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S u m m a r y -  Zusammenfassung 

Application of the Green's Function Method to Thin Elastic Polygonal Plates. Recently, 
the Green's function method has been applied successfully to problems of plane elasticity, 
using influence functions of some finite basic domain of simple geometrical shape, which 
contains the given one as a subdomMn. The result of this formulation is a pair of integral 
equations, which have to be defined only along that part of the boundary not coinciding 
with the border of the basic domain. 

A rather general formulation for the solution of bending of plates of arbitrary convex 
planform and loading is presented, where, for the sake of brevity, plates of polygonal shape 
are considered. The polygonM plate is embedded in a rectangular domain, thereby applying 
coincidence of boundaries as far as possible. Those boundary conditions in the actual 
problem, which are not already satisfied, lead to a pair of coupled integral equations for a 
density function vector with components to be interpreted as line loads and moments 
distributed in the basic domain along the actual boundary. Thus, the kernel is the corre- 
sponding Green's matrix. Hence, having solved the integral equations, deflections and 
stresses in the actual problem are explicitly known. 

Solution of the integral equations is generally achieved by a numerical procedure. 
The method is tested in example problems by considering a trapezoidal plate under 

various boundary conditions. 

Anwendung dcr Methode der Greenschen Funktion auf diinne elastisehe Polygon- 
platten. Die 5~ethode der Greenschen Funktion wurde in jiingster Zeit erfolgreieh auf 
Probleme der ebenen Elastizitatstheorie angewendet. Dabei fanden Einflul~funktionen 
eines endlichen Grundbereiehes einfacher geometrischer Form, der den gegebenen Bereieh 
einschliel3t, Verwendung. Das Resultat dieser Formulierung ist ein IntegrMgleichungspaar, 
welches entlang dem Tell des Randes zu erstlecken ist, der nicht mit dem Rand des Grund- 
bereiehes bereits zusammenfi~llt. 

Eine allgemein gehaltene Formulierung der Biegel6sung yon Platten mit konvexem 
GrundriB unter beliebiger Belastung wird angegeben, wobei allerdings der Kiirze halber 
eine Beschrankung auf Polygonplatten erfolgt. Die Polygonplatte wird in einen Rechteck- 
bereich eingebettet, wobei soviele R~nder wie mSglich zusammenfMlen sollen. Jene Rand- 
bediugungen des wirklichen Problems, welehe dann noch nieht erffillt sind, ffihren auf ein 
gekoppeltes Integralgleichungspaar fiir den Dichtefunktionsvektor, dessen Komponenten 
als im Grundbereieh entlang der wirklichen Berandung verteilte Linienlasten und Linien- 
momente gedeutet werden. Damit wird der Kern zur korrespondierenden Greenschen 
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Matrix. Weiters sind, nach LSsung der Integralgleichungen, Biegefl~ehe ulld Spannungen 
des wirklichen Problems explizit bekannt. Die LSsung deI Integralgleiehungen erfolgt im 
allgemeinen numeriseh. 

Die Methode wird an Beispielen getestet, wobei eine Trapezplatte unter verschiedenen 
l~andbedingungen untersueht wird. 

Introduction 

Kecently, the Green's function method has been applied successfully to 
problems of plane elasticity, using influence functions of some finite basic domain 
of simple geometrical shape, which contains the given one as a subdomain. The 
result of this formulation is a pair of integral equations which have to be defined 
only along that  part of the boundary not coinciding with the border of the basic 
domain. A review of this formulation and its advantages over standard boundary- 
integral equations methods and the Finite Element Method is given by Yu. A. 
Melnikov [1]. 

The method applied to plate bending problems seems to be extremely useful 
and is the subject of the paper. A rather general formulation for the solution of 
bending of homogeneous and isotropic Kirchhoff-plates of arbitrary convex plan- 
form and loading is presented, where, for the sake of brevity, plates of polygonal 
shape are considered. The polygonal plate is embedded in a rectangular domain, 
thereby applying coincidence of boundaries as far as possible. 

The problem of the basic (rectangular) domain is well treated in the literature 
with respect to Green's function and arbitrary loadings. Deflections and stresses 
are presented by superposition of the solution in the basic domain and some 
homogeneous solutions. 

The boundary conditions in the actual problem, which are not already satis- 
fied, lead to a pair of coupled integral equations for a density function vector 
with components to be interpreted as line loads and moments distributed in the 
basic domain along the actual boundary. Thus, the kernel is the corresponding 
Green's matrix. The homogeneous solution in the basic domain corresponds to 
those line loadings. Hence, having solved the integral equations, deflections and 
stresses in the actual problem are explicitly known. 

Solution of the integral equations is generally achieved by a numerical pro- 
cedure. In the course of this paper a linear system of equations is derived by 
stepwise integration over equidistant intervals. Over a large part  of the inte- 
gration path, Green's functions are regular and are represented by uniformly 
convergent single series. In the remaining intervals Green's functions are splitted 
into a regular part and a singular part. The latter is integrated analytically and 
the result enters the numerical procedure. The regular part is approximated by 
linear interpolation using the series solution in the basic domain and integrated 
nmnerically. 

Instead of solving the linear system of equations by a standard procedure, 
more equations than unknowns may be easily produced and a subsequent least 
square error procedure renders a smaller system of equations for the unknowns 
thereby smoothing the distribution of defleetions and stresses along the boundary. 
The size of the system of equations in both eases is generally much smaller than 
that  derived by standard boundary integral equation methods or the Finite 
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Element Method. One reason for that  shall be mentioned: The boundary con- 
ditions on part  of the boundary are already exactly satisfied by the analytic 
formulation. 

Classical boundary integral equation methods, as described in a recent review 
article by Christiansen and Hansen [2], make use of Green's function of the in- 
finite domain and therefore the integration path always coincides with the full 
length of the boundary of the plate. I t  generally leads to an increase in the number 
of unknowns which have to be considered in t'he numerical evaluation of the 
integral equations. Other problems in the classical formulation namely infinite 
integration p~ths arise e.g., in the case of semi-infinite plates, whereas the present 
method avoids infinite integrations by choosing a proper basic domain. 

The procedure is tested in an example problem considering a trapezoidal plate 
under various boundary conditions. The simply supported ease is treated in [,3]. 
As a by-product it is shown that  there is no numerical restriction to rigidly 
clamped plate problems, as was claimed in a somewhat similar formulation in [4]. 
In a more recent publication [5] an older version of the boundary integral method 
is used to treat  general boundary conditions, see e.g. [6]. The well-known draw- 
back of using line loadings on outer fictitious boundaries in this formulation, 
however, is the higher computational effort and a loss of accuracy. 

Polygonal Plates 

A given polygonal plate with arbitrary loading and boundary conditions is  
embedded in a domain of "simple" planform, thereby applying coincidence of 
kinematic and dynamic boundary conditions as far as possible. To standardize 
the method a domain of rectangular shape is chosen for which Green's function w F 
is wellknown. The loading of the plate ~ may be extended to the outer domain 
to form p. Thus, the deflection of the rectangular plate w under that  loading can 
be calculated by means of the Green's function. For some technical important 
loading functions those deflections are already reported in the literature, see e.g., 
[7], [12], [14], 

i ~ y) = f w (z, y; e, de (1) W(~ 
~=0 ~-0 

where w e denotes deflection due to a unit force F ~ 1. The basic solutions for 
the simply supported rectangular plate are listed in Appendix A. 

In addition to the above deflections homogeneous solutions wh have to be 
superimposed in order to satisfy the boundary conditions along the line of the 
actual boundary F, not already coinciding with the rectangular edges: 

wh(x, y) = f we(x, y; a) tte(a) da 4- f wM(x, y; a) #M(a) da, (2) 
1" F 

where a denotes arclength of F and #F, #M a re  unknown lineload densities of 
external force and moment distributions along F, respectively. The second 
Green's function w M in Eq. (2) is the deflection of the rectangular plate due to a 
unit moment loading M ~ 1. The inoment Vector is oriented parallel to /'. :For 
definitions and coordinate systems, see Appendix A and Fig. 1. 

11" 
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Fig. 1. Geometry of a polygonal plate and a proper basic domain. Definition of density 
functions along F and coordinate systems used in the general formulation./7777777777 clamped, 

- -  simply supported, - - - - free edge 

W i t h  a p rope r  line load dens i ty  vec tor  1, [~ = (#P,/~,u), the  def lect ion w @ wh 
in the  rec tangula r  domain  coincides wi th  the  def lect ion ~ of the  polygonal  p la te ,  
thus  sa t is fying the  b o u n d a r y  condi t ions  a long /~  a t  the  inner  si te n = 0+, where n 
denotes  the  inner  no rma l  coord ina te  to F.  

F r o m  the  b o u n d a r y  condi t ions  prescr ibed  along F which form a vec tor  of two 
components ,  Z,  a vec tor  in tegra l  equa t ion  for the  line load  dens i ty  vector/o is set 
up :  

Z(s) = + f do, (a) 
P 

where s and  g denote  a rc length  along F,  and  the  2 X 2 ma t r i x  G is Green ' s  ma t r i x  
corresponding to  b o u n d a r y  condi t ions  Z. The vec tor  Z denotes  the  corresponding 
s ta te  along F in the  r ec tangu la r  p la te  due to the  loading p. 

The most  i m p o r t a n t  ideal ized b o u n d a r y  condi t ions  Z of classical p la te  t heo ry  
are  summar ized  in Table  1. F o r  def ini t ions  see Append ix  A. 

Table 1 

Boundary conditions ~ G 
along (some part of) F 

Clamped 

Simply supported* 

Free 

(~: ) = 0  
~;,n 

(;)=o 
(:i 
(:: ::) 

* In case of the simply supported straight edge /" the b.c. ~n = 0 is conveniently 

replaced by ~ -  mn@ m s _  mx @ my ~ 0 and accordingly mn F and ms M are 
1 - k v  1 § 

replaced by mF and m M, respectively. 

1 IT denoJ~es the transpose of if. 
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The vector integral Eq. (3) may contain singular and non-symmetric kernels, 
which has to be considered in a numerical solution procedure. In the example 
problems the following procedure was successful: The boundary F is divided into / 
equidistant intervals of length 2 and the unknown line-load density vector 
becomes stepwise constant in the intervals. By collocation the boundary con- 
ditions are thus fullfilled pointwise in the midth of the intervals, s~ (i --~ 1 . . . . .  l). 
Hence, the integral equations (3) are transformed into a set of 2l linear equations 
for the 2 components of the density vectors [i (J ~ 1 . . . . .  l) : 

[ ~,+~4~ ] 
~(8,) = z(80 + ~ Z G(8,; 8~) h + [ j G(8,, n; ~) do] f,, (i = 1. . .  I) (4) 

"i= l Ls~-~12 n=0+ 

where the intervals ] = i possibly contain the singularity of G. In the non- 
singular intervals the integrals are replaced by the rectangular-formula, and G 
is evaluated, e.g., by means of the fast convergent series given in Appendix A. 
To achieve fast convergence also in the case of [~(8i) --  y(s~)I--> O, the second 
representation of G, namely (~ of Appendix A has to be used. The singular 
integrals in Eq. (4) are calculated by numerical integration of the regular part  
of G, GR, and by analytical integration of the singular part  of G, Gs where 
G ~ Gs + Gg. Gs is determined by proper order differentiation of the fundamen- 
tal solutions of the infinite plate domain, 

F __  ~2 
In b '  r ~- [(~ -- 8) 2 -F (~ -- n)2] 1/2- (5) W ~  

8~K 

:According to the differential relations and coordinate systems summarized in 
Appendix A, we have e.g., 

w~ --~ r In r - s 4~K y cos ~, ~ arctan (~ . . . . .  , (6) 

so that the slope, cf. Table 1, becomes singular, 

Ow~ 1 In ~- cos ~ 
~ 4~K T ~ . (7) 

:Further differentiation renders the singular Green's functions of the infinite 
plate, mn F,M, m P,M, q S  'M ~- m z',M where the index co is understood. For con- n8,8 ~ 

venience, the expressions and the results of integration of Gs over the ] ~-- i-th 
interval are summarized in Appendix B. :Being independent of the special choice 
of the basic domain they are generally applicable. 

T h e  regular part  GR is evaluated in the ] = i-th interval by numerical 
interpolation of G -  Gs, using the series solution for G of the rectangular 
plate in the ] =~ i-th intervals according to Appendix A and the results for 
Gs presented in Appendix B. In the example problem satisfactory results were 
achieved by linear interpolation and integration of this linear function in the 
] ~- i-th interval, hence, 

f G(s,, n; a) dal~=0§ = f Gs(s,, n; ~) dal,=0+ q- 2GR(8,; s,). (8) 
s~--;,12 s~--,112 
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The regular matrix GR is such a homogeneous solution of the plate equation, 
aS to satisfy the boundary conditions of the rectangular domain for G. For a 
closed form solution using Jacobi's elliptic functions, see [10]. 

The simple formulation through Eqs. (4) and (8) is numerically satisfactory 
for not too small 2 and as long as the order of singularity in Gs is not too high. 
In case of the free edge boundary conditions the second order singularity in 
( q , ~ +  m;~.8)~ , see Appendix B, unfortunately requires integration of Gs not 
only in the interval of singularity ?" = i but  also in a few neighboring intervals 
of the boundary line F, also for moderate lengths 2. Saving any change of 
notation we apply these additional integrations to the whole matrix Gs and 
find the numerically safe counterpart  to Eq. (4): 

I i+,x s~+~/2 

Z(s~) = Z(sO + 2 2 G(s~ ; si) h q- 2 f G(s~, n ; or) daln=o+ h ,  (9) 
j = l  ]=i--a s;--;.[2 

j # i - f l  

Test- calculations render ~ < b/52, b > a. 

by 
Likewise to Eq. (8) we define the integrals in the invervals i -- ~ < ] G i 4- c~, 

8]+~[2 sj+2/2 

f G(si, n,; g) d(:rln=o ~ = f Gs(8 , n; d<n=0+ + (10) 
sj--t/2 sj--2/2 

The integrals of Gs over intervals near ] = i, namely for i -- ~ --_< ] g i 4- c~ 
for the case of free boundary conditions along a single straight edge are given 
in Appendix G, for convenience. Eqs. (9) and (10) may of course be applied to 
other boundary conditions at the expense of similar integrations of the proper 
matrix G s. 

A linear system of equations derived from Eq. (4), considering (8) and Appendix 
B [or equivalently for the free boundary ease from Eq. (9) and (10) and in addition 
Appendix C], is set up for the unknown density vectors/o. After solution of those 
equations, all kinematical and dynamical components of the state vector in 
the polygonal plate are calculated by analytical or numerical integration. Con- 
sidering one of the components which may be denoted by ~ in a point. (x, y) 
within the polygonal plate the integration takes on the form: 

g(x, y) = e(x, y) + 2 f eT(x, y; (~) d(~[~, (11) 
i = 1  8i_2/2 

e ~ = (e F, eM).  

If numerical integration is performed with the rectangular formula, which 
is appropriate for e = w, m x, m u, mzu, also for points (x, y) in close distance 
to the boundary line F, it follows 

l 
g(x, y) = e(x, y) 4- 2 ~ eT(x, y; Si)[i. (12) 

i=1  

Considering the first version of the series solutions of Appendix A for rep- 
resentation of e, convergence in the point (x, y) depends on F~(s~)- y]. To 
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establish fast convergence also for [~(s~)- y]--> 0, the second representation 
of e, namely @ of Appendix A has to be used in Eq. (12). Hence, all components  
g in the polygonal plate are directly calculated from their physically corre- 
sponding components e and e in the basic (rectangular) domain. No numerical 
differentiation is needed. 

Application of Eq. (12) may become numerically unsafe near the boundary 
l ine/ ' .  The distance of points (x, y) to F must be kept  larger if the vector eT(x, y ; si) 
becomes singular at the boundary. For the higher order singularity of the shearing 
force discussed above Eq. (11) should be integrated analogously to Eq. (10) 
to get the points (x, y) closer, if required, to the boundary l ine / ' .  

Example Problems 

To test the method, plates of trapezoidal planform with rectangular corners 
are considered, see Fig. 2 ~ where for some special geometries and uniform pressure 
loading analytically derived solutions have been published, e.g. in [7], [11] 
and [12] which are compared to the numerical solution. Therefore, the following 
boundary conditions are applied: 

1. Navier boundary conditions at 4 edges. In [11] analytically derived results 

may be found for- a skewness angle r = ~/3 and a/b = ]/3/2 and in [12, p. 179], 
results are given for a triangular plate where y = z/4 and a/b = 1. 

2. Navier boundary conditions at 3 edges, the skew edge is free. In [14, p. 211] 
and [15, p. 406], a rectangular plate is considered. 

According to those boundary conditions the "best"  basic domain is a rect- 
angular plate with simply supported edges, see Fig. 1. The unknown line load 
densities #F and /,M are applied at the skew edge line /7. Considering Eq. (4) 
and (8) along F, a linear system of equations for the discretized density functions 
is derived. According to the coordinate systems of Fig. 2a, evaluations are 
made at equidist{mt points of F,  

s~ = ' (2 i  --  1) ~/2,  i = 1 . . . . .  1. 

The Green's function of the rectangular plate is given in Appendix A and 
enters the numerical procedure where the infinite series solutions in the intervals 
?' + i are approximated by finite sums. To keep the error small test calculations 
have to be performed. 

The following hints may be helpful. For numerical convenience the hyperbolic 
functions entering the series solutions are resolved into their exponential function 
representations and exponentials with positive argument are eliminated. I t  is 
seen that  the speed of convergence of the series given in the first version of 
Appendix A is determined by exp --c~, I~(si) -- y(s~)l and in the second version 
by exp- -#n  I~(s~)- x(sdl ,  respectively. The first finite version is prefercd 
for b > a and may be used with a reasonable number of about 100 terms up to 
skewness angles of y = ~r/3. Then the maximal error in the most severe ease 
of the shearing force q M, when evaluated in intervals neighboring the singularity, 

is kept less than 1%0, where A/b = 1/19 and a/b = ]/3/2. Although the restriction 
to 100 terms is superficial with respect to computing, switching to the second 
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version of the series is recommended for y H z/3. In  such a computer program 
those switches can be performed by  proper changes in coordinates and parameters 
of the first version of the series representing the deflections w~, M and their deriv- 
atives with respect to x and y. Therefore, it is not necessary to program the 
analytical second version of the series. 

The integrals of the singular parts of the Green's functions over the ] : i-th 
inverval in Eq. (8) which are independent of the basic domain are ~aken from 
Appendix B. The regular par t  of the Green's functions in the interval ?" : i 
is approximated by  numerical (linear) interpolation using the values of G --  Gs 
in the neighboring intervals ] : i - -  1, ] : i ~- 1, where G is evaluated approx- 
imately by  summing the finite series as discussed before, for intervals ] ~ i. 

Thus, the system matr ix  of Eq. (4) is determined and naturally consists of 
four l • l submatrices according to Table 1, where the coefficients in the main 
diagonals are dominating due to the contributions of the singular integrals. 

The vector of inhomogeneity Z is evaluated in the points s~ o f / '  in the rect- 
angular domain and may  be taken from the literature, e.g. [7], [12], [14], or is 
calculated from Eq. (1) by means of the Green's functions. The vector Z ~ 0 in 
case of the above mentioned boundary conditions. 

A proper choice of I renders the size 2l of the system of equations. The linear 
equations are well behaved and are solved by  standard procedures. I f  necessary 
a reduction in the number  of unknowns may  be achieved by  considering the line 
load density vector constant over several intervals. Thus, the coefficients matr ix  
becomes rectangular and Eq. (4) is then multiplied from the left by the transposed 
of the coefficients matrix. The resulting system is of smaller size than 21 and 
renders a solution which is smoothed a long/"  in the least-square sense, cf. [13]. 

Having evaluated the line load density vectors f~, deflections and moments  
are calculated in the trapezoidal plate from Eq. (10) using the corresponding 
solutions and Green's functions in the rectangular domain, e.g. for ~ =~ ~ : 

! 

mx ~ rnx ~- "~ v '  (rex F, mxM). f~. (13) 
i = 1 

At a point (x, y) evaluation of (mx P, mx M) is performed according to the 
finite series derived from Appendix A. For points s~ of P, where ]~(s~) - -  Yl is 
not too small the first version of Green's functions is fast convergent. For points 
s~ o f / ' ,  where IU(s~) - -  Yl --> 0, however, switching to the second version of the 
series ( ~ J ,  ~x M) has to be made, analogous to the procedure described above 
for the generation of the system matrix. If  there is only one such point s~ o f / ' ,  
switching may  be avoided and replaced by numerical interpolation of the Green's 
functions computed in the first version in the neighboring intervals (i - -  1, i -~ 1). 

Only in the close vicinity of the skew boundary line F the numerical results 
of Eq. (11) become unreliable due to the poor convergence of both versions of 
the series (rex F, mz M) and the approximation of the boundary conditions along 
/ ' ;  at  the other coinciding edges the boundary conditions are identically satisfied. 

From the test  calculations it is concluded that  ~he method renders satis- 
actory numerical results already for a rather  large length ;~ of the intervals. 
In  Table 2 the results and errors are given for 1 ~ 19 intervals. In  Figs. 2 to 5 
the influence of the skew ang]e y is studied. 
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Table 2 

ad. I :  Navier boundary  conditions 

Trapezoidal plate Triangular plate 

r = ~/3, . !b  = 1/~12 V = ~/4, a/b = i 
x = 0,4076b x -~ 0,3158b 
y ~ 0,5897b y = 0,6824b 

Mang error t = 19 [12, p. 179] error 1 = 19 [11] % Nadai % 

K 
~ .  10 a 14,6 14,6 0 6,45 6,56 --1,67 

pb 4 

i 
- -  ~ �9 102 4,380 4,410 --0,68 2,901 2,946 --1,53 
~b z 

ad. 2: Three edges 
simply supported,  
one edge free 

Rectangular plate 

a / b =  1, (t/b = 1 b = b; 
2 '  

v ~ 0,3 

T i m o  - 
shenko error 

[14, p. 212] 
l =  19 % 

K x = g  
- -  ~ �9 104 72,0 71,0 1,41 
~b ~ y = 0,Sb 

1 x : 0,5~ 
~, �9 102 4,692 4,692 0 

~b 2 y = 0,5 

K 
- - ~  . 104 
pb 4 

1 
_ _ - -  . 102 b2 mz 

Rectangular plate, 

~ / b =  l ,  a/b = •  ~ =  b; 
2 '  

v ~ O  

l =  19 

55,8 

Czerny 

[15, p. 406] 

55,2 

error 

% 

1,08 
x = 0,5b 

1,916 1,924 --0,41 

1 x = 0  
---7 (qx ~- ~zy.y) 0,4357 0,4348 0,21 

0,5~ po Y 

x ~ 0,5 d~ 

y = o,5~ 
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Fig. 2. D i m e n s i o n l e s s  def lec t ion ,  - -  ~ �9 10 4, u n d e r  u n i f o r m  p r e s s u r e  l oad ing  ~. - -  = - -  

~b  4 a 12 
a n d  Y 5 b - -  8 ' r e spec t ive ly ,  a /b  = ~3/2 .  - -  r ec t ang t i l a r  p l a t e ,  - - - - t r a p e z o i d a l  pla.t.e, 

. . . . . . .  t r i a n g u l a r  p la te ,  a N a v i e r  b o u n d a r y  c o n d i t i o n s  o n  all 4 edges .  D e f i n i t i o n  of  coordi-  
n a t e s  in case  of t h e  t r i a n g u l a r  p la te ,  b S k e w  edge  free,  t h e  o t h e r  edges  s i m p l y  s u p p o r t e d .  

v = 0,3 
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3 

z 

7 

o 

J ~ 3 z ? o .~ 
~?~ 

! x 5 
Fig.  3. D i m e n s i o n l e s s  m o m e n t ,  - - p  b2 m x -  �9 10 ~, u n d e r  u n i f o r m  p r e s s u r e  l oad ing  ~. b - -  12 

a n d  Y 5 b - -  8 ' r e spec t ive ly ,  a/b  = ]/3/2. - -  r e c t a n g u l a r  p la te ,  - - - - t r a p e z o i d a l  p la te ,  

. . . . . . .  t r i a n g u l a r  p la te ,  a N a v i e r  b o u n d a r y  c o n d i t i o n s  o n  all 4 edges ,  v = 0,3, b S k e w  edge  
free,  t h e  o t h e r  edges  s i m p l y  s u p p o r t e d ,  v = 0,3 
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a n d  y - -  5 , ~espec t ive ly .  a/b = 1/3-/2. - -  r e c t a n g u l a r  p la te ,  - - - - t r a p e z o i d a l  p la te ,  
b 8 

. . . . . . .  t r i a n g u l a r  p la te ,  a N a v i e r  b o u n d a r y  c o n d i t i o n s  on  all 4 edges ,  v = 0,3, b S k e w  edge  
f ree ,  t h e  o t h e r  edges  s i m p l y  s u p p o r t e d ,  v = 0,3 
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Fig.  5. D i m e n s i o n l e s s  m o m e n t ,  7 ~be- mzy-- . l 0  s, u n d e r  u n i f o r m  p r e s s u r e  l ead ing  ~. b - -  12 

a n d  y - -  5 r e spec t i ve ly ,  a/b  ~ ~3 /2 .  - -  r e c t a n g u l a r  p la te ,  - - - - t r a p e z o i d a l  p la te ,  
b 8 '  

. . . . . . .  t r i a n g u l a r  p la te ,  a N a v i e r  b o u n d a r y  c o n d i t i o n s  on  all 4 edges ,  v : 0,3, b S k e w  edge  
free,  t h e  o~her edges  s i m p l y  s u p p o r t e d ,  v = 0,3 
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A FOI~Ti~AN-program was set-up and implemented in the CYBEI~ 74 com- 
puter of the Technical University of Vienna. Evaluation of deflections and 
moments in 10 points took approximately 35 seconds CPA which seems to be 
very cost effective. 

Concluding Remarks 

The main result is represented by the vector integral Eq. (3) which is derived 
by the Green's function method using a basic domain. Integration runs over 
that  part  F of the actual boundary where boundary conditions are not already 
satisfied. Applying the rectangular formula renders Eqs. (4) or (9). Thus, using 
the ideas of Eqs. (8) or (10), an economic numerical procedure is formulated. 
Integrals over singular intervals are evaluated independently of the basic domain 
and are listed in Appendix B and C. The corresponding system of linear equations 
is generally well behaved and may be solved by standard procedures. A simple 
computer program can be designed and computing costs are comparatively 
inexpensive. Deflections and moments are evaluated pointwise by Eq. (10) 
directly using the proper functions of the basic domain. Hence, no numerical 
differentiation is necessary. 

The advantage of the problem oriented numerical method is also manifest 
in the fact that with respect to the basic domain only boundary perturbations 
are considered. However, the common diasdvantage generally observed in 
numerical methods is also inherent in this paper --  moments cannot be evaluated 
in a close vicinity of the non-coinciding boundary / ' .  

Appendix A 

Green's functions of a rectangular plate [a, b] with Navier boundary conditions 
can be taken from the literature. Hence, the deflection in (x, y) due to a unit 
force P = 1 applied at the point (2, ~) is, for S ~ y,  given by 

a2 2 (1 4 Cnb eoth c%b -- r eoth c%V' --  c%y coth c%y) 
~ =  K~s n=l 

. sinh r sinh any sin ~ sin oc~x/n 3 sinh ~ b ,  

~' = b - -  ~7, y '  = b - -  y ,  a~ = n ~ / a .  

For ~ =< y replace (V', y) by (~, y'). 
The deflection in (x, y) due to a unit moment M = 1 applied at the point 

(2, V), with the moment vector pointing in the direction of/~, which enters the 
formulation in Eq. (2), may be calculated from w r by differentiation, according 
to Nemenyi [8]: 

~7(~, ~). w ~ ( x , y ; 8 , ~ ] ) = w , ( ~ , ~ ; x , y ) ,  where ~ = ~ ( a , ~ ) ,  ~ =  

Here, a and ~ denote coordinates of the point of application of M, measured 
along T' and along the inner normal o f / ' ,  respectively. A coinciding coordinate- 
system to ((~, r~) is denoted by (s, n) ,  see Fig. 1. 
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Moments and the shearing force are defined by differentiation with respect 
to the field point coordinates (s, n). For the isothermal case we have: 

m~ = --K(w,n~ + ~w.~), 

m~ = - - K ( w . ~  + vw,~.,), 

m~ = --K(1 -- ~) w,,~,  

q~ = - - K A w , ~ ,  

where K = Eha/12(1 - -  @) denotes bending stiffness. 
Those series representations of the Green's function become poorly convergent 

for ]~7- Yl-+ 0, especially for the higher order derivatives of the deflections 
wF, M. Generally, in the literature the above formulation is used for b => a for the 
sake of fast convergence for )? 4= y. Since the original Navier double sum rep- 
resentation is symmetric another single series may be derived in an analogous 
manner, for ~ ~ x, 

~F = b~ ~ (1 + ~a coth/~a -- ~' coth ~' -- ~x eoth ~,x) 
I ~ a  n=t 

�9 sinh fln~' sinh flnX sin fl,~] sin fi~y/n a sinh flna, 

$' ~- a - -  ~, x '  = a - -  x ,  fl ,  = n~/b .  

For .~ =< x replace ($', x) by (~, x'). Although, convergence becomes now poor 
for b >~ a, the series is sufficiently well suited for the case IV -- Y] --+ O, I~ -- x[ 
not too small and for b/a not too large. 

Appendix B 

Table of singular components of G and their integrals over the ] = i-th 
interval of length 2 on F, calculated from Eq. (5) and the formulas of Appendix A ; 

r =  [((~--s) 2 +  (~--n)~]t/2, ~ v = a r c t a n a - - 8 o  iThe limes n = 0+ is per- 
formed after integrating Gs,  see Fig. 1. ~ - n 

Appendix C 

Table of the integrals of singular components of G for the case of free boundary 
conditions over the ] = ( i -  fl)-th interval of length 2 on F. calculated from 
the formulas of Appendix B. 

(sj++) 
4=2 f Gs(,, ,~; ~) daln=0+ 

(*§ 
--(1 -}-v)22[ L - ] / q  I f 2 , -  ( 1 -  v,/2(1 ,~-~> + ,fl] In q,/lq2]]: 2z~2qa . ~, 

--2~2q3 --4(1 -~- ~') /qlqJ 

0 . . . . .  f i e 0  
where q l =  l + 2 1 f l J ,  q2 = 1 - 2 J f l l ,  q a =  1 . . . . .  f l = 0 "  
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Boundary 
condition in the 
j = i-th interval 
o f / '  

8~Gs 

Cl~mped 

Simply supported 

Free 

Cl~mped 

Simply supported 

Free 

(: (o)) 
--2 in r K- T + e~ ((o) o) 

r COS 
--4 I n ~ -  + 1 --4 r qo 

-2 co~ ~o [2 - (I - ,,) cos 2~o3 I 

2e~ ~ [2 + (1- ~,)cos 2~] -212 cos 2~ + (1- ~,) cos 4~o]] 

(s~+z/2) 
4~ f Gs(s~, n; ~) d~ln=0+ 

(s~ ~/2) (: (o)) 
- - - -  l n - - - - 1  

K 2b (o o) 
2z2 --2)~ 2 In 2--b 

(-(1 + ~')~~ [in ~-b- 0--")/2(1--2~ +~')] 
-4(1 + ~) 
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