
Acta Mechanica 6, 180--196 (1968) 

An Application of the Extended Kantorovich Method 
to the Stress Analysis of a Clamped Rectangular Plate 1 

By 

A. D. Kerr and H. Alexander, New York, N.Y. 

With 12 Figures 

(Received August JO, 1967) 

Summary. The extended KANTOROVICH method discussed recently by A. D. KERR, 
is used to analyze a clamped rectangular plate subjected to a uniform lateral load. 
I t  was found that  the generated one term solution approximates very closely, through- 
out the plate region, not only the deflections but  also the bending moments and 
shearing forces. I t  is shown that  the final form of the solution is independent of the 
initial choice, and that  the convergence of the iterative procedure is very rapid. 
Because of the lack of a dosed form exact solution in the technical literature, the 
coefficients occurring in the obtained solution were evaluated for various plate side 
ratios and are presented in graphs in order to simplify the utilization of the obtained 
results in engineering practice. 

Zusammenfassung. Die erweiterte Methode yon KA~TOROWITSCI~, die kiirzlich 
yon A. D. KEI~R diskutiert wurde, wird beniitzt, um die eingespannte Rechteckplatte 
unter Gleichlast zu untersuchen. Es ergab sich, da2 die erzielte eingliedrige L6sung 
nicht nur  die Durchbiegung, sondern auch die Biegemomente und Querkr~fte im 
Bercich der Platte sehr gut approximiert. Es wird gezeigt, dal3 die Endgestalt der 
L6sung unabhiingig ist yon der anfangs getroffenen Wahl und daI~ die Konvergenz 
des Iterationsverfahrens sehr rasch fortsehreitet. Da in der technischen Literatur 
eine exakte LSsung in gesehlossener Form fehlt, wurden die in der erhaltenen L6sung 
auftretenden Koeffizienten fiir verschiedene Seitenverh~Lltnisse der Platte ausgerechnet 
und in Schaubildern dargestellt, um die Beniitzung der erhaltenen Resultate in der 
Ingenieurpraxis zu erleichtern. 

Introduction and Statement of Problem 
As a step towards eliminating the arbitrariness in the choice of co- 

o r d i n a t e  func t ions ,  a s h o r t c o m i n g  i n h e r e n t  i n  t he  m e t h o d s  of RITZ a n d  
GALERKIN, L. V. KANTOROVlCH a s s u m e d  as a p p r o x i m a t e  so lu t ion  

m 

Wm ~-- Z an (xl) ~n (Xl, X2 . . . .  , Xr) (1) 
n = l  

where  ~n are, also here,  a p r ior i  chosen f u n c t i o n s  b u t  an are no  longer  
c o n s t a n t s  b u t  u n k n o w n  f u n c t i o n s  of one of t he  i n d e p e n d e n t  va r iab les ,  Xl. 

1 This research was sponsored by the Air Force Office of Scientific Research, 
Office of Aerospace Research, United States Air Force, under AFOSR Grant No. 
_AF-AFOSR-813-66. 
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The condition that  the an's have to make the functional under consid- 
eration stationary leads to m ordinary differential equations for the 
determination of the m functions an (Xl). 

Recently, A.D.  KER~ [1], [2] extended the KANTOROVICH method 
with the aim in view of completely eliminating the arbitrariness in the 
choice of the coordinate functions. I t  was suggested to assume 

Wm : Z , anl  (xl) an2* (x2) ~fl'n (x3, X4 . . . .  , Xr) (2) 

= 1 determined a priori chosen 
previou sly functions 
as  an (x l )  

to determine an2* from a set of m ordinary differential equations, then 
to set 

/0m~ Z anl (Xl) an2 (x2) an3* (x3) Y)"n (x4, x5 . . . . .  Xr) (3) 

n= 1 determined a priori chosen 
previously as functions 

an (Xl) and an2* (x2) 
respectively 

to determine an3* from a set of m ordinary differential equations, and 
to continue this process until for each xk a set of an~ (xk) functions is 
determined and Wm becomes 

m 

Wm(I) = Z anl  (xl) an2 (X2) an3 (X3) . - .  anr (Xr). (4) 
n= l  

After completing the first cycle, which yields Wm(Z), this procedure is 
continued assuming that  in (4) the anl (Xl) are unknown functions, de- 
termining them as described previously, substituting the determined 
function into (4), then assuming that  an2 (x2) are unknown functions, etc. 
I t  was conjectured that  if this procedure is continued indefinitely it 
should yield a function Wm which will very closely approximate the exact 
solution w. 

In Ref. [2], [3] the suggested method was demonstrated on a torsion 
problem of a beam of rectangular cross section. I t  was found that  the 
iterative process converges very rapidly to a final form irrespective of 
the initial assumption. The numerical results showed that  even a one 
term approximation, of PRANDTL'S stress function generated by the pro- 
cedure described above, yields stresses which agree very closely with 
the corresponding values obtained from the exact solution. 

In the present paper the above method is used to solve the problem 
of a clamped rectangular thin plate subjected to a uniform lateral load 
shown in Fig. 1, for which a closed form solution is not available in the 
literature. The solution will be restricted to a one term expression, tha t  

Acta ~r VI/2--3 13 
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is, m ---- 1. Special a t t en t ion  is focused on how close the  genera ted  solution 
does approximate  not  only the  deflection surface bu t  also the  bending 
moments  and shearing forces which are obta ined as higher order derivat ives 
of the  deflection surface. 

,r. 

Fig. 1. Clamped rectangular plate subjected to a uniform lateral load 

D e r i v a t i o n  of  the  One T e r m  A p p r o x i m a t i o n  

For  a c lamped rectangular  plate subjected to  a lateral  d is t r ibuted 
load, q (x, y), the  principle of v i r tua l  displacements  yields 

+ a  + b  

- - a  - - b  

where w is the  lateral  deflection which satisfies the  b o u n d a ry  conditions, 
D is the  flexural r igidi ty of the  plate, and 

~4 ~4 ~4 
w = + 2 -  + . (6) ?x 4 ?x ~ ?y~ 5y4 

Assuming the deflection in the form 

w (x, y) = wis (x, y) = fi  (x) g3" (Y) (7) 

it  follows t h a t  when gj is prescribed a priori, equ. (5) m a y  be wri t ten  as 

+ a  + b  

- - a  - - b  

Eqtt.  (8) is satisfied when 

+ b  

f (DV -- q) dy = O. (9) w i j  gJ 

- - b  

When  f~ is prescribed a priori, equ. (5) m a y  be wr i t ten  as 

§  + a  

- - b  - - a  
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It  is satisfied when 
+ a  

f (DV --  q) f i  dx  = 0. (11) Wi] 

- a  

Equations (9) and (ll)  are the GALERKI~r equations of the iterative pro- 
cedure. 

We start the present investigation by extending, in the maturer discussed 
above, the problem presented by L. V. KANTOROWC~ and V. I. KRYLOV [4] 
(see also [5]) by choosing the first approximation as 

where 
wl, = f~ (x) go (Y), (12) 

y2 )3 
go= ~ - - - 1  . 

The assumed wl0 satisfies the boundary conditions 

Equation (9) becomes 
+b 

(13) 

w = 0 } a t  y =  •  
~ (14) 
by - - 0  - - a < _ x < ~ q - a .  

f o 
--b 

which, after performing the indicated integrations, yields 

ba d4/1 b~ d2]1 ? 21 qb 4 (16) 
d x ~ --  6 ~-x Y- ~- f l --  16 D 

The general solution of (16) is 

f l ( x ) = C l s i n h (  1 a )  sin C2 cosh x 

q- C a sinh (~1-~-) cos (ill ~)  q- C4 eosh (~1 x ) s in  (ill x )  q- fp 

where 
1 

1 

o(1; 
and 

1 q b ~ 
fP-- 2 4  D " 

(17) 

( is)  

(19) 

13" 
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F r o m  t h e  B.C. ' s  

i t  fol lows t h a t  

q b 4 
C1 =- 24 D 

where  

T h u s  

A. D. K E ~  and H. ALEXANDER : 

w=O 

W 
--0 

bx 
- - b < y < + b  

K1 q b 4 K ~  . 

K0 ; C2 = 24D K0 ' Ca = Ca : 0 

K o = + (51 sin fll cos fil + fil s inh 51 cosh 51) 

[~1 = @ (cq sinh 51 cos/~1 -- ~i cosh 51 sin ill) 

K 2 =- - -  (51 eosh 51 sin fil + fll s inh 51 cos ill) 

q b4 K 2 c o s h  51 cos  /~1 a -  -~- W l ~  24DK0 

x f fila_)+ [ b~ - 

T h e  n e x t  s tep  is to  a s s u m e  

(20) 

(21) 

(22) 

(23) 

wh ich  a f t e r  p e r f o r m i n g  the  i n t e g r a t i o n s  y ie lds  t he  d i f ferent ia l  e q u a t i o n  
for  gl (Y). 

Be fo re  p r o c e e d i n g  w i t h  t he  de ta i l s  o f  t he  i t e r a t ions  i t  is useful  to  no t e  
t h a t  e q u a t i o n  (9) m a y  be r e w r i t t e n  as 

+b +b 
[ f gi2 dy] d4 h~xx4 -~ [2 f ~,y~-d~ gj gj dy]- ] d2/~--dx T @ 

--b --b 
§  +b 

~ , ~ 1 ~ ,  - ; f ~ , ~ .  
- - b  - -b  

(26) 

f (V' wl 1 -- ~ )  [K1 sinh (~lX) sin (ill x) @ 
--(g 

S u b s t i t u t i n g  (24) in to  equ.  (11) we o b t a i n  

(25) 

wil----[K, cosh( iX!co ( , x) §  .sinh( ix sio( . 
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Integrat ion by parts of two of the coefficients in (26), yields 

+ b  + b  

~ z g j  ely = +b [ dgj 12 
[gY 

--b --b 
+b +b (27) 

l _ a 7  ds,  dy j Y 
- b  --b 

Because of the boundary conditions (14), it follows tha t  

[ dgL] = 
g i ( •  [ d y j •  0 (28) 

and hence the integrated terms in (27) vanish. Thus equ. (26) may be 
writ ten as 

+ b  + b  

. ] d ' ] l  _ _ [ 2  ( d g L ~ 2  d 2 l i  ..t_ 

- -b  - -b  
+b +b (29) 

-~[ f [~i-)(d~gi~2 dY]fi = l~b~ f qgt dy" 
--b --b 

By a similar argument,  equ. ( l l )  may be  rewritten as 

+ a  + a  

- - a  --0) 
+ a  + a  ( 3 0 )  

+ [ f  t-d~l~-~2.-I 1 f qfidx. )  xjgj = .J 

- -a  - -a  

Comparing the differential equations (29) and (30) and noting tha t  
the coefficients are positive it can be concluded tha t  the obtained ]l (x) 
and gj (y) will be of the same form [see equ. (17)], and tha t  the final form 
of the generated solution will be independent of the initial choice of go- 
Hence the final form of wil is fixed in advance and the iteration procedure 
determines merely the parameters which appear in the solution. 

I t  can be easily shown tha t  the iterative procedure, using (9) and ( l l )  
[or the equivalent equations (29) and (30)], reduces to the following recur- 
rence formulae with n---- 1 as starting index: 

Wnn = gno [Kln sinh(~n aX--)sin(fin x ) _ ~  K2n cosh (c% X-)cos(fin x)-~- Kon ] " 

' i ' Y -  " ' Y~ ' ' Y ' Y . [K lnsnh(~n b )sin(fin b )-~ K 2ncosh(zcn.)COS(fln~)-[- K'on] (31) 
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W(n+Dn z f(n+l) o[Kl(n+l) sinh( -n+lXJsin(fln+l Xa ) 

where  ~i a n d  fil are  g iven  in (18) a nd  

1{ 
/~n+l ~ -  :[:: -~J~-n J b- 

gno D En ] 
q a 4 -- Cn K'on 

/no D E'n { " 
q b ~ -- Cn" Kon 

An, Bn, Cn, a n d  En are The  express ions  for 

w h e r e  

An : K21n 11 q- 2 Kin  K2n 12 q- 2 Kin  Kon 13 -4- { 

q- K22n 14 q- 2 K2n Kon 15 q- 2 K 2 { On 

Bn ~ ,Vn Kin  11 q- (]tn Kin  q- 7n K2n) 12 q- 

dr yn Kon I3 dr- 2n K2n 14 q- ~n Kon I5 
f 

Cn z q~n Kin  I1 -~ (~fln Kin  ~- ~n K2n) I2 -~ { 

~- Cfn Kon I3 -~ Y)n K2n I4 ~- YJn Kon 15 { 
En ~- Kin  I3 -4- K2n I5 ~- 2 Kon 

Kon = -~ ~n sin fin cos fin + fin sinh ~n cosh ~n 

Kin  ~ -~ ~n sinh ~n cos fin --  fin cosh ~n sin fin 

K2n = -- ~n cosh gn sin fin -- fin sinh ~n cos fin 

~n : (on Kin  -~ 2 ~n K2n 

~n = (On g2n --  2 ~n Kin  

~n ~ ((On 2 - -  4 ~n 2) Kin -~ 4 (On ~n K2n [ 

J ~n ~-- ((On 2 - -  4 ~n 2) K2n -- 4 (On ~r Kln  

(On~ /~n 2 - -  ~n 2 / 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 
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and 

i1 = 1 {__ 2 + (1/fin)sin (2 fin) -~ (1/an)sinh (2 an) - -  

~ + fi~ [fin cosh (2 an) sin (2 fin) -[- :~n sinh (2 an) cos (2 fin)] 

1 

12 -- 4 (an ~ + fl.~) [an cosh (2 an) sin (2 fin) --  fin sinh (2 an) cos (2 fin)] 

2 
Ia --  an 2 + fin ~ (an cosh an  sin fin - -  f i n  sinh an cos fin) 

'{ 14 =- -~ 2 + (1~fin) sin (2 fin) + (1/an) sinh (2 ~n) + 

' / + ~,~ + fl,~ [fin cosh (2 an) sin (2 fin) + an sinh (2 ~n) cos (2 fin)] 

2 
I5 -- ~ + fl~ (an sinh an cos fin + fin cosh an sin fin) 

(40) 

The primed terms A'n,  B'n, C'n, E'n and K '  are obtained by  replacing 
the unpr imed (an, fin, a/b) by  (a'n, fl'n, b/a). 

From equat ion (31) and (32) it  can be seen tha t  the convergence of 
the  generated solution will depend upon the convergence of the parameters  
an, fin, a'n, fl'n, ]no, and gno. In order to s tudy  the convergence of the 
iterative process these parameters  were evaluated for a/b ~ 1.0, 1.5, 2.0, 
3.0, 5.0, 10.0 and the values for a/b = 1.0, 2.0 and 5.0 obtained after each 
i terat ion are presented in the following tables. 

I t  can be seen tha t  an, fin, an', fin', fno, and gno do converge for each 
of the ratios a/b to specific values and tha t  in each case, even for long 
plates, the convergence is extremely rapid. 

F rom the  above it can be concluded tha t  the final form of the one 
te rm approximat ion is 

q b' [K 1 sinh (a x/a) sin (fl x/a) + w~ (x, y) ---- j ~ - -  

+ K 2 cosh (a x/a) cos (fl x/a) + K0] �9 

�9 [K' 1 sinh (~' y/b) sin (fi' y/b) ~- 

q- K '  2 cosh ( s  y/b) cos (fl' y/b) + K'o] 

(41) 

with the final values of the parameters  for various ratios a/b, given in 
the following table. 

Discuss ion  of Resu l t s  

In  order to  check the accuracy of the generated solution the deflection 
expression, equ. (41), was evaluated numerical ly along the x and y axes 
for various ratios a/b. These results are compared with those of other 
investigators [6], [7] in Fig. 2 and Fig. 3. The exact  solution for the 
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c l a m p e d  i n f i n i t i v e  s t r i p  [8] 

q b4 ( y~ y4 ) 
w (y) - -  24 D l - -  2 ~ v  ~- ~ -  (42) 

w a s  a lso  n u m e r i c a l l y  e v a l u a t e d  a n d  t h e  c o r r e s p o n d i n g  g r a p h  is s h o w n  
i n  F ig .  3. I t  c a n  b e  s e e n  t h a t  w i t h i n  t h e  a c c u r a c y  o f  t h e  u s e d  scale ,  t h e r e  

o: :  

0,:r 

~E 

0 o,2 o,:: o,: o,8 

�9 f/// 
Yl 

1,0 

T 

F e~30t 
8017/I/00 

, eqv ,  ( r  

Fig. 2. Deflections . . . .  equ. (41), Q CZER~NY [6] and  EVANS [7] 

g,03 

o,o~. 

Fig. 3. Deflections. - -  

~Z 

' o,2 z~z o,: o,8 I,o i I I ~ 1  

/ / /  / ?at i~:Tni':estr~ 
J /I / equ. (#r e/so 

/ / r  eqa (#/) Cot 
1,5/.,// ~./b =s, ~, Io 

I-b 
equ. (41), @ CzERsrY [6] and  EvAns  [7] 

is complete agreement, throughout the entire plate region, of the generated 
solution with those of other investigators. 

A more severe test is the comparison of the moments and shearing 
forces which are obtained as higher derivatives of the deflection expression 
as follows : 

i :w -:w i I:~ :~ 1 Mx --~ - -  D ( ~x ~ q- v ~y~ ) , ~//y ~- - -  D ( ~y2 -~- v ~x~-J (43) 
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O,/~ i - - -  

~,~8- 

- o , ~ 5  - -  

-0,/0 - -  

-o,~ b - -  

-o,z# I - -  

-a~ 

Fig. 4. B e n d i n g  Moments .  _ _  

earacf <.<'o/z,'ilOil I 
Por Ikt7771"1# Sti'lp, 

er - - ]  i 

-b= 

_x 

1 
I 
I 

x N z ~ = /  

O b t a i n e d  f rom equ.  (41), . ........... CZERNY [6], 
| E v A n s  [7] 

0,2 - - ,  ---~ : ~ 8, /0 Jnd e~,ac! soluil'On Par 

~7 5---= z,5 

o,z a,,r ~ ~ \ \ \  \ o,~ /,o 

eznci so/Ullb# - ~ \ \ ~  2, 
-~,, - -  p~, .m~.s /r ,z  \ \ \  \ _  

- -  - ~  = o . ~ \ \ \  

_ _  - Z 7  ~ ~ = 

I . /O 

Fig. 5. B e n d i n g  Moments .  _ _  O b t a i n e d  f rom equ.  (41), G E v A n s  [7] 
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- , 8 .  , 

-E 

"~-= 7 

#,o  ' I l I ' I i I 
4o ~z o,r o,6 ~8 

I 
/,0 

F ig .  6. B e n d i n g  M o m e n t s .  - -  O b t a i n e d  f r o m  e q u .  (41), ........... CZER~IY [6],  
| E v A n s  [7] 

~,o 1 I I I 1 
o o,,~ gg ~ gg 0,8 ~0 

Fig .  7. B e n d i n g  M o m e n t s .  _ _  O b t a i n e d  f r o m  e q u .  (41), _ . . . . . . .  CzEm~Y [6],  
Q E v A N s  [7] 
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M z y  = D ( 1 - -  ~) ~x ~y 

Qx = --  D ~x-(V2w); Qu - -  --  D + (V ~ w). 

(44:) 

(45) 

-Z,Z 

- 4 0  ~ =~ 

- "  \ 

o I I i 
o Q,z g~ y g: Us z,o 

;Fig. 8. Shearing forces . . . . . . . .  Ob ta ined  f r om eqm (41), G CZERN'X" [6]  

- z,Z _ ~ = : e x s c l s o l u l / o n  
~OP iOPi?il?e otr~, 

L'., 

- g 3  

o I I I 
0 g g  0~r ~_~ o,~ 0~8 LO 

F i g .  9. S h e a r i n g  fo rces .  - -  O b t a i n e d  f r o m  e q u .  (41),  @ C Z E ~  [6]  

The  expressions for the bending moments  Mx and My were numerica l ly  
eva lua ted  for various rat ios a/b along the x axis, along the y axis, as well 
as along the  d a m p e d  boundary .  These results are compared  in Figs. 4 
th rough  7 wi th  some re levant  results available in the  l i tera ture  [6--8] ,  
as well as with the exact  bending moments  for the d a m p e d  infinite strip 
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obta ined  f rom equ. (42) 

Mx-~--6--v 1 --  3-b~ 

/ g  

/~/x 70 ' 

I I 

b 

(46) 

Fig. 12 

Considering Fig. 4 it can be seen t ha t  for b > 3, the obta ined  bending 

moments  approach,  in the inner region of the plate,  the  exae t  value  for 
the infinite strip Mx/(q b z) = 0.05. I t  is of  interest  to  note  t h a t  the  gen- 
era ted  solution exhibits  for increasingly long plates, let  us say for a/b > 5, 
a dist inct  bounda ry  layer  phenomenon  in the  vic ini ty  of x = a, as one 
could expec t  f rom an  intui t ive  point  of view. 

In  Fig. 5 it  m a y  be seen t ha t  with increasing a/b the  genera ted  solution 
approaches the  exact  solution for the infinite d a m p e d  strip. As expected,  
for long plates, these solutions coincide. 

I t  can be seen t h a t  the  agreement  of the  obta ined moments  with those 
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obtained by other methods is, in general, close. Regarding the noticeable 
deviations in these graphs, it should be kept in mind that  the results of 
the other investigators are also approximations. The same remark applies 
also to the deviations exhibited in Figures 8 and 9 where the shearing 
forces, which involve the third derivatives, are presented. 

Because of the importance of the clamped plate in engineering practice, 
the lack of a simple exact solution in the technical literature, and the 
good agreement of the obtained numerical  results with those obtained 
by other methods, it seems, that  the simple closed form expression for 
w (x, y) given in (41) is suitable, for most practical purposes, for the 
analysis of the deflections and stresses in a clamped rectangular plate 
subjected to a uniform lateral load. 

Conclusions 
The presented analysis shows that  the final form of the generated 

solution is independent of the initial choice, and that  the convergence 
of the suggested iterative procedure is very rapid. 

It  was found that  the generated one term solution agrees very closely, 
throughout the plate, with corresponding results of other investigators. 
The closeness of the bending moments and shearing forces, which involve 
higher derivatives of the generated solution, with results of other investi- 
gators seems to be sufficient for most applications in engineering practice. 
In view of the lack of a closed form exact solution in the technical literature 
the coefficients occurring in the generated deflection expression (41) were 
evaluated for various plate side ratios and are presented in Fig. 10, Fig. 11, 
and Fig. 12 in order to simplify the utilization of equ. (41) in engineering 
practice. 
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