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Summary — Zusammenfassung

Application of the Method of Singular Integral Equations to FElasticity Problems
with Concentrated Loads. The method of singular integral equations is a well-known method
for solving plane and antiplane elasticity problems and efficient methods for the numerical
solution of these equations have been developed. In this paper this method is used for
problems where concentrated loads are applied on the boundary of the elastic medium. An
application to a straight crack problem in plane isotropic elasticity is also made. Finally,
the case of curvilinear crack problems with concentrated loads is considered. The results of
this paper can further be applied to more complicated problems with concentrated loads.

Die Anwendung der Methode der singunliren Integralgleichungen bei Elastizitits-
problemen mit konzentrierten Lasten. Die Methode der singuldren Integralgleichungen ist
eine sehr bekannte Methode fiir die Behandlung von ebenen und antiebenen Elastizitéts-
problemen und es wurden erfolgreiche Methoden fir die numerische Lésung dieser
Gleichungen entwickelt. In dieser Arbeit wird die Methode fiir Probleme angewendet, bei
welchen konzentrierte Lasten am Rande des elastischen Mediums aufgebracht werden.
Eine Anwendung fiir ein Problem eines geradlinigen Risses bei ebener, isotroper Elastizitit
wird gezeigt. AbschlieBend wird auch der Fall von Problemen mit gekriimmten Rissen
bei konzentrierten Lasten behandelt. Die Ergebnisse dieser Arbeit kénnen ferner bei
komplizierteren Problemen mit konzentrierten Lasten Anwendung finden.

1. Introduetion

The method of solution of plane and antiplane isotropic and anisotropic
elasticity problems by reducing them to singular integral equations (with Cauchy
type kernels) has gained high popularity in recent years. Some of the relevant
literature is contained in the review papers by Erdogan, Gupta and Cook [1] and
Erdogan [2], [3], who developed also efficient methods for the numerical solution
of singular integral equations. Considerable further progress on the topic is due to
Toakimidis [4], who considered particularly crack problems and developed new
methods for the numerical solution of singular integral equations. The results of
Toakimidis can be found in a series of papers by him and Theocaris, some of which
are mentioned in [5].

In spite of the fact that various elasticity problems have been treated by the
method of singular integral equations, to this author’s best knowledge no such
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problem with concentrated loads on the boundary of the elastic medium has been
solved by this method. Only problems with jump discontinuities in loading were
solved by the above method by Karihaloo (see, e.g., [6]), Theocaris, Chrysakis and
Toakimidis [7] and Toakimidis [8]. Tt seems that the main reason for which prob-
lems involving concentrated loads have not been treated by the method of
singular integral equations is the fact that in such problems the use of the Dirac
é-function, which js a generalized function, is necessary, contrary to what happens
in problems not involving concentrated loads.

In this paper we will illustrate the application of the method of singular
integral equations to elasticity problems with concentrated loads by using just
the elementary properties of the §-function and the available techniques for the
formulation and numerical solution of singular integral equations. The problem
of a periodic array of straight cracks with two pairs of opposite and symmetrically
applied concentrated loads will be considered at first and some numerical results
will be presented in the case of one pair of opposite concentrated loads. Further-
more, the problem of curvilinear cracks of arbitrary shape will be considered in
some detail in the case of opposite concentrated loads along the crack edges. It is
hoped that the illustration of the application of the method of singular integral
equations in problems involving concentrated loads in this paper will permit its
further wide use to more complicated or practlcal problems, contrary to what
happened in the past when such problems were treated mainly by methods
aiming to their closed-form solutions.

2. The Case of Straight Craecks

We consider the problem of a straight crack of length 24 inside an infinite
isotropic elastic medium under plane strain or generalized plane stress conditjons,
loaded by a pressure distribution f(x) acting along both crack edges. This problem
is easily reducible to the following singular integral equation [1], [4]

1
—l—[ﬂ)i’—(t-)-dt:f(x), —l<a<l, (1)
T

t—x
—1

accompanied by the condition of single-valuedness of displacements

[ wit) gt de = 0, @)

where
wlt) == (1 — 12)~2, 3

Similar equations hold also true in the antiplane case.
Equations (1) and (2) possess the closed-form solution [10, p. 426]

_ 4 = ~ 4
- fWHPt , (4)
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which defines the unknown function ¢(f) (proportional to the edge-dislocations
density) along the crack. The reduced stress intensity factors (asif @ = 1) K(4-1)
at the crack tips are given by [1], 4]

K(£1) = £g(+1). (5)

The above theoretical results remain valid even when the compressive loading
distribution f(z) presents discontinuities or singularities of any form provided that
the integral in Eq. (4) exists in the principal value sense. A pair of compressive
concentrated loads P acting at the point ax, (J2y| < 1) of the crack corresponds to
the following form of f(x)

H@) == Po{w — w,), (6)

where §(z) is the well-known Dirac’s delta-function defined by its properties [9]
Sy =0 if 20, d@ =o00 if =0, fa(x)dx:L e>0. (7)

From Egs. (7) it is clear that Eq. (6) gives

[ H) de = P (8)

as expected.

Furthermore, for the loading distribution f(x) defined by Eq. (6) we obtain
from Eq. (4) for g(¢)

P(1 — ag2y®

a(t — x,)

g(t) = )
as can easily be verified on the basis of Egs. (7). Then we obtain from Eq. (5) for
the dimensionless stress intensity factors K(+-1)

Kian =2 (1—@&)”2. (10)

7 \1F x,

This is a well-known result [11, p. 5.9]. As regards the complex potential @(z) of
Muskhelishvili [12], it can be determined by [4]

1

B() — _%fﬂm dt, (11)

7 t— =z
-1

which, because of Eq. (9), yields

Pl — x2)¥?
(22 — M2 (2 — a)

D(z) =

(12)

This is also a well-known result [11, p. 5.9}. Of course, in the above equations ail
lengths have been reduced to the half crack length a. Finally, it can easily be seen
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from Egs. (9) and (12) that
D) — D (1) = —Tw(t) gt (13)

and this is a verification of the correctness of these equations [4].

Moreover, if instead of one pair of concentrated loads P at the point ax,,
a series of such pairs of concentrated loads P; (z = 1(1) n) acts at the points axy;
of the crack, then, obviously, Eq. (9) should be modified as

Pi(1 — x5

T =1 t_’xoz

(14)

A similar modification should be made in this case to Egs. (10) and (12).
Now we come to the case of a periodic array of cracks loaded by two pairs of
concentrated loads P acting symmetrically on the cracks as shown in Fig. 1. The
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Fig. 1. A periodic array of cracks along a straight line loaded by two pairs of compressive
concentrated loads acting symmetrically on the cracks

length of the cracks is equal to 2a and the period of the array is equal to b. The
singular integral equation (1) takes in the case of a periodic array of cracks the
form [4], [13]

—f VR ) gty d = f@), —l<w<T, (15)

with

k(t, x) = %a— cot f—‘—z-(-tbl—ﬂ (16)

and remains accompanied by Eq. (2). The kernel &(i, x) is sufficiently simple even
in this case and Eq. (15) possesses also a closed-form solution. But here we wish to
illustrate the numerical procedure for solving (15) by making use of the solution (9)
for the case of a simple straight crack. Evidently, in more complicated cases
equations of the form (15) do not have closed-form solutions and the application
of a numerical technique becomes indispensable. In the case of Fig. 1 we will use
only the closed-form expression for the dimensionless stress intensity factors
{11, p.7.7]

2 / 2 . . ~1/2
K(+1) = - (t‘an fbi/ %)1 cos m;x,, (sm2 nb_a — sin? n—‘zﬁ) (17)

to check our numerical results.
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For the numerical solution of Eq. (15) we will apply the Lobatto-Chebyshev
direct quadrature method proposed by loakimidis {4] and further reported by
Theocaris and Ioakimidis [14]. This method, although a little less accurate than
the modified Gauss-Chebyshev direct quadrature method [15], presents the
advantage that it permits the direct evaluation of the stress intensity factors from
Egs. (5) without the necessity of using interpolation formulas [15]. Moreover,
since f(x) is given by

f(z) = P[o(x — o) + (@ + )] (18)

for the array of cracks of Fig. 1 and, hence, it presents singularities along the
integration interval [ —1, 1] of Eq. (15), the modification of the Lobatto-Chebyshev
method of numerical solution of singular integral equations, originally proposed
in [16] and further applied in 8] to crack problems with jump discontinuities in
loading, must be used. ,

In accordance with this method, we replace Eq. (15) by the following equation

1
;lt—fw(t) k@) Gt) dt — Flo), —1<a<l1, (19)
-1
where
Fla) = —— [ wlt) [k(t, ©) — 1/(t — 2)] golt) dt (20)

TT

-1
with go(t) being the closed-form solution of Eqgs. (1) and (2) with f(z) given by
Eq. (18). Then g(t) will be determined by {16, 8]

g(t) = golt) + (8)- 21)

From Eq, (20) it is clear that F(x) is a continuous function along (—1, 1), if
Eq. (16) is also taken into account, and, hence, the Lobatto-Chebyshev method
can be applied to Eqgs. (19) and (2) in its original form (4], [14]. As regards g,(t),
it is determined, on the basis of the previous developments, from Eq. (14) and is
given by

golt) = g

(1w (4 ). 22)
t— oy | b,
Finally, since the kernel [k(f, #) — 1/(t — x)] in Eq. (20) is a regular kernel, hut
goft) presents strong singularities at the points { = L, the use of numerical
integration rules for Cauchy type principal value integrals [4], [17] is necessary
for the evaluation of F{z) at the collocation points used for the numerical solution
of Eqgs. (19) and (2). Such rules for the weight function w(t) (defined by Eq. (3))
are mentioned in [4], [17]. By using a sufficiently large number of nodes m in the
quadrature rule used, it is possible to evaluate F(x) from Egq. (20) up to the
accuracy of the computer, practically exactly.
As a numerical application, we present in Table 1 the numerical results
obtained by the above procedure for the dimensionless (with @ = 1 and P = 1)
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Table 1. Convergence of the numerical results for the dimensionless stress infensity factors

at the tips of the cracks (of length 2a) of a periodic array of cracks (of period b) along a straight

line loaded by a pair of compressive concentrated loads (of intensity 2P) acting ai the midpoinis
of the cracks

n 2a/b = 0.2 2a/b = 0.8
2 0.65683528549 1.506154 804
3 0.6582058845 1.357859822
4 0.658204 3079 1.323329871
5 0.6582042990 1.317472268
6 0.658 20429990 1.316567356
7 0.6582042990 1.316432040
8 0.6582042990 1.316412044
9 0.658204.2990 1.316409104

10 0.658204.2990 1.316408672

Theoretical values  0.6582042990 1.316408598

stress intensity factors K(4-1) at the crack tips of the array of cracks of Fig. 1 in
the special case when x, = 0, that is in the case when a pair of concentrated
compressive loads of intensity 2P acts at the midpoints of the cracks. Both cases
when 2a/b = 0.2 and 2a/b = 0.8 were considered and the number of nodes #» in
the Lobatto-Chebyshev method of numerical solation of Figs. (19) and (2) took the
values n = 2(1) 10. Moreover, in the same table the theoretical values for these
factors are presented as determined from Eq. (17). From the results of Table 1 the
rapid covergence of the numerical results to their correct values, even in the case
when 2a/b = 0.8 (when the successive cracks lie too close to each other), is clear.
This is a justification of the technique proposed in this section, which, probably,
will find wide application in more complicated or more interesting problems
involving concentrated loads.

Of course, not only crack problems are reducible to singular integral equations.
For example, the problems of a finite or an infinite medium [18] or inclusion
problems [19] in plane elasticity can be reduced to singular integral equations
and the above technique, based on the use of the Dirac d-function, to treat
problems involving concentrated loads remains applicable. Yet, since most plane
elastictty problems are reduced to complex singular integral equations, we will
show how our method is applicable to this class of equations in the next section.
This will be made without splitting the complex singular integral equation into
two real singular integral equations. The case considered will be that of curvilinear
crack problems [4], but the same complex singular integral equation holds also
true for finite or infinite media if their boundaries are interpreted as cracks

[4], [18].
3. The Case of Curvilinear Cracks

We consider now the problem of a smooth curvilinear crack L in the complex
plane z = z + iy. We denote by 7, ¢ the points of the crack and the corresponding
values of the complex variable 2. Assuming that the crack lies in an infinite plane
isotropic elastic medium, we can reduce the problem to the following complex
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singular integral equation [4]

L [_1 oy &1 ]md—:% te L,
T —1 di T—1

where f(£) is a known function representing the loading on the crack edges (assumed
for convenience the same on both these edges) and ¢(¢) is the unknown function
proportional to the edge-dislocations density along the crack. Moreover, a bar
over a variable or a function denotes its complex conjugate and the quantities d¢
and dt are defined by: dt = dsexp (i) and & = ds exp (—0), where ds is an
elementary arc along the crack and 6 is the angle of the tangent of the crack (in the
direction of increasing s) with respect to the positive Oz-axis [4]. Of course, Eq. (23)
is supplemented by the condition of single-valuedness of displacements

[ gx)dr =0, (24)

L

A singular integral equation similar in nature to Eq. (23) but of a more compli-
cated form is valid in the case of a curvilinear crack inside an infinite anisotropic
plane elastic medium [20].

Following the results of the previous section, we assume that a pair of concen-
trated loads acts at a point ¢ = {; of the crack L, characterized by the value
§ == 8y of the arc-length. Then we can assume that

H8) = Po(s — s,) exp (—by), (25)

where 0, is the value of ¢ corresponding to the point ¢, of application of the pair of
concentrated loads. This equation is analogous to Eq. (6) of the previous section.
Of course, P may be a complex quantity (a compressive concentrated load
together with a tangential concentrated load). Moreover, we can easily find from
Eq. (25) that

f ) dt = P (26)
L

if Eqgs. (7) are also taken into account.
Now, by taking into consideration the behavior of the kernels in Eq. (23) a
v — t, we can easily see that this equation is of the form

f dr+f (7, 8) plz) dr + k*(z, 1) &(F)cﬂ] =2ft), (<L, (27

where k(z, t) and k*(z, t) are regulars kernels. Hence, if we write ¢(f) as

P(t) = @olt) + F(), (28)
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following the developments of the previous section, we will have to determine
@o(t) from

i,[ﬂﬂdr:/(t), teL, (29)

) T — ¢

i

as can easily be seen from Eq. (27), whereas @(¢) should be determined from the
solution of the following singular integral equation resulting from Eq. (27) on the
basis of Egs. (28) and (29)

—»—2_- 207 -+ f [k(r, 8 @(z) dr + £*(z, t) #(1) CF]
; (30)

= —[[k(r, ) golr) dv + K¥(r, ) o(m) de|,  t€ L.
L

Of course, the condition (24) remains valid and it is convenient to assume it valid
for both functions g,(t) and (7).

Ag regards Eq. (30), it has now a regular right-hand side and can be solved by
the direct quadrature methods of numerical solution of complex singular integral
equations [4], [14], [15], [21] and, particularly, by the Lobatto-Chebyshev [4],
[14], [21] or the modified Gauss-Chebyshev [15] methods. Of course, it is necessary,
before applying these techniques, to find the closed-form solution of Eq. (29). If
t = « and ¢ = § are the tips of the crack L, then we have [10, p. 426]

1 [ X@) ) :
%(’”“‘mxmLf O g, B1)
where
X(t) =t — o) (6 — D)2 (32)

is the canonical function of Eq. (29) [10, p. 429]. Now, by inserting the expression
(25) for f(t) in Eq. (31), we find because of Egs. (7)
iPX(ty)
=2 3
Folf) aX(E) (& — t,) (33)

Moreover, it can be mentioned that the integral of the right-hand side of Eq. (30)
can be evaluated, with @) given by (33), by using the Gauss-Chebyshev or the
Lobatto-Chebyshev quadrature rules for Cauchy type principal value integrals
(41, [17]).

It can also be mentioned that Eq. (33) reduces to (9) in the case of a straight
crack with ¢ == —1, f = 1, whence

X(t) = i(1 — )2, (34)
if we take also into account Eq. (3), as well as the fact that
Po(t) = 1wlt) g(t) (35)

clear from a comparison of Eqgs. (1) and (23). Next, the case of more than one
pair of concentrated loads can be treated by the method of superposition as was
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made in the previous section. Similarly, in the case when we have not only con-
centrated loads acting along the crack edges but also a pressure distribution, we
can also apply the principles of the above technique. This is similarly the case
when we have also jump discontinuities in f(f); Eq. (31) will remain valid but in
some cases we will have to perform the integration by combining the closed-form
formula (33) with numerical integration techniques for Cauchy type principal
value integrals so that the part of the integral in Eq. (31) corresponding to the
regular part of f(t) can be evaluated. Of course, it is also possible to replace /() in
Eqgs. (29) and (31) by its part fo(f) presenting strong or weaker singularities and
further modify accordingly Eq. (30) by adding to its right-hand side the regular
part

F(6) = f(&) — fol) O (36)

of f(£). Several more analogous possibilities and generalizations are also possible
but of a trivial character.
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