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S u m m a r y -  Zusammenfassung 

Application of the Method of Singular Integral Equations to Elasticity Pl:oblems 
with Concentrated Loads. The method of singular integral equations is a well-known method 
for solving plane and antiplane elasticity problems and efficient methods for the numerical 
solution of these equations have been developed. In this paper this method is used for 
problems where concentrated loads are applied on the boundary of the elastic medium. An 
application to a straight crack problem in plane isotropic elasticity is also made. Finally, 
the case of curvilinear crack problems with concentx~ted loads is considered. The results of 
this paper can further be applied to more complicated problems with concentrated loads. 

Die Anwendung der Methode der singulih'en Integralgleichungen bei Elastizit~its- 
problemen mit konzentrierten Lasten. Die Methode de~ singul~ren Integralgleichungen ist 
eine sehr bekannte Methode ffir die Behandlung yon ebenen und antiebenen Elastizit~ts- 
problemen u n d e s  wurden erfolgrciche Methoden ffir die numerische LSsung dieser 
Gleichungen entwickelt. In dieser Arbeit wird die Methode ffir Probleme angewendet, bei 
welchen konzentrierte Lasten am l~andc des elastischen Mediums aufgebracht werden. 
Eine Anwendung fiir ein Problem eines geradlinigen Risses bei ebener, isotroper Elastizits 
wird gezeigt. Abschliel~end wird auch der Fall yon 1)roblemen mit gekriimmten l~issen 
bei konzentrierten Lasten behandelt. Die Ergebnisse dieser Arbeit kSnnen ferner bei 
komplizierteren Problemen mit konzentrierten Lasten Anwendung linden. 

1. Introduction 

The method  of solution of plane and antiplane isotropie and anisotropie 
elasticity problems by  reducing them to singular integral equat ions (with Cauchy 
type  kernels) has gained high popular i ty  in recent years. Some of the relevant 
l i terature is conta ined in the review papers by  Erdogan,  Gupta  and Cook [1] and 
Erdogan  [2], [3], who developed also efficient methods  for the numerical  solution 
of singular integral equations. Considerable fur ther  progress on the topic is due to 
Ioakimidis  [4], who considered par t icular ly  crack problems and developed new 
methods for the numerical  solution of singular integral equations. The results of 
Ioakimidis  can be found in a series of papers by  him and Theocaris, some of which 
are ment ioned in [5]. 

I n  spite of the fact  tha t  various elasticity problems have been t rea ted  by  the 
method  of singular integral  equations,  to this au thor ' s  best  knowledge no such 
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problem with concentrated loads on the boundary of the elastic medium has been 
solved by this method. Only problems with jump discontinuities in loading were 
solved by t.hc above method by Karihaloo (see, e.g., [6]), Theocaris, Chrysakis and 
Ioakimidis [7] and Ioakimidis [8]. I t  seems that the main reason for which prob- 
lems involving concentrated loads have not been treated by the method of 
singular integral equations is the fact. that  in such problems the use of the Dirac 
&function, which is a generalized function, is necessary , contrary to what happens 
in problems not involving concentrated loads. 

In this paper we will illustrate the application of the method of singular 
integral equations to elasticity problems with concentrated loads by using just 
the elementary properties of the (3-function and the available techniques for the 
formulation and numerical solution of singular integral equations. The problem 
of a periodic array of straight cracks with two pairs of opposite and symmetrically 
applied concentrated loads will be considered at first and some numerical results 
will be presented in the ease of one pair of opposite concentrated loads. Further- 
more, the problem of curvilinear cracks of arbitrary shape will be considered in 
some detail in the ease of opposite concentrated loads along the crack edges. I t  is 
hoped that  the illustration of the application of the method of singular integral 
equations in problems involving concentrated loads in this paper will permit its 
further wide use to more complicated or practical problems, contrary to what 
happened in the past when such problems were treated mainly by methods 
aiming to their closed-form solutions. 

2. The Case of Straight Cracks 

We consider the problem of a straight crack of length 2a inside an infinite 
isotropic elastic medium under plane strain or generalized plane stress conditions, 
loaded by a pressure distribution/(x) acting along both crack edges. This problem 
is easily reducible to the following singular integral equation [1], [4] 

1 

f w(t) g(t) dt = / ( x ) ,  - -1  < x < 1, (t)  
~ ,  t - - x  

--1 

accompanied by the condition of single-valuedness of displacements 

1 

f w(t) g(t) dt = O, (2) 
- -1  

where 
w(t)  = (1 - -  tz) -1/2. (3) 

Similar equations hold also true in the antiplane case. 
Equations (l) and (2) possess the closed-form solution [10, p. 426] 

1 

g ( t ) -  1 /" /(~) dr, ('4) 

--1 
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which defines the unknown function g(t) (proportional to the edge-dislocations 
density) along the crack. The reduced stress intensity factors (as if a = 1) K(:]: l) 
at the crack tips are given by [1], [4] 

K ( ~ I )  = 4-g(~1).  (5) 

The above theoretical results remain valid even when the compressive loading 
distribution/(x) presents discontinuities or singularities of any form provided that 
the integral in Eq. (4) exists in the principal value sense. A pair of compressive 
concentrated loads P acting at the point axo (tx01 < 1) of the crack corresponds to 
the following form of/(x)  

/ (x)  = Pd(x  - -  xo), (6) 

where (3(x) is the well-known Dirac's delta-function defined by its properties [9] 

d(x) = O if x ~ O, d(x) : ~c if x = O, f d(x) dx = 1, e > 0 .  (7) 

From Eqs. (7) it is clear that  Eq. (6) gives 

1 

f/(x) clx = P (s)  
- - 1  

as expected. 
Furthermore, for the loading distr ibution/(x) defined by Eq. (6) we obtain 

from Eq. (4) for g(t) 

g ( t )  P ( 1  - -  Xo2)1'2 
- (9 )  

n(t  - Xo) 

as can easily be verified on the basis of Eqs. (7). Then we obtain from Eq. (5) for 
the dimensionless stress intensity factors K(4:1 )  

7 ~ ~--5~x~1 �9 
( 1 0 )  

This is a well-known result [11, p. 5.9]. As regards the complex potential q)(z) of 
Muskhelishvili [12], it can be determined by [4] 

1 

f w(t) g(t) dr, (11 )  
~(~) - ~ - t - - ;  

which, because of Eq. (9), yields 

--1 

r  = P ( ,  - Xo2)1i 2 ( 1 2 )  
2z(z 2 -- 1) 1/2 (z - Xo) 

This is also a well-known result [11, p. 5.9]. Of course, in the above equations all 
lengths have been reduced to the half crack length a. Finally, it can easily be seen 
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from Eqs. (9) and (12) that  

q)'~(t) - -  q~-(t) -~ - - i w ( t )  g(t) (13) 

and this is a verification of the correctness of these equations [4]. 
Moreover, if instead of one pair of concentrated loads P at the poin6 axo, 

a series of such pairs of concentrated loads P;  (i = 1(1) n) acts at the points axoi 
of the crack, then, obviously, Eq. (9) should he modified as 

n pi(1 _ x~)r 
g(t) = Z r (14) 

i='~"1 t - -  Xoi  

A similar modification should be made in this case to Eqs. (10) and (12). 
Now we come to the ease of a periodic array of cracks loaded by  two pairs of 

concentrated loads P acting symmetrically on the cracks as shown in Fig. 1. The 

i ;*(/' ~('\:~H 
i ' ' 

' l l ,  o' / , I I  '~ 

Fig. 1. A periodic array of cracks Mong ~ straight line loaded by two pairs of compressive 
concentrated loads acting symmetrically on the cracks 

length of the cracks is equal to 2a and the period of the array is equal to b. The 
singular integral equation (1) takes in the case of a periodic array of cracks the 
form [41 , [13] 

1 

- ~ [ w ( t )  k ( t , x ) g ( t ) d t = / ( x ) ,  --1 < x <  l ,  (15) 

- -1  

with 

k(t, x) = u__a.a cot Jra(t --  x) (16) 
b b 

and remains accompanied by Eq. (2). The kernel k(t, x) is sufficiently simple even 
in this case and Eq. (15) possesses also a closed-form solution. But  here we wish to 
illustrate the numerical procedure for solving (15) by making use of the solution (9) 
for the case of a simple straight, crack. Evidently, in more complicated cases 
equations of the form (15) do not have closed-form solutions and the application 
of a numerical technique becomes indispensable. In  the case of Fig. 1 we will use 
only the closed-form expression for the dimensionless stress intensity factors 
[ l l ,  p. 7.71 

K(=~I) ~ -  t a n ~ -  ~ -  cos--g--  sin 2 b sin2 (17) 

to check our numerical results. 
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:For the numerical solution of Eq. (15) we will apply the Lobatto-Chebyshev 
direct quadrature method proposed by Ioakimidis [4] and further reported by 
Theocaris and Ioakimidis [14]. This method, although a little less accurate than 
the modified Gauss-Chebyshev direct quadrature method [15], presents the 
advantage that  it permits the direct evaluation of the stress intensity factors from 
Eqs. (5) without the necessity of using interpolation formulas [15]. Moreover, 
since/(x) is given by 

/ ( x )  = P [ d ( x  - -  Xo) ~- d(x  ~- x0)] (18) 

for the array of cracks of Fig. 1 and, hence, it presents singularities along the 
integration interval [--1, 1] of Eq. (15), the modification of the Lobatto-Chebyshev 
method of numerical solution of singular integral equations, originally proposed 
in [16] and further applied in [8] to crack problems with jump discontinuities in 
loading, must be used. 

In accordance with this method, we replace Eq. (15) by the following equation 

where 

1 

- - 1  

-~ F ( x ) ,  --1 < x < 1, (19) 

1 

Z'(x) - ~- f w(t) [~(t, z )  - 1/(t - x)]  g0(t) dt (20)  

- - 1  

with go(t) being the closed-form solution of Eqs. (t) and (2) with/(x) given by 
Eq. (18). Then g(t) will be determined by [16, 8] 

g(t) = g0(t) + ~(t) .  (21)  

From Eq. (20) it is clear that  F(x) is a continuous function along (--1, 1), if 
Eq. (16) is also taken into account, and, hence, the Lobatto-Chebyshev method 
can be applied to Eqs. (19) and (2) in its original form [4], [14]. As regards go(t), 
it is determined, on the basis of the previous developments, from Eq. (14) and is 
given by 

go(t) = P~ (1 - Xo2)1I 2 ~ + t + x---~ " 

Finally, since the kernel [tc(~ x)  - -  1/( t  - -  x)] in Eq. (20) is a regular kernel, but 
go(t) presents strong singularities at the points t = • the use of numerical 
integration rules for Cauchy tyl?e principal value integrals [4], [17] is necessary 
for the evaluation of F(x) at the collocation points used for the numerical solution 
of Eqs. (19) and (2). Such rules for the weight function w(t)  (defined by Eq. (3)) 
are mentioned in [4], [17]. By using a sufficiently large number of nodes v~ in the 
quadrature rule used, it is possible to evaluate F(x) from Eq. (20) up to the 
accuracy of the computer, practically exactly. 

As a numerical application, we present in Table 1 the numerical results 
obtained by the above procedure for the dimensionless (with a -~ 1 and P = 1) 



164 N. [. Ioakimidis: 

Ta.ble 1. Convergence o] the numerical results /or the dimensionless stress intensity [actors 
at the tips o] the cracks (o/length 2a) o /a  periodic array o/cracks (o/period b) along a straight 
line loaded by a pair o/compressive concentrated loads (o/intensity 2P) acting at the midpoints 

o[ the cracks 

n 2a/b = 0.2 2a/b ~ 0.8 

2 0.658 352 854 9 1.506154 804 
3 0.658 205 884 5 1.357 859 822 
4 0.6582043079 1.323329871 
5 0.6582062990 1.317472268 
6 0.658 204 299 0 1.316 567 356 
7 0.658 204 299 0 1.316 432 040 
8 0.6582042990 1.316412044 
9 0.6582042990 1.316409104 

10 0.6582042990 1.316408672 

Theoretical va,lues 0.6582042990 1.316408598 

stress intensi ty factors K(~_ 1) at the crack tips of the a r ray  of cracks of Fig. 1 in 
the special case when x0 ~- 0, tha t  is in the case when a pair  of concentrated 
compressive ]cads of intensi ty  2 P  acts at  the midpoints of the cracks. Bo th  cases 
when 2a/b = 0.2 and 2a/b = 0.8 were considered and the number  of nodes n in 
the Lobat to-Chebyshev  method of numerical solution of Eqs. (19) and (2) took the 
values n = 2(1) 10. Moreover, in the same table the theoretical values for these 
factors are presented as determined from Eq. (17). F rom the results of Table 1 the 
rapid covergence of the numerical results to their correct values, even in the case 
when 2a/b ~ 0.8 (when the successive cracks lie too close to each otker), is clear. 
This is a justification of the technique proposed in this section, which, probably,  
will find wide application in more complicated or more interesting problems 
involving concentra ted loads. 

Of course, not  only crack problems are reducible to singular integral equations. 
For  example, the problems of a finite or an infinite medium [18] or inelusion 
problems [19] in plane elasticity can be reduced to singular integral equations 
and the above technique, based on the use of the Dirac ~-function, to treat  
problems involving concentrated loads remains applicable. Yet, since most  plane 
elasticity problems are reduced to complex singular integral equations, we will 
show how our method is applicable to this class of equations in the next  section. 
This will be made wi thout  splitting the complex singular integral equat ion into 
two real singular integral equations. The case considered will be tha t  of curvilinear 
crack problems [4], but  the same complex singular integral equat ion holds also 
true for finite or infinite media if their boundaries are interpreted as cracks 
[4], [18]. 

3. The Case of Curvilinear Craeks 

We consider now the problem of a smooth curvilinear crack L in the complex 
plane z = x q- iy. We denote by  T, t the points of the crack and the corresponding 
values of the complex variable z. Assuming tha t  the crack lies in an infinite plane 
isotropic elastic medium, we can reduce the problem to the following complex 
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singular integral equation [4] 

r - t ~ (7 - -  re(T) d~ 
L 

~i  ~ + ~ ~ -. t q)@) dr = 2i(0, t C L,  
Z 

(23) 

where f i t )  is a known function representing the loading on the crack edges (assumed 
for convenience the same on both these edges) and of(t) is the unknown function 
proportional to the edge-dislocations density along the crack. Moreover, a bar 
over a variable or a function denotes its complex conjugate and the quantities dt 

and dt are defined by: dt -= ds exp (iO) and dt = ds e x p  (--iO), where ds is an 
elementary arc along the crack and 0 is the angle of the tangent of the crack (in the 
direction of increasing s) with respect to the positive 0x-axis [4]. Of course, Eq. (23) 
is supplemented by the condition of single-valuedness of displacements 

f ~(r) dr = o. (24) 
L 

A singular integral equation similar in nature to Eq. (23) but of a more compli- 
cated form is valid in the case of a curvilinear crack inside an infinite anisotropie 
plane elastic medium [20]. 

Following the results of the previous section, we assume that  a pair of coneen- 
t ra ted loads acts at  a point t = to of the crack L, characterized by  the value 
s = s0 of the arc-length. Then we can assume that  

/(t) -~ P6(s  - -  So) e x p  (--iOo) , (25) 

where 00 is the value of 0 corresponding to the point to of application of the pair of 
concentrated loads. This equation is analogous to Eq. (6) of the previous section. 
Of course, P may  be a complex quant i ty  (a compressive concentrated load 
together with a tangential concentrated load). Moreover, we can easily find from 
Eq. (25) that  

f l(t) dt = P (26) 
L 

i f  Eqs. (7) are also taken into account. 
Now, by  taking into consideration the behavior of the kernels in Eq. (23) as 

T -+ t, we can easily see that  this equation is of the form 

.i2 J~-~/" mOO ~ + f [k(r, t)re(r)d~: + S~*(T, t)re(r)~] = 21(0 
L L 

t ~ L,  (27) 

where k@, t) and k*(T, t) are regulars kernels. Hence, if we write q~(t) as 

~0(t) = ~0(t) + ~(t) ,  (2s) 



166 N.I. Ioakimidis: 

following the developments of the previous section, we will have to determine 
~0(t) from 

1 f q~o(T) dv /(t), t ~ L,  (29) - - 7  
=~ . ]  T - t 

L 

as can easily be seen from Eq. (27), whereas @(t) should be determined from the 
solution of the following singular integral equation resulting from Eq. (27) on the 
basis of Eqs. (28) and (29) 

,~ 7 - - - 7  

L ~ (3o) 

J5 

Of course, the condition (24) remains valid and it is convenient to assume it valid 
for both functions ~0(t) and @(t). 

As regards Eq. (30), it has now a regular right-hand side and can be solved by 
the direct quadrature methods of numerical solution of complex singular integral 
equations [4], [14], [15], [21] and, particularly, by the Lobatto-Chebyshev [4], 
[14], [21] or the modified Gauss-Chebyshev [15] methods. Of course, it is necessary, 
before applying these techniques, to find the closed-form solul~ion of Eq. (29). If  
t = a and t = fl are the tips of the crack L, then we have [10, p. 426] 

~~176 = 7dX( t )  v t 
L 

where 
x(t) - i [ ( t  - ~ )  (fi - t ) ] l /~  (32) 

is the canonical function of Eq. (29) [10, p. 429]. Now, by inserting the expression 
(25) for/(t)  in Eq. (31), we find because of Eqs. (7) 

qso(t) _ i P X ( 4 )  (33) 
~ X ( t )  (t - -  to) 

Moreover, it can be mentioned that  the integral of the right-hand side of Eq. (30) 
can be evaluated, with ~%(t) given by (33), by using the Gauss-Chebyshev or the 
Lobatto-Chebyshev quadrature rules for Cauchy type principal value integrals 
[4], [17]. 

I t  can also be mentioned that Eq. (33) reduces to (9) in the case of a straight 
crack with ~ -= --1, fl =- 1, whence 

X(t) = i (1  - -  t2) 1;2, (34:) 

if we take also into account Eq. (3), as well as the fact that  

~o(t)  = i w ( t )  g( t )  (:35) 

clear from a comparison of Eqs. (1) and (23). Next, the ease of more than one 
pair of concentrated loads can be treated by the method of superposition as was 
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m a d e  in the  previous  section.  Simi lar ly ,  in the  case when we have  no t  on ly  con- 
een t r a t ed  loads  ac t ing  along the  crack  edges b u t  also a pressure  d i s t r ibu t ion ,  we 
can also a p p l y  the  pr inciples  of the  above  technique.  This is s imi la r ly  the  ease 
when we have  also j ump  d iscont inui t ies  i n / ( t ) ;  Eq.  (31) will r ema in  va l id  b u t  in 
some eases we will have  to pe r fo rm the  in tegra t ion  b y  combining  the  closed-form 
fo rmula  (33) wi th  numer ica l  in t eg ra t ion  techniques  for Cauehy t y p e  pr inc ipa l  
value  in tegra ls  so t h a t  the  p a r t  of the  in tegra l  in Eq.  (31) cor responding  to t he  
regula r  p a r t  o f / ( t )  can be eva lua ted .  Of course, i t  is also possible  to r ep lace / ( t )  in 
Eqs.  (29) and  (31) b y  its p a r t / o ( t )  p resen t ing  s t rong  or  weaker  s ingular i t ies  and  
fu r the r  mod i fy  accord ing ly  Eq.  (30) by  add ing  to i ts  r i gh t -hand  side the  regular  

p a r t  
[(t) =-/(t) --/o(t) (36) 

of/(t). Severa l  more  analogous  possibi l i t ies  and  genera l iza t ions  are also possible 
b u t  of a t r iv ia l  charac ter .  
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