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An Application of the Extended Kantorovich Method
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Summary. The extended KanTorovicH method discussed recently by A. D. KERR,
is used to analyze a clamped rectangular plate subjected to a uniform lateral load.
It was found that the generated one term solution approximates very closely, through-
out the plate region, not only the deflections but also the bending moments and
shearing forces. It is shown that the final form of the solution is independent of the
initial choice, and that the convergence of the iterative procedure is very rapid.
Because of the lack of a closed form exact solution in the technical literature, the
coefficients occurring in the obtained solution were evaluated for various plate side
ratios and are presented in graphs in order to simplify the utilization of the obtained
results in engineering practice.

Zusammenfassung. Die erweiterte Methode von KanrorowrrscH, die kiirzlich
von A. D. Kurr diskutiert wurde, wird beniitzt, um die eingespannte Rechteckplatte
unter Gleichlast zu untersuchen. Es ergab sich, daf die erzielte eingliedrige Lésung
nicht nur die Durchbiegung, sondern auch die Biegemomente und Querkrifte im
Bereich der Platte sehr gut approximiert. Es wird gezeigt, dal3 die Endgestalt der
Lésung unabhéngig ist von der anfangs getroffenen Wahl und daB die Konvergenz
des Tterationsverfahrens sehr rasch fortschreitet. Da in der technischen Literatur
eine exakte Losung in geschlossener Form fehlt, wurden die in der erhaltenen Lésung
auftretenden Koeffizienten fiir verschiedene Seitenverhéltnisse der Platte ausgerechnet
und in Schaubildern dargestellt, um die Beniitzung der erhaltenen Resultate in der
Ingenieurpraxis zu erleichtern.

Introduction and Statement of Problem
As a step towards eliminating the arbitrariness in the choice of co-

ordinate functions, a shortcoming inherent in the methods of Ritz and
GaLErikIN, L. V. KaNTOROVICH assumed as approximate solution

m
wm = 2 a’)’L (xl) Wn (x].) x27 AR xr) (1)

n=1
where v, are, also here, a priori chosen functions but a, are no longer
constants but unknown functions of one of the independent variables, x;.

1 This research was sponsored by the Air Force Office of Scientific Research,
‘Office of Aerospace Research, United States Air Force, under AFOSR Grant No.
AF-AFOSR-813-66.
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The condition that the a,’s have to make the functional under consid-
eration stationary leads to m ordinary differential equations for the
determination of the m functions a, (x1).

Recently, A.D.Kzgrr [1], [2] extended the KaxTorovicH method
with the aim in view of completely eliminating the arbitrariness in the
choice of the coordinate functions. It was suggested to assume

m
Wy = 2 an1 (x1)  an2™ (¥2) ¢’y (%3, T4, - - ., Tr) (2)
P —
"=1 determined a priori chosen
previously functions

as dy (1)

to determine a,o* from a set of m ordinary differential equations, then

to set
Vi3

Wm= Y 1 (1) anz (¥2) an3* (¥3)Y"n (24, @5, .. ., T) (3)
n=1 determined a priori chosen
previously as functions
ay (1) and aye* (x2)
respectively

to determine a,3* from a set of m ordinary differential equations, and
to continue this process until for each z; a set of auy (vg) functions is
determined and w,, becomes

m

W@ = 2 a1 (1) Ana (T2) Ap3 (23) . . . Aur (T7). (4)

n=1

After completing the first cycle, which yields wpD, this procedure is
continued assuming that in (4) the ay (1) are unknown functions, de-
termining them as described previously, substituting the determined
function into (4), then assuming that a,z (22) are unknown functions, etc.
It was conjectured that if this procedure is continued indefinitely it
should yield a function wy, which will very closely approximate the exact
solution w.

In Ref. [2], [3] the suggested method was demonstrated on a torsion
problem of a beam of rectangular cross section. It was found that the
iterative process converges very rapidly to a final form irrespective of
the initial assumption. The numerical results showed that even a one
term approximation of PRANDTL’s stress function generated by the pro-
cedure described above, yields stresses which agree very closely with
the corresponding values obtained from the exact solution.

In the present paper the above method is used to solve the problem
of a clamped rectangular thin plate subjected to a uniform lateral load
shown in Fig. 1, for which a closed form solution is not available in the
literature. The solution will be restricted to a one term expression, that
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is, m = 1. Special attention is focused on how close the generated solution
does. approximate not only the deflection surface but also the bending
moments and shearing foreces which are obtained as higher order derivatives
of the deflection surface.

Fig. 1. Clamped rectangular plate subjected to a uniform lateral load

Derivation of the One Term Approximation

For a clamped rectangular plate subjected to a lateral distributed
load, ¢ (z, ), the principle of virtual displacements yields

+a +b
ff(DV‘*w—q)(Swdxdyzo (5)
—a —b

where w is the lateral deflection which satisfies the boundary conditions,
D is the flexural rigidity of the plate, and

24

dyt

Vi = m4 + 2 xzbyz + (6)

Assuming the deflection in the form

w (@, y) = wiy (&, y) = fi ( (7)
it follows that when ¢; is prescribed a priori, equ. ( ) may be written as
+a  +b
[] [ @y ws - oay|ssida=o. (8)
—a —b

Equ. (8) is satisfied when
+b
f (DV*wi; — q) gidy = 0. (9)
-5
When f; is prescribed a priori, equ. (5) may be written as
b +a
[[f (DV* wiy — q)f,-dx]ag,- dy = 0. (10)

—-b —-a
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It is satisfied when
+a
f (DV“wijmq)fi dx = 0. (11)
—a
Equations (9) and (11) are the GALERKIN equations of the iterative pro-
cedure.
We start the present investigation by extending, in the manner discussed

above, the problem presented by L. V. KanTorovicH and V. I. KryLov [4]
(see also [5]) by choosing the first approximation as

wyo = f1 (%) go (&), (12)
where
y* 2
g(,:(_bT_ 1). (13)
The assumed w,, satisfies the boundary conditions

w=0|aty=+0b

14
%:O —a=x =+ a. (14)

Equation (9) becomes
+b
f(wwm—%)(g—:— 1)2dy;0 (15)
~b
which, after performing the indicated integrations, yields -

d*fy a*f, 63 , 21 gbt
b g — 6Vt 5 =1 o (16)

The general solution of (16) is

0 = 4o i oo o o ) ¢

+ O, sinh (ocl %j-) cos (/31 %) 4 €, cosh [ocl %) sin (ﬁ%} h (17)
where |
1
" (V%i ' 2‘); (18)
= ()5 -3V
and

fo=34 5 (19)

13*
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From the B.C.s

w=0|z=4a

20
w0 -bsy=+b )

d
it follows that
where
K, = -+ (o, sin B, cos B; + B; sinh «, cosh a,) l
K, = + (oy sinh o, cos f; — f; cosh «; sin §;) /. (22)
K, = — (a, cosh a, sin p; + B, sinh o, cos §,) I
Thus

bt ]
Wi (xa ?/) = —24——?[)—&)-[1{2 cosh (OCI%] COS (ﬁlg—) -4
+ Kl Sinh (11%) Sin {ﬁl vz-) + Ko] (:lb/—:v . 1)2
The next step is to assume

X

Wyq = [Kz cosh (ocl ;J cos (ﬁl%} + K, sinh (mI%J sin (ﬂl z‘) -+ KO—Jg1 (y). (24)

Substituting (24) into equ. (11) we obtain

+a

f (Vow, — %) [Kl sinh (cxl %J sin (ﬁl ;iJ +
~a (25)
+ K, cosh (ocl —g) cos (/31 2) + KOde =0

which after performing the integrations yields the differential equation
for g, (y)-

Before proceeding with the details of the iterations it is useful to note
that equation (9) may be rewritten as

+&
[fgf dz/]
—b

+b

d4 fl de g; d? f"p
du T [2 f Ty d?/] ot

—b
+b

+b ,
" dtg, : 1
+[f ‘ﬁ:‘gjd?/]fi:ﬁ’fqgjd?/-
iy

—b

(26)
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Integration by parts of two of the coefficients in (26), yields

+b +b
d*g; _ 29 ]*° dg; )2
[ atwds=| e - (]
—b —b
+b +b (27)
dtg; N A7 d’g; dg; |+t d*g; |2
[ “dy g'dy_[ﬁy—"g]]ﬁb—[dyf dy]ﬂ,,ﬁ_ f(dyz') dy
—b ~b
Because of the boundary conditions (14), it follows that
dyg;
o (=0 =05 (], =0 (28)

and hence the integrated terms in (27) vanish. Thus equ. (26) may be
written as

+b +b
d* f; dg;\2 dz f;
[ [t [ o v
b —b
+b +b (29)

+[f(d;;j)2dy]f@=%fqgfdy-
—~b

~b
By a similar argument, equ. (11) may be rewritten as

+a

[ [aea]iz=]e ] (o]

-

(30)

+a

o f (ke faoe

—a

Comparing the differential equations (29) and (30) and noting that
the coefficients are positive it can be concluded that the obtained f; (x)
and g¢; (y) will be of the same form [see equ. (17)], and that the final form
of the generated solution will be independent of the initial choice of g,.
Hence the final form of wj; is fixed in advance and the iteration procedure
determines merely the parameters which appear in the solution.

Tt can be easily shown that the iterative procedure, using (9) and (11)
[or the equivalent equations (29) and (30)], reduces to the following recur-
rence formulae with » = 1 as starting index:

Wyn = Gno [Kln sinh (ocn )sm(ﬁn ) -+ Ko, cosh (ocn ) cos (ﬂn ) + K(m] .

. [K’ln sinh(oc’n%)sin(ﬂ'n%) -+ K'anOSh(aln%) cos (ﬂ’n%) -+ K’(m] (31)
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. x . X
W+ n :f(n+1)0[K1(n+l) sinh (O’erl ;) sin (ﬂnﬂ ;) +

+ K2 +1y cosh (fxn+1 %) cos (ﬂnﬂ %) + Kom+1>] .

y y (32)
. [K’m sinh (oc'n fbe sin (5',” ﬂ 4
-+ K’s, cosh ocn?J cos (ﬁn?) + K'on
where «; and py are given in (18) and
1
wnl L (1/Cn | Ba\% b
B = T2 ] A A @
) (33)
Un+1 :é /gﬁ_ + B ? e
Brn+1 V2 A'n A’n b
gno D By
qat Cn K'on
anD 'y (34)

The expressions for Ay, By, Op, and K, are
Ay = K?15 I1 + 2 K1y Kop I + 2 K1 Kon I3 +
+ Kg,, 14 + 2K2nK0n I + 2K(2m
Bn = VYn Kln Il -+ (ln Kln —+ Yn Ifzn) 12 -+
+ yn Kon Is + 2 Kon L4 + 2 Kon Is (35)
Cp = Pn Kin In + (Wn Ky, + Pn Kzn) Iy +
+ @u Kon I3 + wu Kon 1o + ypn Kon Is
Ep = Ky I3+ Koy Is + 2 Koy

where
Koy = + ay sin By cos By + fy sinh ay cosh ay

Kip = + oy sinh ay cos S, — By, cosh ay sin f, (36)
Koy = — oy, cosh ay sin 8, — By sinh oy, cos fy
= wy K 2 ny K
Yn n Kin + n 1A 2n (37)
n — wann — 2 %nKln
@n = (0p? — 4 #5?) K1n + 4 wp 2y Kon (38)
Yo = (a)n2 — 4 %nz) KZn — 4wy 2y Kln
— B2 __ g2
Xy — &p ‘Bn
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and

I, = %{_ 2 -+ (1/fn) sin (2 fn) + (1/on) sinh (2 an) —

_ #ﬂnz [Bn cosh (2 ay) sin (28,) 4 ay sinh (2 «y) cos (2 ﬁn)]}
. 1

I, = EYCoEy ) [oty, cosh (2 ety) sin (2 B} — S sinh (2 o) cos (2 fp)]

I, = (on cosh oy sin By, — By sinh ay cos fp) . (40)

2
I, = ;} fo 1 (1/Bn) sin (2 Bn) -+ (1/on) sinh (2 o) +

+ g e cosh (200,) Sin (2 ) -+ otn simh (2s) c08 (2 ﬁn)]}

2

s = i g

(ot sinh ay, cos B, + Pn cosh oy, sin Gy)

The primed terms A4'y, B'y, C'y, B’y and K’ are obtained by replacing
the unprimed (xg, Ba, @/d) by (s, f'n, b/a).

From equation (31) and (32) it can be seen that the convergence of
the generated solution will depend upon the convergence of the parameters
on, Bus ®'ns B'ns fuo, and gpo. In order to study the convergence of the
iterative process these parameters were evaluated for a/b = 1.0, 1.5, 2.0,
3.0, 5.0, 10.0 and the values for a/b = 1.0, 2.0 and 5.0 obtained after each
iteration are presented in the following tables.

It can be seen that ay, fr, oan', Ba’s fno, and gno do converge for each
of the ratios a/b to specific values and that in each case, even for long
plates, the convergence is extremely rapid.

From the above it can be concluded that the final form of the one
term approximation is

w0 (5, 9) = LU R, sinh ( afa) sin (8 o/a) +
+ K, cosh (a z/a) cos (f x/a) + K,] - (41)
. [K', sinh (' yfb) sin (8' y/b) +
+ K’y cosh (o y/b) cos (8 y/b) + K'o]

with the final values of the parameters for various ratios /b, given in
the following table.

Discussion of Results

In order to check the accuracy of the generated solution the deflection
expression, equ. (41), was evaluated numerically along the z and y axes
for various ratios a/b. These results are compared with those of other
investigators [6], [7] in Fig. 2 and Fig. 3. The exact solution for the
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clamped infinitive strip [8]
b4 3 yZ 4
w(y)=~2%]~)—(1—~2—,,2~+%) (42)

was also numerically evaluated and the corresponding graph is shown
in Fig. 3. It can be seen that within the accuracy of the used scale, there

ez3act
< Sotvlion
g equ. (42)
L
Fig. 2. Deflections. - equ. (41), @ Czerxy [6] and Evans [7]
Z
z
0 7 I3 4 q5 48 7d
1 |
z/a =0
407 b /-
£,y )
Z ezact solution
for inlfinite strjp
ke 4024 egu. (¥2), 3/s0
N egu.(47) 1or
a/b=32517

s

Fig. 3. Deflections. equ. (41), @ Czer~Ny [6] and Evaxs [7]

is complete agreement, throughout the entire plate region, of the generated
solution with those of other investigators.

A more severe test is the comparison of the moments and shearing
forces which are obtained as higher derivatives of the deflection expression
as follows:

M, — —D(Dzw +v—°2“’J; M, — HD(DZ—“’JM“” (43)

2° YE YR Y
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ezact solution
for infiiite strip,
egy. (45)

Fig. 4. Bending Moments.

Obtained from equ. (41),
@ Evans [7]

Py m— ,
F=3,8,10 and exact s0/ution for
L Inrinite sirip-
%
974 N
I
wl |
92 ¥ 10
Iy - 0
fy |
ezt SalUlon 7
47 1or ininite sirp
5,0
-
Z -y Ay g
g4 — b B
— -2
-03 b— 9_
- 4
| 2 9\-é BE
; i;
4

Fig. 5. Bending Moments,

Obtained from equ. (41), @ Evans [7]



192 A. D. Kerr and H. ALEXANDER:

‘ZA
|
70
Fig. 6. Bending Moments. Obtained from equ. (41), -weceeree CzeERNY [6],
@ Evans [7]
4y
l
7
W 2z
EAdn 2zt S0/ution.
-5 be/‘ nfinire strip.
e
Fig. 7. Bending Moments. Obtained from equ. (41), .. CzeERNY [6],

@ Evans [7]
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Myy=D(1—2) 1o (44)
Qo= — D (V'w); Qy=—D.-(Vw). (45)
Lk
L

Zé = 16,2,36,70

-ge b &
&
Wy
-06 B
-4
-2
-”/Z - g
Vi H
7 az o, 9 45 W
2
Fig. 8. Shearing forces. - __ Obtained from equ. (41), @ CzErRNY [6]
e .&5_/ — 7 ezact so/ution

Y)}f/’/}/}‘e strip.
A
A

-5

Fig. 9. Shearing forees. Obtained from equ. (41), @ CzErNY [6]

The expressions for the bending moments M, and M, were numerically
evaluated for various ratios a/b along the = axis, along the y axis, as well
as along the clamped boundary. These results are compared in Figs. 4
through 7 with some relevant results available in the literature [6—8],
as well as with the exact bending moments for the clamped infinite strip
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obtained from equ. (42)

6 be
. . (46)
== |

20

78

I

74

il

70

<
-~
N
(
AN
Sol ]
X
RS
I
S
S
>

-2

Fig. 12
Considering Fig. 4 it can be seen that for % > 3, the obtained bending

moments approach, in the inner region of the plate, the exact value for
the infinite strip M,/(q b?) = 0.05. It is of interest to note that the gen-
erated solution exhibits for increasingly long plates, let us say for afb > 5,
a distinct boundary layer phenomenon in the vicinity of = @, as one
could expect from an intuitive point of view.

In Fig. 5 it may be seen that with increasing a/b the generated solution
approaches the exact solution for the infinite clamped strip. As expected,
for long plates, these solutions coincide.

It can be seen that the agreement of the obtained moments with those
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obtained by other methods is, in general, close. Regarding the noticeable
deviations in these graphs, it should be kept in mind that the results of
the other investigators are also approximations. The same remark applies
also to the deviations exhibited in Figures 8 and 9 where the shearing
forces, which involve the third derivatives, are presented.

Because of the importance of the clamped plate in engineering practice,
the lack of a simple exact solution in the technical literature, and the
good agreement of the obtained numerical results with those obtained
by other methods, it seems, that the simple closed form expression for
w(x,y) given in (41) is suitable, for most practical purposes, for the
analysis of the deflections and stresses in a clamped rectangular plate
subjected to a uniform lateral load.

Conclusions

The presented analysis shows that the final form of the generated
solution is independent of the initial choice, and that the convergence
of the suggested iterative procedure is very rapid.

It was found that the generated one term solution agrees very closely,
throughout the plate, with corresponding results of other investigators.
The closeness of the bending moments and shearing forces, which involve
higher derivatives of the generated solution, with results of other investi-
gators seems to be sufficient for most applications in engineering practice.
In view of the lack of a closed form exact solution in the technical literature
the coefficients occurring in the generated deflection expression (41) were
evaluated for various plate side ratios and are presented in Fig. 10, Fig. 11,
and Fig. 12 in order to simplify the utilization of equ. (41) in engineering

practice.
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