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Summary. The revised Enskog theory was employed to analyze granular flows of binary-sized mixtures. 
The governing equations and constitutive relations were used to investigate granular thermal diffusion - 
a diffusion process resulting from the granular temperature gradient. The granular thermal diffusion causes 
the smaller or the lighter particles to concentrate in the region of the flow with higher granular temperature, 
and causes the larger or the heavier particles to concentrate in a region of lower granular temperature. 
A granular flow of binary mixtures in an oscillatory no-flow system and in a sheared system was examined, 
and indicated a complete segregation when the granular thermal diffusion was sufficiently large. 

1 Introduction 

A granular material is an assembly of a large number of discrete solid components that are 
dispersed in a fluid. This class of two-phase flow occurs in many industrial situations such as the 
transport of ore, coal, mineral concentrate, sand, powders, food products or tablets. In the 
chemical industry more than 30% of products are formed as particles [1]. 

In granular flows, the particles are much denser than the interstitial fluid or are closely 
packed, so the interstitial fluid is neglected in the bulk flow behavior. The particle-to-particle 

collisions are dominant in these flows [2], [3], and result in a random motion of the particles. The 
similarity between the random motion of the particles in a granular flow and the motion of 

molecules in a gas has prompted researchers to use the term granular temperature to quantify the 
mean-square value of the fluctuating velocities [4]. Although the granular temperature plays 
a similar role to the thermal temperature in the gas kinetic theory, it does not have the dimension 
of thermodynamic temperature but has the dimension of specific energy. In granular flows, 
similar to dense gases, two mechanisms influence the transport properties: the streaming or 
kinetic mode and the collisional mode [3]. The streaming or kinetic mode accounts for the 
transfer of particle properties as the particles freely move between collisions. The collisional 
mode accounts for the transfer of the properties during collisions. The streaming mode is 
dominant for the dilute flows that have larger mean-free path. The collisional mode is more 
important for the high-solid-fraction flows because of the higher collisional frequency. 

Most granular flow analyses assume the particles are identical. However, in real applications, 
the particle sizes are usually not uniform. Because of the complications involved in the transport 
of multicomponent mixtures, this topic receives less attention except for the following studies. 
Shen [5] used mixing-length kinetic theory concepts to study binary-sized mixtures in a highly- 
concentrated simple-shear flow. The particles were of the same material, frictionless, inelastic and 
spherical. Farrell, Lun and Savage [6] followed the dense-gas kinetic theory for mixtures to derive 
the governing equations for a binary-mixture of smooth, slightly inelastic, spherical granular 
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particles. They also calculated the stresses generated in a simple shear flow with high solid 
fraction. The results were compared with Shen's [5] theoretical and Savage and Sayed's [7] 
experimental results. Both of these theoretical studies only considered the collisional mode of the 
stresses. Jenkins and Mancini [8] used the more rigorous kinetic theory to derive the balance laws 
and the constitutive relations for a plane flow of a dense binary mixture of smooth nearly-elastic 
circular disks. In this study, both the kinetic and the collisional modes were considered. Jenkins 
and Mancini [9] used revised Enskog theory to develop a kinetic theory for binary mixtures of 
smooth nearly-elastic spheres. The current study follows the approach by Jenkins and Mancini 
[9] but focuses on granular thermal diffusion as a mechanism that may result in particle 
segregation. 

In binary or multi-size mixtures, a segregation of particles may occur due to differences in 
particle size, particle mass, properties of materials, and angle-of-repose of the material [10], which 
has been reported in several experimental studies. In Bagnold's 1954 work, Bagnold observed 
that in particle mixtures the larger grains drifted toward the region of the flow of the lowest shear 
strain, such as to the free surface in a gravity flow [11]. Similar results were found by Savage and 
Lun [12] for flows of binary mixtures down inclined chutes. They measured the degree of 
segregation between the large and small particles as a function of downstream position and chute 
inclination angle. Two mechanisms were proposed: the random fluctuating sieve mechanism and 
the squeeze expulsion mechanism. The first mechanism results from the voids opening within the 
flow and the smaller particles dropping into the voids or sieve openings more readily than the 
larger particles. The squeeze expulsion mechanisms describes the process in which a particle may 
be squeezed to another layer because of an imbalance in the contact forces. This mechanism does 
not show a preferential direction for the migration of large or small particles. In a separate 
experiment that used a shear cell with a rotating bottom and side surfaces and a stationary upper 
surface, Savage and Sayed [7] found that the smaller particles migrated toward the outer bottom 
corner of the shear cell and the larger particles tended to locate in the top inner corner. Their 
observation was that the smaller particles moved in the direction of the resultant of the 
gravitational and centrifugal forces, and that the movement was linked to the probability of void 
spaces opening that could be filled only by the smaller particles. 

In addition to these studies, there are also vibrating bed experiments as reviewed by Savage 
[13]. In general, the vibratory motion caused the larger particles to rise to the top of the bed. 
A recent study by Knight, Jaeger and Nagel [14] indicated that the particle segregation resulted 
from a convective motion and not from the smaller particle filling the voids within the bed. This 
study, however, was limited to beds in which the particles were primarily one particle size, and 
only a single or a few tracer particles of different diameter. 

Although segregation is routinely observed in experimental studies and is important in many 
industrial processes [10], there is little fundamental understanding of the processes. In the present 
study, the focus is on segregation that is caused by granular thermal diffusion, a transport 
mechanism that depends on the gradient in the granular temperature. 

2 Revised Enskog theory and governing equations 

The first examination of the collisional transfer mechanism in dense gases was done by Enskog, 
but that work only considered single-sized particles. Enskog's theory and work in this field are 
fully described in Chapman and Cowling [15]. Throne extended the Enskog theory to binary 
mixtures of hard spheres [15]. 
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Similar to the single species of dense gases, a radial distribution function describing the 
probability of the collisions between two particles must be evaluated. Since the particles are of 
different size and mass in the mixture, it is difficult to define the local density to evaluate the radial 
distribution function in a non-equilibrium flow. Barajas et al. [16] evaluated the radial 
distribution function at three different locations: the midpoint of the line connecting the two 
colliding particles, the contact point, and the mass center of the two colliding particles. They 
found that these choices were not satisfactory because the diffusion force was in conflict with 
irreversible thermodynamics. 

Instead of using a specific point to evaluate the radial distribution function in the standard 
Enskog theory (SET), van Beijeren and Ernst [17] proposed a modified Enskog theory (referred 
by L6pez de Haro et al. [18] as revised Enskog theory - RET), which takes the radial distribution 
function at the contact point as a non-local functional of the density field. The results from the 
RET were found to be consistent with irreversible thermodynamics. L6pez de Haro et al. [18] 
employed the RET to the multicomponent mixtures and derived equations for the linear 
transport theory. Jenkins and Mancini [9] extended this theory to binary mixtures of smooth 
nearly-elastic spheres. 

Much of the theoretical analysis in this paper reflects the presentation by Jenkins and 
Mancini [9]. Since the details of the derivation are available in the literature, only the basic 
nomenclature, the governing equations and some of the constitutive relations that are needed for 
the diffusion calculations are presented. 

The subscripts ~ and fl represent two different species in the binary-mixture, and the indices i, 
j are either a or ft. Similar to that for a single species [19], the fluctuating velocities of the particle 
i are assumed to follow the singlet distribution function, fitl)(r~, ci; t). Since the particle motion is 
not self-sustaining, the velocity distribution function is not Maxwellian. In this case, the singlet 
velocity distribution function j](1)(r~, c5 t) is assumed to be 

fi(1)(ri, cl; t) = fi(~ ci; t) (1 + ~i), (1) 

where c~ is the particle's local velocity, r~ is the particle location, t is the time, ~ is a perturbation 
term where qb~ ~ 1, and f~t~ c~; t) is the well-known Maxwellian distribution function: 

., ( (c,- 
A(~ c~; t) - (2rc~)a/2 exp ~ / .  (2) 

In the Maxwellian distribution function, n~ is the number density, ~ is the granular temperature 
of species i defined by Fi = (C~2>/3, ui is the mean velocity, ui = (ci>. The fluctuating velocity 
Ci is the local velocity deviation from the mass average velocity, Ci = c ~ - u ,  where 
u = (Q~u~ + Qaua)/(q~ + Qp), and Q~ and qa are the densities for the two species in the flows, 
Q~ = ~opiv~ = rn~ni. The symbol (>  represents the ensemble-average quantity. The ensemble- 
average of the local property (P is determined by averaging the single-particle properties over the 
entire velocity space: 

1 
f ~Ji(l)(ri, ci; t) dci, (3) <~i> = ni 

where dc~ = dc~x d %  dc~z. 
The granular temperature of the mixture is defined by 

1 
lc= - -  (e~ ~ + Qp Y~), (4) 

mon 
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where n is the total number  density, n = n, + na, and mo is the sum of the masses of particles 
and fl, mo = m~ + ms. Note  that this definition of granular temperature differs from that used by 
Jenkins and Mancini [9]. For  a binary mixture, an equipartition of fluctuating energy is assumed 

[51, [61: 

3 3 
rn, F~ = -~ ma F~. (5) 

The conservation equations are derived by examining the time rate of change of the mass, 
momentu  .1~ or energy due to an influx of particles into the control volume, to external forces 
acting on the particles, and to collisional exchanges between particles. The resulting diffusion 

equation for species i is [9]: 

- -  + V" (eiui) = 0 .  (6) & 

The conservation of mass equation is 

dQ 
- ~ I 7 . u ,  (7) 

dt 

where 0 is the (total) bulk flow density, 0 = Q~ + 0a. The conservation equations for momen tum 
and fluctuating energy are as follows: 

du 
~ = - v -  e + e J ,  + e~ir (8) 

and 

3 d~  3 
(9) 

where vi is the diffusion velocity of species i, 

vi = < G > ,  ( lo)  

and Fi is the specific external force on particles of species i. 
The relations for the pressure tensor, P, and the fluctuating energy flux F, and the energy 

dissipation due to the inelastic collisions per unit volume, ?, are derived in the work by Jenkins 
and Mancini [9]. The relations are given here because the formulations are slightly different from 

those in [9]. 
The normal  stress or the granular pressure in the mixture P is 

( 2rcninj~r~gc~i). (11) P=mor n+ E E ~ 
i=o~,fl j=a,#  

The diameters of the two species are a /and a i and the average diameter is aij = (ai + aj)/2. In (11), 
gcq is the equilibrium value of the radial distribution function of particles i a n d j  at contact, which 
is found by substituting the local density as the equilibrium density and is expressed as [9], [20] 

gcij = Z 2 + - -  ZZ2 + 2 - -  Z22 Z 3, (12) 
al + aj \ai  + aj /  A l  
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where 

7~ 
Zt=-~  ~, n~a], 1 = 1 , 2 , 3 ;  Z = I - - Z 3 .  (13) 

j=~,# 

Note that Za is equal to the total solid fraction, Za = v = v~ + v a. This equilibrium radial 
distribution function is originally derived by Mansoori et al. [21] and is known as the 
Carnahan-Starling approximation. The first term of the pressure in (11) is the contribution 
from the kinetic or streaming mode of energy transfer and the second is from the collisional 
mode. 

When there is no net diffusion indicating a balance between particle diffusion and granular 
thermal diffusion, flae "shear stress and the fluctuating energy flux are given by 

OUn 
Pnl= --# ~rz' n, I, rz = x, y, z, k # l, (14) 

and 

Fl = --2 --BY l, rt = x ,y ,z ,  (15) 
c3rl ' 

where/~ is the mixture viscosity and 2 is the granular thermal conductivity, which can be found 
in [9]. The energy dissipation due to the inelastic collisions per unit volume is derived as 

7 = Z E 4gc, jaSn in jMj ,  1 --  e2,ij /2~m,jmo3r 3 (16) 
i=a,# J=~,a -2- ~] mira  j " 

From (10), the difference between the diffusion velocities of the two species is determined 
from 1) v,--vp=----D,p d~+kr I 7Y 

where D~ is the diffusion coefficient given by 

= 3 ~ 7  ~ 2M_~ M 1 2 D,a 2n a, 8%pgc,p 

kr is granular-thermal-diffusion ratio expressed as 

4 V~ 0.2fl n~nf l  r~t 13/2 

and di is the diffusion force: 

--Oi [VP + ~ Q,(Fi-Fj)] 
di = monO~--'--f 

J=~,B ( 4  ) + ~ ni ~ij+ rmj~Mijg~ij V In Y 

+ ~ monr \Onj Vn] . j=~,~ 

(17) 

(18) 

(19) 

(20) 
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In the above equations, ~ij is the Kronecker delta and Mij  =- mi/mij = m~/(m~ + mj), and a~.l and 
ap,~ are two coefficients that are dependent on the particle diameters, densities and the radial 
distribution function and are found in [9]. The granular chemical potential of species i, #,, 
depends on the radial distribution function. Corresponding to the form of equilibrium 
distribution function derived by Mansoori et al., the granular chemical potential #, is derived by 
Reed and Gubbins [22] and can also be found in [9], [20]. The diffusion force is the main difference 
that results from using RET instead of SET. Since there is no mass transfer during collisions, the 
mutual diffusion only depends on the kinetic mode. 

The self-diffusion process in a single species granular flow was studied by Hsiau and Hunt 
[23], [24] and by Savage and Dai [25]. For binary mixtures, the granular thermal diffusion results 
from the granular temperature gradient as indicated in (17). The granular-thermal-diffusion ratio 
kr is the ratio of the granular thermal diffusion coefficient, Dr, to the mutual-diffusion coefficient, 
D~a. From (19), kr is 0 if the two species are identical, meaning there is no granular thermal 
diffusion for a single-species granular flow. The granular-thermal-diffusion ratio in (19) is 
positive if species a is more massive, or if a is of larger size than species ft. The effect of the granular 
thermal diffusion is that the lighter or the smaller particles move to the position with higher 
granular temperature, and the heavier or the larger particles move in the opposite direction. This 
phenomenon has been demonstrated in the theoretical development and in some experiments for 
gases and liquids [15]. 

The diffusion coefficient given by (18) has the same form as derived by Throne for the 
perfectly-elastic dense gases. Since the present theory neglects the higher order terms, the 
inelasticity does not enter the equation. If the two species are identical, then (18) is the same as the 
diffusion coefficient derived by Hsiau and Hunt [24] and by Savage and Dai [25] when their 
expressions are evaluated for ep = 1. Although the diffusion coefficient derived by RET is the 
same as that derived by SET, the diffusion force is different, resulting in a different diffusion flux. 

3 Granular thermal diffusion in flows of binary mixtures 

In the previous Sections, the governing equations and the constitutive relations for a binary 
mixture of granular materials are presented. Unlike transport in single-sized materials, the 
pressure gradient, the number density gradient, and the granular temperature gradient all 
influence the diffusion process. In this work, the former effects are referred to as particle diffusion 
(mass diffusion), and the latter effect is called granular thermal diffusion. 

The rigorous theory about thermal diffusion in gases was first analyzed by Enskog and 
Chapman [15]. Frankel [26] and Furry [27] offer elementary explanations of the physical meaning 
of thermal diffusion for dilute gases. A similar explanation can be applied to granular flows in 
which the contribution to the pressure is mainly from the kinetic mode of transfer. 

Consider a system in which the total pressure is constant, but in which there is a gradient in 
partial pressures due to granular thermal diffusion. The gradient of the partial pressure of one 
species is equal in magnitude and opposite in sign of the partial pressure gradient of the second 
species. In addition, the gradient of the partial pressure of one species, i, in a particular direction 
y equals the y component of momentum for the i particles in that direction, 

d P i i , y  
- -  = - - ~ - ' i j , y ,  (21) ,/y 

where ~ii,y is the average momentum transfer in y direction per unit volume per unit time. Since 
collisions between like particles do not alter the net momentum, only collisions between particles 
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of type i and j are included in (21). Since collisions between particles with the greatest relative 
velocity determine the direction of the momentum transfer, consider a collision between a light 
particle coming from a region of high granular temperature and a heavier particle coming from 
a region of the low granular temperature. This kind of collision results in a net momentum 
transfer from the lighter particle to the heavier particle, which is the direction opposite to that of 
the granular temperature gradient. Hence, from (21), the partial pressure of the lighter species 
increases in the opposite direction of that of the momentum transfer, which is in the direction of 
granular temperature gradient. Since the partial pressure depends on the partial number density 
as given in (11), this effect causes the lighter particles to concentrate in the place with higher 
granular temperature. 

The present study considers two-dimensional (in xy-plane) flows of binary granular materials 
in a steady state. The gradients only exist in y-direction, since the flow is assumed to be fully 
developed in x-direction. From (8) and (9), the governing equations can be simplified as: 

~Pyy 
- - - -  + a . F . , y  + 0pFp,y = 0, (22) 

Oy 

~P~y 
- - -  + o . F ~ , .  + 0pFp,x = 0, (23) Oy 

and 

- O~- - \ a y  ] - y = 0 ,  (24)  

where Fi,x and Fi,r are the specific external forces acting on particle i in the x and y directions. For 
zero net diffusion of particles, the diffusion velocities vi are zero, and (19) simplifies to 

~ln  ~" 
d.,y + kr - 0, (25) 

Oy 

where d,,y is the y component of the diffusion force d,. 
As mentioned earlier, granular thermal diffusion is caused by a granular temperature 

gradient. From (17), the conduction of granular temperature is influenced by the shear work and 
the energy dissipation. To investigate clearly the influence of the granular temperature on the 
diffusion process, an oscillatory system without any bulk motion of perfectly-elastic materials 
is first examined in Section 3.1. The more complicated system of a sheared flow is studied in 
Section 3.2. In both studies the emphasis is on the extent of particle segregation that results from 
thermal diffusion. To solve for the distribution in number density, boundary conditions are 
needed for the velocity and the granular temperature in order to integrate the governing 
equations. However, in granular flows analytical representations for the boundary conditions 
are problematic because the standard no-slip conditions used in conventional fluid mechanics 
cannot be imposed. As shown in the work by several studies such as that by Richman [28] and by 
Jenkins [29], the boundary conditions result from detailed balances of momentum and energy at 
the solid surfaces. As a result, the boundary conditions depend on the entire flow field, so the 
velocity and the granular temperature cannot be specified independently. By considering the 
interaction between the boundary and the flow field, these studies derived the boundary 
conditions for granular flows of single-species spheres interacting with bumpy surfaces or with 
flat frictional surfaces. However, these boundary conditions are only for single-sized particles 
and not for mixtures. The extension of these studies to include binary-mixtures is a formidable 
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task. As a result, the boundary conditions used in this work are not based on the detailed 
balances of momentum and energy. Instead, granular thermal diffusion is the emphasis of this 
work. 

3.1 Oscillatory no-flow system 

Consider a steady system without mean motion between two parallel boundaries as shown in 
Fig. 1. The body forces are neglected. The momentum equation in the x direction disappears 
since there is no shearing of the flow. From (15), the momentum equation is: 

~P 
- -  ~ 0 ,  
Oy 

and using (11), the momentum equation is rewritten as 

~Y i=~,p j=v,p 

From (15) and (24), the balance equation for the fluctuating energy is 

(26) 

(27) 

x = o .  (28) 

Note that since the particles are assumed perfectly-elastic (ep,lj = 1), the energy dissipation 7 is 
zero. 

Using (19) and (20), the diffusion equation (25) becomes 

Ikr  +j__~, ( 4 3 )1  ~ l n Y  n ~ , ~ # ~ , O n j  n~ 3~j + rcnja~jM~jgc~j + - -  - O. (29) 
n 3 ~ monlej.= ,~ Onj Oy 

The granular temperature le and the channel location y can be normalized by the granular 
temperature at y = 0, Yo, and by the channel width L, le* = Y/leo and Y = y/L. Then Eqs. 
(26)-(29) can be rewritten as four first-order ordinary differential equations for dvUdY, dvp/dY, 
dle*/dY and d z le*/dY 2. As mentioned in the previous Section, the boundary conditions are 
chosen to demonstrate the diffusion process and may not be representative of physical boundary 
conditions. The four boundary conditions used to solve the equations are: 

r * ( g  = o) = 1, (30) 

r*(Y= 1)= rL*, (31) 

~ I / / / / / I / / I I / / I / I I /  / / I / / / / I / / / / I  i 
, i ,  i I Q , 6  QrL, 

I , / i l i l l / / l l t / / l / l l l i / , . . ' l l l / t t i / i /  I 

Fig. 1. Configuration of an oscillatory no- 
x flow system 
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1 

v~(Y) dY  = ~ ,  (32) 
0 

1 

S vp(Y) d Y =  ~ .  (33) 
0 

By a Runge-Kutta  method,  this system of equations can be solved. For  the current 
calculations, the average solid fractions of species ~ and fl of 0.1 and 0.25 are used, and the solid 
fractions are selected as ~ = 0.1 and ~ = 0.25. The dimensionless granular temperature at Y = 1 

is chosen to be 2 for the calculations,/ 'L* = 2. The calculations are performed for four different 
sizes of ~: (a) a~ = 1 mm, (b) a~ = 1.2 mm,  (c) a~ = 1.5 mm, (d) tr~ = 2 mm;  and the particle 

diameters of species fl are 1 m m  in the four cases and the particle densities of both  species are 
2490 kg/m 3. 

Figure 2 shows the solid fraction distributions for case (a) where species ~ and fl are identical. 
Since the two species are identical, there is no granular thermal diffusion and hence the solid 
fractions of both  species decrease in the positive y direction in a similar ratio. To balance the 
momen tum equation, the granular pressure is constant in the channel, so the solid fractions 
decrease with the increase of granular temperature. To check the numerical integration, this case 
is calculated by the theory of Lun et al. [19] for the single-species material, and the resulting 
granular  temperature profiles are nearly identical. The solid fraction profiles are compared in 
Fig. 2 and the difference is less than 2%. The difference is because the RET is employed in the 
present theory. 

Figure 3 presents the solid fraction distributions for case (d). As indicated by the figure, the 
smaller particles (fl) tend to move to the region with higher granular temperature and the larger 

particles (~) tend to move in the opposite direction. For  the smaller (lighter) particles, the 
granular  thermal diffusion causes a diffusive flux in the direction of the granular temperature 
gradient and results in the increase of the partial number  density np. Due to the partial number  
density gradient, particle diffusion causes the smaller particles to diffuse to the opposite direction 
of the gradient of the partial number  density, that is the direction in which the granular 
temperature  decreases. Hence, a balance is established between particle diffusion and granular 

.6 

.5 

Z .4 
0 

< 
~ . 3  

0 . 2  
r~ 

.1 

- -  t o t a l  s o l i d  f r a c t i o n  

. . . . . .  s o l i d  f r a c t i o n  a 

. . . . . . . .  s o l i d  f r a c t i o n  

. . . . . . . . . . . . . . .  Lun, et al.  (1984) 

.0 
.0 

i i I ; 

. 2  .4  .6 .8 
C H A N N E L  LOCATION,  y /L  

1.0 

Fig. 2. The distributions of solid frac- 
tions when two species are identical 
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from the theory of Lun et al. [19] for the 
single-size material. 
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thermal diffusion so that  there is no net diffusive flux. A similar diffusive balance occurs for the 

larger particles. 

In Fig. 4, the four curves are the granular  temperature  distr ibutions for the four cases. The 

differences in the granular  temperature  profiles result from the variat ions in the solid fractions 

which are due to granular  thermal diffusion. 

Figure 5 shows the ratios of the solid fractions va/v~ in the channel for the four cases in log 

scale. Due to the granular  thermal diffusion, the ratio increases with the granular  temperature.  

The ratio of va/v~ increases faster for higher rat io of ~r,/ap, which indicates the larger size difference 

causes an increase in the granular  thermal  diffusion. F o r  case (a), since there is no granular  

thermal  diffusion, the distr ibution of vp/v~ is flat. 
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butions for four different sizes of ~: 
(a) a~ = 1 mm, (b) a~ = 1.2 mm, (c) 
a, = 1.5 mm, (d) a~ = 2 mm 
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In Fig. 6, the ratio of va/v~, is presented in a log scale for the same particle diameters but 
different particle densities. The particle density of species ~ is 2490 kg/m 3 but the ratios of 
particle densities vary for the four cases: Qv~,/Ova = 1, 2, 3, 4. The case of Qv~/Qva = 1 means 
identical species as discussed above. The higher ratio of Qw,/Ovp indicates a larger mass difference, 
which results in enhanced granular thermal diffusion; hence the ratio of va/v~, increases faster. 

When the difference in size or mass of the two species is increased or the granular temperature 
gradient is increased, transport due to granular thermal diffusion becomes more significant. If 
any factor is large enough, the two species can be completely segregated. One example is shown in 
Fig. 7 plotted for the solid fraction distributions for the case of FL*= 3, a~,/a~ = 2, and 

Ov~/~pp = 4. 
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3.2 Sheared granular flows 

In this part, a steady and fully developed sheared flow of a binary mixture between two parallel 
boundaries is studied. The configuration of this system is shown in Fig. 8. The external forces are 

neglected. The momentum equation in y direction and the equation for zero diffusion velocity 

remain the same as (26), (27) and (29) for the oscillatory no-flow system. From (23) and (14), the 

momentum equation in x-direction is written as: 

ay\ ay/ 

Using (14) and (15) in (24), the conservation equation for energy is 

;Ty 

(34) 

(35) 

The first term in (35) is the fluctuating energy added to the system by the conduction of the 

granular temperature and the second term is the shear work done to the system. The sum of these 

two terms is equal to the energy dissipation due to the inelastic collisions. Equation (35) can be 

nondimensionalized to 

n'2n22"* \ ar / = R h * .  (36) 

/lI//I/I/llll///llll/lllI////////lI///, 

k Fig. 8. Configuration of a shear flow 
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The dimensionless variables )c*, u~*, 2*, #* and ?* are defined as lc* = lr/iCo, ux* = (ux - U~,o)/ 

(I, lxL - -  UxO) = (Ux - -  Uxo)/Aux, 2* = 2 / ( ~ o  Qvatr,), I~* = #/(V~o Qvpap), ?* = ~o'fl/(yo3/2Qpfl) a n d  

Y = y/L, where Yo and Uxo are the granular temperature and the velocity at y = 0 respectively, 
UxL is the velocity at y = L, and L is the channel width. The dimensionless parameter R1 is 
defined by 

R1 - ap(Aux/L) , (37) 

and R2 is the ratio of the channel width to the smaller particle diameter, R2 = L/trp. 
Equations (27), (34), (36) and (29) can then be rewritten as six first-order ordinary differential 

equations for dv~,/dY, dvp/dY, d)"*/dY, d2Y*/dY 2, dux*/dY and d2u:,*/dY 2. Six boundary 

conditions are used to solve the equations. The first four boundary conditions are the same as 
that used in the oscillatory no-flow system and the other two are 

u~*(Y = 0) = 0, (38) 

and 

ux*(Y = 1)=  1. (39) 

As discussed before, the boundary conditions for the sheared granular flows should be 
determined by the whole flow field. However, due to the lack of information regarding boundary 
conditions for binary-mixture flows, the imposed boundary conditions are used. 

The Runge-Kutta method is employed to solve these equations. Due to the effect of granular 
thermal diffusion, the solid fraction of the smaller or the lighter particles (fl) is found to increase 
with the positive gradient of granular temperature and to decrease when the granular 
temperature decreases. The only exception occurs when the solid fraction of the larger or the 
heavier species is close to 0, in order to maintain the constant mixture pressure, the solid fraction 
of the smaller (lighter) particles has to decrease with the increase of granular temperature. 

In the current calculations, a~ = 2 mm, ap = 1 mm, Qp~ = Ova = 2490 kg/m 3, ev.~j = 0.95 and 
R2 = 20 are used. According to the computer simulation results for simple shear flows of a 

granular material by Campbell [30], the parameter (o-~ du~/dy)/l//~i ranges from 0 to 1. The pre- 

sent calculation uses R1 from 2 to 3 so that (a~ du~,/dy)/]//~ for both species is between 0 and 1 
anywhere in the channel. The total solid fractions ~ are chosen between 0.3 and 0.45. Three 
different cases are studied, which result in three very different profiles of the solid fraction 
distributions and the granular temperature distributions. The three typical cases are explained as 
follows. 

Figure 9 shows the granular temperature and solid fraction distribution for ~( 'L* = 10, 
vS = 0.03, ~ = 0.28, and R1 = 2.9. The second derivative of granular temperature is always 
positive in the channel indicating that the fluctuating energy is added to the system everywhere, 
and the energy dissipation is greater than the shear work done to the system. The ratio of vr 
is increasing with the granular temperature resulting from the granular thermal diffusion similar 
to the oscillatory no-flow system. Note that the first derivative of granular temperature at Y = 0 
is positive. 

Figure 10 presents the distributions of granular temperature and solid fraction for lCL* = 15, 
V-~ = 0.08, ~ = 0.25, and R1 = 2.5. The second derivative of granular temperature is positive, 
similar to the last case, indicating that the energy dissipation is larger than the shear work so that 
the fluctuating energy has to be conducted into the system. The first derivative at Y = 0 is 
negative causing the granular temperature to decrease until a certain position (Y = 0.068 in this 
case) where the first derivative of granular temperature starts to change sign. The corresponding 
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solid fraction of the smaller particles shows the same trend as the granular temperature before 
Y = 0.272. Since after this position the solid fraction of the larger particles is relatively small, the 
smaller particle solid fraction decreases with the increase of granular temperature to maintain 
a constant pressure. 

The third case is presented in Fig. 11 for lrL* = 1.15, ~ = 0.07, ~ = 0.35, and R~ = 2.2. The 
second derivative of granular temperature is negative in the channel indicating that the energy 

dissipation is smaller than the shear work done to the system. Hence, the fluctuating energy is 
conducted from the system. The solid fractions and the granular temperature are relatively fiat in 
the center of the channel. 

Note that in the first two cases the granular thermal diffusion causes segregation of the two 
species of particles. By contrast, in the last case, there is not a complete segregation of the 
particles. 

Figure 12 shows the velocity distributions for these three shear flow cases. The shear rate in 
the beginning of the channel for the third case is the largest and the granular temperature in this 
case is relatively small (YL* = 1.15). Hence the shear work is higher than the energy dissipation 
resulting in the negative second derivative of the granular temperature. 

In the literature, a shear flow with constant granular temperature, constant solid fractions 
and constant shear rate is called a simple shear flow. Since no granular temperature gradient 
exists in these flows, there is no granular thermal diffusion. Most binary mixtures studies only 

discuss simple shear flows. Jenkins and Mancini [9] assumed a simple shear flow to predict the 
shear stress for a binary particle mixture. They compared with the numerical results from Farrell 

et al. [6] and the computer simulation results from Walton [31]. The current numerical integration 
is checked with Jenkins and Mancini's result using the same assumptions; no difference is found 
between the two calculations. 
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5 Conclusions 

Jenkins and Mancini [9] extended the revised Enskog theory to binary mixtures of smooth, 

nearly elastic granular material. The transport equations and constitutive relations are used to 

examine granular thermal diffusion in an oscillatory no-flow system and in a sheared flow. Due to 

the granular thermal diffusion, the lighter (smaller) particles tend to move to the place with higher 

granular temperature, and the heavier (larger) particles tend to move in the opposite direction. 

The granular thermal diffusion is more significant when the difference in sizes or masses of the 

two species is increased or the granular temperature gradient is increased. Although the 

boundary conditions used to integrate the governing equations may not be physically realistic, 
the results indicate that the two different types of particles may be completely segregated due to 

this effect. Future work should focus on the experimental measurements of the relation between 

granular thermal diffusion and particle segregation. 
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