds to the fully 
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Fig. 2. Stress distribution for elastic behavior (e), perfectly plastic behavior (p) and material 
with hardening (h) 

p las t ic  s ta te ,  g = 1, of the  per fec t ly  p las t ic  tube,  i.e., i t  is the  burs t ing  speed.  F o r  
ha rden ing  mate r i a l  the  e las t ic-plas t ic  b o u n d a r y  is a t  ~ = 0,750161877. 

The difference be tween  the  th ree  mate r i a l s  is larges t  for the  c i rcumferent ia l  
stress, a0/%, and  smal les t  for the  radia l  stress, ~r/(~o. I n  the  elast ic  region as well as 
in the  p las t i c  region, ~ -= v(ar + o0). As expec ted  the  stresses in the  harden ing  
ma te r i a l  are, besides a small  region near  the  elast ic  p las t ic  interface,  smal ler  t h a n  
the  elast ic  stresses bu t  larger  t h a n  the  per fec t ly  p las t ic  stresses.  
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