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Summary. This work examines critically the role that the Eshelby (energy-momentum) tensor or its 
degenerate form, the Mandel stress, should logically play as the driving force in an invariant formulation 
of the thermomechanics of finite-strain elasto-plasticity. Here the stress measure of which Mandel advo- 
cated the use in elastoplasticity, is shown to coincide, up to a sign, with the quasi-static Eshelby stress 
tensor expressed in the elastically released intermediate configuration. The various "constitutive" repre- 
sentations for the plastic rate are then discussed in terms of various thermodynamically conjugate pairs of 
"forces" and "velocities" for anisotropic materials. 

1 Introduction 

The identification of the driving force of  anelasticity is central to a thermomechanical  
approach to this type of  irreversible behavior. In classical small-strain plasticity, we all 
agree that  this quantity is none other than the deviatoric part  of  the Cauchy stress; but 
this is some kind of degeneracy. The answer is much less clear cut and requires some criti- 
cal evaluation in the case of  finite-strain elastoplasticity. I f  we accept the viewpoint 
expressed by Epstein and Maugin [1], [2] in their theory of uniformity and homogeneity of  
materials, then anelasticity is one possible manifestat ion of a local structural rearrangement. 
Accordingly, the Eshelby stress tensor (originally called energy-momentum tensor by J. D. 
Eshelby - cf. Maugin [3], [4]) should be, in the appropriate  form, the driving force behind 
finite-strain anelasticity because such a (material) tensor indeed is thermodynamical  dual to 
the Noll-Epstein uniformity mapping (up to a sign). This viewpoint was implemented in 
Maugin [5] with a view to justifying the expression of path-integrals in elastoplasticity by 
means of  the theory of so-called "material  forces". But that  does not solve the real prob- 
lem which needs a closer critical look. 

The present paper  has indeed for purpose to re-examine the general finite-strain frame- 
work  of  elasto-plasticity in the light of  the above-recalled conceptual vision, but also in critical 
comparison with some more classical approaches, in particular that  of  Mandel  [6], and the 
general view presented in Cleja-Tigoiu and So6s [7]. That  is, starting with the finite elasto- 
plasticity as now presented in textbooks and reviews by Lubliner [8], Maugin [9, Chapter  8], 
and Cleja-Tigoiu and So6s [7], and based on the multiplicative decomposit ion of  the deforma- 
tion gradient into elastic and plastic parts due to Lee and Liu [10], with further elaboration by 
Mandel  [6], we are led to emphasizing the role played by Eshelby's types of  stress tensors. 
These are built either following Maugin [5] by duly accounting for the pseudo-dissipation 
function, or using the original definition of  Epstein and Maugin [1] and identifying their uni- 
formity map and the inverse plastic deformation (and therefore identifying the elastically- 
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released configuration to the crystal reference of  Epstein and Maugin). The connections 

between these various tensors are investigated as well as their invariance with respect to a 

change of  frame in the actual configuration (objectivity). The relationship with Mandel's 

stress is established, and the thermodynamical admissibility of  such "driving forces" is 

assessed. Some results in Maugin [5] only for small strains are thus generalized to the finite- 

strain framework (Eq. (21) in particular; such an equation will play a role in elastoplastic 

fracture). The paper concludes with a critical discussion of  plastic-evolution equations in the 
light of  the newly introduced conjugacies between pairs of  stress tensors and plastic rates. 

Although some readers may think that is one more contribution to an endless discussion - or 

a settled matter (depending on the reader) - ,  we believe that it helps one to recognize the 

definite role played by the Mandel stress - or quasi-static Eshelby stress - in finite-strain 
elastoplasticity. 

2 P s e u d o - p o t e n t i a l  

The following notations, essentially employed in Maugin [5], will be used: 

T = JF~F -T 

o- 

F = 0 x / 0 X  

v = O x / O t  

oo(x) 
PR = Qo(X)v(X, t) 

1 
(A)s = -~ (A + A T) 

(A)A = ~ ( d -  A T ) 

IR, In 
Lin 
Sym 
A �9 B : = tr A B  T 

the reference configuration, 
- the intermediate or relaxed (stress free) configuration, 
- the first Piola-Kirchhoff stress tensor in ]Ca, 

- the symmetric Cauchy stress tensor, 

the gradient of  the motion, X with JF = det F > 0, 
the velocity at the point X and at time t, 

the reference mass density, 

- the linear momentum per unit volume of  ~R, 

- the symmetric part of  the tensor A, 

- the skew-symmetric part of  the tensor A, 

identity tensors, 

the set of  all second-order tensors, 

the set of  all symmetric tensors of  Lin, 
the inner product  of  A, B E Lin 

In the presence of  a dissipative mechanical behaviour, but in the absence of  thermal conduc- 

tion, there hold Cauchy's  equations of  motion of  the body, 

0 
PR - divRT = 0, 

T F  T = F T  T, 
(1) 

and the second law of  thermodynamics written in the form of  the Clausius-Duhem inequality 

- ( W  + N0) + tr WrP >_ 0, (2) 

all of  them being considered with respect to the reference configuration Kn. Here N and W 
denote, respectively, the entropy and free energy densities per unit volume at KR. 
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In the subsequent developments we consider the f ramework of  elastic-plastic materials 
with intermediate (or relaxed, or stress-free) configurations, ]Cn, and internal variables 1, con- 
sidered to be a set of  tensors and scalars (depending on the attached physical significance), 

denoted by (~, and represented as a vector in R ~. 
We admit the multiplicative decomposition of  F into elastic F ~ and anelastic (or plastic) 

parts FP. Therefore 

F = FeF  p, JF = JeJP, .]e = d e t F ~  JP = d e t F  p, JF = d e t F  > 0. (3) 

Hypothesis." We accept the existence of the free energy density, r per unit volume of ~r~, as a 
function of  F e = F(FP) -1, c~, 0, which is a constitutive assumption (see Mandel  [6], Teodosiu 

and Sidoroff [11], Cleja-Tigoiu and Sobs [7], Maugin [9], and so on) in the mentioned frame- 
work. Consequently the following relationships: 

W = JP~b(F ~, 6~, 0; X) (4.1 - 2) 

= W(F ~, ~, 0; X) = ~ (F ,  (FP) -1 , ~, 0; X) 

with a = (c~,  JP) or c~ = (6~, t)7~) 

hold, since the mass densities in/Cn and JP are related by On = Oo(J p) 1 Obviously, when the 
plastic incompressibility is accepted, i.e., JP = 1, then c~ and c~ are equal. 

The following consequences of  (2): 

0 0 '  ~F ~ (F~) -~ (5) 

and the reduced inequality 

0 w  
t r ( T T F ~  ' p ) + A . & _ > 0 ,  with A -  0c~ (6) 

were derived in Maugin [5]. 
It was further assumed the existence of a pseudo-potential of dissipation 7?p, such that  

I)p = Dp(F p, &; X),  which satisfied the following relations: 

(Fr = 07)p O:Dp 
0 ~ p '  A = 0& (7) 

On account of  (4.2) the equivalent relationships 

(ova) ( r~)~  0 w  _ 0 ~  (s .~-  2) 

hold. 

Remark 1. The relation (8.1) apparently imposes that l~  involves the dependence on FP(not 
only through the dependence on JP, which was included in a), al though l~  was considered to 
be a function of F ~ and a,  only. 

In order to remedy this paradox we introduce here a new pseudo-potential  of  dissipation 
7}p, related to the old one by 

Z}p(L v, &; X) = T~p(~ "v, &; X) where L p = ~'P(FP) -1 . (9) 

1 They are introduced with respect to the intermediate configurations. 
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The derivative chain rule applied in Eq. (9. l) with respect to ~'P leads to 

( l o )  
- 0t , ' 

and consequently (8) becomes 

OW OJp O #  _ 0ZSp (11) 
(F~)r ~ a L P '  Oo~ 0d 

Hence, the explicit dependence of the pseudo-potential 75p on I f  and & can be derived in the 
form 

J p ( L P , & ; X ) : t r  [0FT)  F L - ~ - - & + f ( X ) ,  (12) 

We add the physically reasonable hypothesis that/Sp(0, 0; X) - 0, i.e., the dissipation occurs 
only when in an elastico-plastic process there are nonzero rates of  plastic deformation or of 
the internal variables. In such way we proved that 

} OW ~ OIYV 
D p ( ~ ' P , & ; X ) = t r  ~ F i f - ~ . d ' ,  (13) 

i.e. the pseudo-potential of dissipation 77p depends on ~'P through I f  = ~'P(FP) -1 only. 
Let us observe that another form of  Eq. (13) can be derived as a consequence of the objec- 

tivity principle adopted in elasto-plasticity2: 

Proposition 1. In the framework of elasto-plasticity there exists a pseudo-dissipation potential 
dependent on L p, & as well as C ~, c~ defined by 

Dp(~ '~',&;x) - 2tr ~ 7  ( C ' i f ) ,  - Oa-a' &' (14) 

where W(F e, o~; X) ---- V/<(C e, o~; X) ,  C e -- (Fe) T F e . 

Remark 2. If we use the (Noll)-Epstein-Maugin [1] definition of  the material uniformity we 
have the following two results in the case of finite-strain elastoplasticity. 

Result 1. For a materially uniform body the energy potential per unit volume of  the relaxed 
configuration is necessarily afmwtion of  F e and c~. 

Proof. Let W = ~f(F,  a; X) be the energy potential per unit volume of  the reference config- 
uration KR. Then for a materially uniform body we can remove the X-dependence by imposing 
that this dependence occurs only through the uniformity mapping K(X) ,  such that (essentially 
a change of "material" frame) 

I~(F,  c~; X) : J K - 1 I ~ ( F K ( X ) ,  a ) .  (15) 

But in the elastoplasticity of  Mandel the reference crystal of Epstein and Maugin can be taken 
as the (preferred) relaxed configuration of Mandel (this has a special name; this is the isoclinic 
configuration related to a special director frame). Then we can select K as (FP) -1. With 
F ~ = F(FP) -1, it follows from Eq. (15) the desired result: 

FV(F, a; X) = JPl/V(F ~, c~). (16) 

2 The objectivity assumption was explicitly formulated in Cleja-Tigoin and Sods [7]. 
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Result 2. For  a materially uniform body the pseudo-potential  of  dissipation per unit volume 

of the relaxed configuration is necessarily a function of  L p and d. 

Proof  The proof  is similar to that  of  Result 1 because the condition of  material uniformity 
for the scalar valued function 79 v = 75p(~'v, &; X) - pseudo-dissipation potential in the refer- 

ence configuration - reads 

Z~ (/~ p, d; X)  = &-~IS~(~ '~K(X) ,  e~), (17) 

where K ( X )  is a uniformity map.  In Mandel 's  theory we can select K as (FP) - I .  On account 

of  the definition of L p, (17) yields at once 

QED, where 75p is indeed the pseudo-dissipation potential in the intermediate configuration. 

3 The effective Lagrangian function 

In Maugin [5] the unbalance of pseudo-momentum in finite elasto-plasticity was established in 
the following form: 

0 {,i~h fd (19) 7 ) -- divRb = + , 

where 7' = ~oCV - represents the pseudo-momentum, here C = FTF,  and v + F V  = O. 
Here 1~ defines the dynamic Eshelby stress tensor with respect to the reference configuration 
/C•, via 

t 

/ s 1 6 3  7)pdt, s = ~t)o(X) v 2 - I~(F~, c~; X) (20) 

to 

and 

g - (dI  + (21) 

The "material  forces" of  true inhomogeneity {,{,~h and plastic quasi-inhomogeneity fd in 

the right-hand side of  (19) play a role in fracture studies, but their exact expressions need not  
be recalled here for they are irrevelevant to our analysis. 

Here we prove the following result: 

t 

to 

which is an extension to finite deformation of the result obtained by Maugin [5] (see formula 
(62)) in the small-strain approximation.  

Taking into account the expression (13) for the pseudo-potential,  and the following for- 
mula: 

* + p (23 )  
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derived from (3.1), we can compute 

2 = ~ 0 o V  ~ -  tr ~ + ~ . ~  d r -  ~pdt  

to to 

to 

We substitute from (5.2) into (24), and (22) follows at once. 

(24) 

Proposition 2. In finite elasto-plasticity 1~ the dynamic Eshelby stress tensor in ]CR, becomes 

to 

since 

FTT = JP(FP)r(C~ST~) (FP) -T, where 

$7~ = Je(Fe)-I o'(Fe) -T (26) 

denotes the symmetric Piola-Kirchhoff stress tensor with respect to the intermediate config- 
uration, ]Cn. Formula (25) is an extension to finite deformation of formula (63) from Maugin 
[5], given in the case of small deformation only. 

Remark 3. As the kinetic energy v2/2 is an invariant in a uniformity mapping, the Epstein- 
Maugin definition of the Eshelby stress tensor in terms of the uniformity maps K can be 
extended to the dynamical case by setting: 

0/2 KT (27) b : = ~  , 

where s is the "Lagrangian" per unit volume of the reference configuration 

(2s) z; = 1 eo(X) v 2 - w .  

4 Eshelby's stress tensors 

Now the quasi-static Eshelby stress tensor bq is introduced, as in Epstein and Maugin [1], [2] 
by identifying their uniformity mapping K and the inverse plastic deformation (F;) -1, with 
respect to the intermediate configuration/CTa, by 

o~ 
bq - (29) 

0 (FP) -1 

As straightforward calculation which makes use of (4.3), (5.2) and (3.4) leads to its expression 
through I~q the quasi-static Eshelby's stress tensor with respect to ]CR, 

f)q = bq(F;) T which 

l~q= { W I • - F T T  when JPTs 

- F T T  when JP = 1. 

(3o) 
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When the first Piola-Kirchhoff stress tensor T is replaced from (26.2) by Sn - the symmteric 
Piola-Kirchhoff stress tensor relative to En,  then 

f~q=WIn-JP(FP) T(C~Sn)(F p) T when J P r  (31) 

and the relation between the dynamical (21) and quasi-static (31) Eshelby stress tensors in ]C• 

can be established in the form 

f ~ : b q +  ( / D ; d t - 2 P o v 2 )  I R when J P r  (32) 

\ J  / / ~ o  

The introduction of the dynamic Eshelby's stress tensor in the intermediate configuration, l~n, 

bn = (JP) 1 (F;)-T (b) (F;) T (33) 

with Eq. (25) leads to 

n + ~ Onv2In = (jp)-z 79p dt + IY(F ~, c~, X) I~ - C~Sn 

\ t o  

to 

in the case of a plastically compressible body. In the last equality of (34) appear the pseudo- 
dissipation potential and the energy potential (see (4) and (18) in connection with (14)), both 
of them being referred to the intermediate configuration. 

Remark 4. Based on the objectivity assumption it follows the invariance (with respect to a 
change of frame in the actual configuration) of the term contained in the left hand side of the 
previous relation, in which (14) was used, too. As a consequence of (34) it follows the invar- 
iance for lon+ 1 / 2 ~ v 2 I n  and not for the dynamic Eshelby's stress tensor 1~. A similar result 
can be derived form (32) in terms of the Eshelby tensor 1~, i.e., 1~+ 1/2OoV2IR = 

fgq + f 79p dt IR is invariant with respect to a change of frame in the actual configuration. 
\~o / 

Remark 5. In the plastic incompressible case, the push-forward to the intermediate configura- 
tion of the quasi-static Eshelby stress tensor with respect to the reference configuration, I~q, 
can be derived from (33) with (30) and (26). It follows that 

(f'~)a = - c ~ s ~  - - s .  (35) 

That is, in this last case the quasi-static Eshelby stress tensor with respect to/Cn, up to a sign, 
coincides with ~, the Mandel stress measure, a non-symmetric tensor, which plays a central 
role in the finite elasto-plastic models elaborated in [6], [11]-[15]. 

5 Constitutive representations 

The dissipative nature of elastoplastic materials was expressed by the Clausius-Duhem 
�9 inequality, which leads to the following equivalent reduced inequalities written either with 

respect to/Cn: 

tr ( S L Y )  + A .  ~ >_ 0 ~ - tr  {(f,~ + ~ t ~ ) ~ L  ~} + A .  a _> 0 

o w  ~R = (d~)-x~,  (36) 
with A =  (jp)-i Oc~ ' 
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t r ( S n D n  p)+ A . &  >_O with Dn p=(C~Lp)s , 

or in/Ct - the current configuration: 

tr  (crI) p) + ,At �9 & _> 0 where 

I) p = ( F ~ i f ( F ~ ) - t ) s ,  ,At : _ j - 1 0 I / V  
0o~ " 

(37) 

(38) 

In (38) cr is a stress measure in the current configuration, while At as well as A are conju- 
gated with &, both of them being internal variable sets in the relaxed configuration. The push- 
forward to the actual configuration of the internal tensorial variable At 3 given by 

a = F~AtF ~T or At = ( F e ) - l a F  r (39) 

(while for the internal scalar variable the dependence of F ~ appears through jr, only) leads to 
an equivalent form of  the reduced dissipation inequality (38), i.e., 

tr (c~I) v) + a .  (F~)-T &(re)  -1 _> 0. (40) 

Remark 6. From the reduced dissipation inequalities, written in /Cn, it follows that 
= C~Sn, the Mandel  stress measure, and Lp = ~'PF p-1 are conjugate variables. 
On the other hand, when tr L p = 0 ,  i.e. the plastic incompressibility is considered, then the 

quasi-static Eshelby stress tensor referred to/Cn,  i.e. (bq)n, is, up to a sign (see (29)), conju- 
gate to the same plastic rate I f .  But in the last case the quasi-static Eshelby stress tensor coin- 
cides with - 2 ' .  This result is similar to those concerning the dynamic Eshelby stress tensor 
l~n, established by Maugin [5]. 

Based on thermodynamic arguments,  i.e. via reduced dissipation inequalities (involving 
the so-called intrinsic dissipation; cf. Maugin [9], for that notation) the following thermodyna- 
mieal dualities." 

conjugate variables, f rom Eq. (36) 
conjugate variables 

conjugate variables 
conjugate variables, via Eq. (37) 
are conjugate variables, via Eq. (38) 

~7 := CeS~; I f  = FV(FV) -1 

(1~) + [~ITz; I f  when tr I f  = 0 
(1~) and (l~q)~; I f  when tr I f  = 0 

S~; D~P = (C%P)s  

can be established between the different stress measures and their appropriate  measures for 
the rate of  plastic deformations, which effectively produce a dissipation. For  instance, it was 
observed in Maugin [5], [9], that  this kind of  plastic spin WTa p = (C~If)A does not produce 

any dissipation. 
These sets will be considered here as a basis for the formulation of  thermodynamically 

admissible evolution equations in anisotropic finite elasto-plasticity. 

5.1 Elasto-plastic rate independent models 

The following set of plasticity-like evolution equations for the rate of plastic deformation and 
for the set of  internal variables can be considered in general forms, associated to the reduced 
inequalities, but bearing in mind their appropriate  yield conditions. Finally, we shall complete 
the elastoplastic models with the elastic type constitutive equations derived from Eq. (5.2). 

3 In what follows we pay formally attention to the internal tensorial variables. 
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Model M1. In the first model we take Z and L p as conjugate variables, via (36.1). The plasti- 
city-like evolution equations 

Ofx Of 1 (Z, A) (41) 

are associated to the yield condition 

f ,  (~, A) = 0, (42) 

where 

A -  jv 0c~ (C%~). (43) 

Here >~ >_ 0 is the plastic multiplier obeying the conditions fl # 0, #z f ,  = 0. It will be deter- 
mined from the consistency requirement >1 fl = 0. 

The elastic type constitutive equation is given by 

2 01fg (ce, c~) (44) 

as a consequence of (26.1) and (5.2), where IY(C e, c~) replaces l/r/via (14.2). 
Taking into account the definition (35) for 2 and (44), the function ~ can be introduced 

by 

2 2 ~ O~Z 
s = 27 2(c% ~) := 27 c gdv (c% ~). (45) 

Hence the symmetry condition 5 C  ~ = C~Z T is fulfilled. 
The flow rule (41.1) gives not only the plastic stretching D p = ( L P ) s  , but also the plastic 

spin WP = (Lv)A. 

Model M2. In this model Sv and DT~ p : =  (CeLP)s are considered to be conjugate variables, 
referred also to the intermediate configuration. 

We adopt the plasticity-like evolution equations (see Maugin [5]) 

Of~ (Sn,A) with D-~ p : =  (CeLP)s DT~ p = #2 
(46) 

e~ = ~2 ~ (&,  A) 

with ,4 defined in Eq. (43) and #~ being the plastic multiplier. 
In this case the yield surface is considered to be dependent on Sn and A, i.e., 

k ( & ,  A) = 0, (47) 

and the elastic type constitutive equation is prescribed by (44), as in the model M1. 

Model M3. Now we fon~aulate a possible model which involves the conjugate variables ~ and 
D v = ( F % ; ( F  e) 1)s, referred to the actual configuration, via Eq. (38). 

This time the elastic type constitutive equation is derived from (26), (5.2), (14.2) in the form 

2 F~ OI/d (C% c~) (F~) T. (48) 
= ) T  0 C  ~ 
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The internal tensorial variables "a",  in the actual configuration, are expressed by 

1 F~ 0!/d a = - ~ y  ~ -  (ce,  a ) ( F e )  T (49) 

as it was mentioned in (39), along with (38.3). 
In this case the yieMsurface is assumed to be dependent on cr and a, i.e., 

f3(a, a) = 0, (50) 

and the f low rule equations associated to (50) are derived in the form 

f)p = Of 3 Pa ~ -  (c~, a ) ,  (Fe)-:rdz(F~) -1 = P3 ~ (or, a) (51) 

with the plastic multiplier #a defined in an appropriate  manner  taking into account the consis- 
tency condition. 

The form of the evolution equation (51.2) is a direct consequence of  the definition (39), for 
the internal tensorial variables, which are conjugated (see (40)) with (F ~) T~(Fe)-I. 

The following comments are in order concerning the evolution equations (41), (46), (51): 

(i) We remark that, as a consequence of  the objectivity principle (see for instance Cleja- 
Tigoiu [16]), the first two models M1 and M2 are written in an invariant form with respect to 
a change of frame in the actual configuration, while the isotropy of  the function fa (a, a) 

f3 (qc rq  T, Q[al) = qf3(cr, a) QT 

follows in the model M3, where Q is a proper  orthogonal.  When a represent internal scalar 
variables with respect to the actual configuration then Q[a] = a, i.e., they are invariants, 
while for a a tensorial internal variable Q[a] = Q a Q  T holds. 

(ii) By direct computat ion we get the following relationships between the plastic rate of  
deformat ions  D ~  p and ]3 '  defined in (37) and (38): 

Dnp = (F~) T I)PF ~ , (52) 

and between their appropriate plastic spins 

W n  p = (F~) T VCPF ~ , where 

W n  p _ (C~LP)A, "~r ~- (F~LP(F~)-I)A �9 (53) 

Hence it follows the equivalence 

VI;7~ p := (CeLP)A = 0 ~ V~rp := (FeLP(Fe)-I)A = 0. (54) 

(iii) The local conservation law o f  mass in the intermediate configuration, expressed by 
~n orp = ~o, can be written as the equation of the continuity 

~)n + ~n tr L p = 0 (55) 

in which tr L p is replaced by one of the formulae 

t r L  p =  t r I )  p =  t r ( C  e) 1DT~P, (56) 

in accordance with the constitutive assumptions made in the models M 1 M3. 
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Consequently, the plastic incompressibility can be characterized by one of  the following 
equivalent conditions: 

t r L  p = 0, t r I )  p = 0, tr ((C~) - 1 D ~  p) = 0. (57) 

Now we pay attention to the determination of  the plastic multiplier #j (with j = 1, 2, 3) 
f rom the consistency requirement # j f j  = 0, written on the yield surface fi = 0, supposed to be 
a regular one. 

Proposition 3. 1) In the elasto-plastic model M1, pl  is expressed by 

with the hardening pa ramete r / /1  

H t =  
\ o 6  ~) kaxj o~oc~taA] 

4 0 A  OcP LOAJ + 4  tr  OZ] ~ ' ~  + A .  . (59) 

( o 2 )  r 
2) In (58), (59), \ ~ C ~ ]  is the fourth-order  tensor defined below: 

~dy~ I : Lin ~ Sym, where 

(60) 

~C~] [g]. [A] = ~ [A]- g - A T + C ~ [A] ( ) ] 

VA E Sym, B C Lin. 

Proof. When we take into account the elastic type constitutive equation (44), the definitions 
(45) and (43) and evolution equations (41), as welt as the relations1~ips 

Jp = J P t r L  p , 

C ~ = 2(F~):rDF ~ - 2(C~LP)s, where D = (F 'F-1)s ,  

the derivative chain rule applied in (42) with respect to time t leads to (58) with (59). 

Remark 7. Under  the hypothesis that  the elastic function from (44) is independent of hard- 
ening, i.e., 

02Vr 
Oc~Oc~ - o, (62) 

o2 
the geometrical interpretation o f ~ c  ~ follows at once. We pass to the yield function written in 

the elastic strain space (see Cleja-Tigoiu [16]) by the formula 

f l ( 2 , A ) = f ~ \ &  ~C~ ( C ~ , @ , A  : = / I ( C ~ , A ,  J~) - (63) 
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The normal tensor to the yield surface, prescribed by fl, has the representation 

:  ro,,,1 
N: := ~ (C ~, .A, JP) = )-~ \OC~ ] Lo2J (64) 

Remark 8. Only the part of Of:/OE which does not belong to the kernel of (O~/OCe) T enters 
the expression of the plastic multiplier. 

On the other hand, D~P from (41.1) is directed towards the outside of the yield surface 
./~1 = 0 only when 

oA :o~.A.J~/>0~ {~ (o~)~[0Sll 
D~;-  ~C ~ ' ' k ~ )  s \Oc;) LoxJ > o. (65) 

Consequently, using the decomposition 

(,_,~ oSA [ o2 "~ [oS , ]  (o~') T [oS:] 
'~ O~)s--  ~ /~0~)  LOz'J + flN~S' where ~C w LOz'J N~P = O, (66) 

with 7 > 0, we get 

HI =q, ~ : }  LOrJ 0o~0c ~ LOAJ< 0FVs 

lOS: o,,,,, 
+ 4 0 ~  OoF I_OAJ + tr O~] ~ "UU + A  OA) " (67) 

Remark 9. In the plastic incompressible case (when tr ~ = 0), under the hypothesis that the 

elastic properties are independent of hardening, i.e., (62) is fulfilled, the remarkable simplifica- 
tion in the expression of the plastio multiplier follows: 

mGr: = F k ~  ) LO~J (FoT' D 

�9 O z ]  s + 4 0,,4 
o~. [osq 
ooF LOAJ 

(68) 

o r  

(69) 

Proposition 4. In model M2 the plastic multiplier #2 follows to be equal to 

~O(c~) ~ [ss~J 20~OC ~ LSA] (FgTD' (7o) 
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where 

H2 = 2-  ( C e ) - I  

f 021~ [Of2] 021~ roa] } o a . 1 of 2 o21~ [of~] (71) 

The proof is similar to the previous one. 

Remark lO. In the incompressible case (when (Ce) -1 - Of2/OSn : 0) as it results from (57.3) 
with (46.2), under the supposition (62) the relation 

2 A T 

\a(c~) ~] LOSBJ (F~)T" D (72) 

holds. Here the hardening parameter is expressed by 

021IV [Of2] Of 2 d 1 Of 2 021~ [Ofa] . (73) 
0(c~) ~ kOS~J 0 ~  4 OA O~ 2 LOAJ 

5.2 Connections between models 

To establish a connection between the model M2 and M3 we take into account (46) and (51), 
put together with (52) and (53). 

We adopt the model M2, referred to the intermediate configuration, as a point of depar- 
ture and we derive the model in the actual configuration. 

The model M3 is associated to the yield function f3 defined by 

fa = (a,a) := f2(J~(F e) I~(F~)-T, Je(F~)-Ta(Fe)-1) - f2(S~,.A), (74) 

due to the relationships between (or, a) and (Sn, A) 

Sn = Je(Fe)-I~7(F~)-T, ,4 = J~(F~)-la(F~) -T (75) 

which yield, when we pass (via F ~- the relative deformation gradient from/Cn to/Ct) from 
the intermediate configuration to the actual one. The relationships (75) are derived from (26) 
and (39), put together with (38.3) and (36.4). 

Proposition 5. 1) The model M3, equivalently associated to M2, is characterized by the elastic 
constitutive equation (48) and the flow rule equations (51), associated to (74). Moreover, in 
the models 

Of 3 (~ J~(F~)-T(Os~ ) ' Oct (S~, , , 4 ) (Fe )  -1 

of 3 (c', a) ~ J~(F~)-T (~--~ ) aa (Sn, A) (Fe) -1 

and #3 = (Je)-l/z2 �9 

2) The expression for p3 is specified by 

P3H3 = /2 - - ~ M  [ 0 a j  . D ,  

(7~) 

(77) 
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where 

Ha = T 0~ ] 

+~_~f3. c -M[0a] j +~a.Hk0a] (7S) 

Here the fourth-order tensors are defined by 

CEA] : ) \0~T~[(F~)TAF~? (Fe) T , 

F ~ O~W e T e 
Ad[B] = 0g0C ~ [(F ) BF] (Fe) T (79) 

A/[B] : F e [(Fe)TBF e] (Fe) T 

VA r Sym,  B E R ~ - the space to which the internal variables belong. All these tensorial 
fields are still dependent on the elastic deformation. 

Proof. We differentiate in Eq. (74) with respect to ~ and a, and the equalities (76) follow at 
once. In Eq. (76) "a" denotes a tensorial internal variable. When the scalar internal variables 
are considered in the models, F e appears only through de. 

On account of Eq. (52) and (53) the relation #3 = (d e) 1#2 yields, between #3 and #2 char- 
acterizing the model M3, associated to M1 and respectively, the model M1. 

2) In order to specify the expression for #a, derived from the above one, we pass from the 
intermediate configuration to the actual one by using Eq. (76) in Eq. (70) and (71). A strait- 
forward calculation leads to Eq. (77). 

The connection between the models M1 and M3 is determined by the fact that Z can be 
considered to determine the Cauchy stress ~ through the local mapping F e, as a consequence 
of the relation 

= J e ( S O r ~ ( r ~ ) - r .  (80) 

The yield function fl  can be rewritten in an equivalent form in terms of the quantities 
referring to the actual configuration as 

J~(o',a) = fl(Je(Fe)To-(Fe) -T, Je(Fe)- la(f~)  -T) = A(E ,A)  (81) 

with the aid of the expressions (75) and (80). 
Conversely, a yield function fl (in the relaxed configuration) can be associated with f3 by 

the following representation: 

f l ( ~ , A )  := f3(~--T(Fe)-Tr(Fe) T , ~-~FeA(Fe)T) ~ f3(<r,a ) . (82) 

Hence the following assertions can be proved. 

Proposition 6. Let the model M1 be given. 
1) The model M3, derived from M1, is described by the elastic type constitutive equation 

(48) and by the f low rule equations 

~)p = Of 3 #3 ~ -  (~, a) ,  (FS)-:rd(Fe) -1 = #3 ~ @% a),  (83) 
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associated to the yield function introduced in (81), while the nonzero plastic spin VfP is defined 
by 

WP = #3 ( F~ 0~f~l (Z' A) ( F ~ ) a m  1) A (84) 

Here the arguments appearing in the right hand side of (84) are replaced by (80) and (75). 
2) The plastic multiplier #3 is given by 

= T  .D+ ) .D, (851 

where 

H a = ~ - a .  L; - M L O a j / - - ~ - a . H L 0 a j  

j f  Ofa~ Ofa Of a (Fe)-I)AJ (86) + 
0~1 Y~-a/ ~ 7  \ 0~  " 

3) In the plastic incompressible body, under supposition (62), the expression for the plastic 
multiplier is still given by (85) and (86), in which 

o f  3 A4 = 0 and tr ~ = 0. (87) 

Proof. 1) In (81) we consider the differential with respect to a -  a symmetric tensor, hence 

Ofa _ j~(F~Ofl (F~) 1~ (88) 
Oa \ O~ ) s 

holds. Using (52) and (53), put together with (41), as well as (88), we get (83.1) and (84). The 
evolution equation for internal variables, (83.2), follows from (46.2) (accepted in the model 
M1), put together with the formula 

0f3 
- J~(F ~) T ~ ( F e ) - I ,  (89) 

0a 

derived as a consequence of the derivative chain rule applied in (81) with respect to a. On the 
other hand, the appropriate plastic multipliers in the models M3 (associated to M1) and, 
respectively, M1 are related b y  P 3  = (J~)-lPl, as it follows from Eqs. (52) and (53), along 
with (41). 

2) Then we invoke the relations 

~e Ofl"~ Ofl 

(90) 
~Ofl"~ = (F~)T F r  A 

and the elastic type constitutive equation (48). Using the above relations, (60) can be equiva- 
lently rewritten in the form 

oc ~] LOE] @ o-~)s  = (.]~)~ o~, 
jF  
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Taking into account the relations between (2,  ,A) and (~, a), as well as the formula (88), 
we obtain 

- - t r  Jp (Oa+l~ (Of1 _. Ofl.A) -- jF (tr Of3~ (cr Oof3_~_a. OOf3a) 
4 \ o E )  \ o E  ~ + ~ 4(a~) ~ -~) (92) 

By combining the preceding results, an algebraic manipulation leads to 

1 
H1 = ~ ) 7 ~  Ha 

with Ha given in (86), in terms of the quantities referring to the actual configuration. 
Similarly, it can be proved that the expression which enters the right hand side of (58) is 

equal to 

jF 
(93) 

Consequently, the formula (85) follows when we fit together the above results, via the rela- 
tions (58), (59). 

3) In the plastic incompressible case it results that tr Ofa/Oa - O, due to (57) and (88). 
From Eq. (62) with the definition of 34 (see (79)) it follows that 34 = 0. Hence the assertion 
in 3) results at once. 

The following peculiar aspects can be put into evidence according to the Proposition 6: 

Remark 11. In (85) and (86) the skew-symmetric part (F ~ Ofl/OZ (F ~) 1)A appears if and 
only if (0fa/0~) ~ is not a symmetric field, i.e., if Ofa/Oa and cr are not permutable tensors 
(this happens in the kinematically hardening materials, for instance). Consequently, if 
u162 r 0 the skew-symmetric tensor which enters (85) influences the plastic stretching I )  p via 

the plastic multiplier. 

Remark 12. "VV v 0 if and only if (F ~ Ofl/OZ (Fe)-I)A 0, or equivalently (see (90.2)) if 
(C ~ Ofl/O~ (~, A))A = 0. We can make such an additional supposition in the model M3, and 
consequently in the model M 1. 

Hence, we emphasized that VfP = 0 does not follow as a direct consequence of the general 
model M1, under the assumption that M3 is equivalently related to M1. 

Remark 13. Conversely, we accept as a starting point a model M3 and we equivalently asso- 
ciate either a model M 1 or a model M2 by the formulae involved in Proposition 5. and 6. The 
derived models are not equivalent. 

On the other hand when a model M3 is considered the expression of the plastic multiplier 
requires the knowledge of the spin l~e(Re) T, and consequently the assumptions concerning 
the plastic spin W p, due to the kinematical relation existing between them in the framework 
of multiplicative decomposition (3.1). 

To end the discussion of this paragraph we emphasize some remarkable consequences that 
follow: 

- in the case of small elastic strains; 
- in the case of structurally isotropic materials (see Loret [17], Dafalias [18], Cleja-Tigoiu, 

Sods [7]), i.e., by definition all constitutive and evolution functions, in the relaxed configura- 
tion, are isotropic with respect to their arguments. 
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Proposition 7. In the case of  small elastic strain, but finite rotat ion and finite plastic deforma- 
tion (see Mandel  [6]), when C e ~ I + 2e e with ]ee ] := x / ~ -  ee << 1 the following estimates can 

be derived: 

a) The polar  decomposit ion of  the elastic deformation F e = R e U  e leads to U e ~_ I + e ~, 
F e ~ R e, je  ~ 1. 

4 0 W  where IYd(C e, a)  = W(e e, a) ,  b) Z _~ S~ -~ (R~)rcrR ~, Sn -~ 0e ~ ,  

OW 
c) A t - ~ A ,  a ~ - ( R e ) r A R  e , a -  0 a '  

d) Dra p -~ D p = (LP)s, WTa p ~ W p = (LP)A, f)P ~ (R~)TDPR e, and 
"~VP ~ (Re)TWPR e, 

e) f~(Z,A)  ~- f2(Sn, A) ~- f2 ( (Re )TaR  e, (Re)TaRe)-  

Moreover,  if and only if the function f2 (in the relaxed configuration) is an isotropicfunc- 
non with respect to both  arguments (for instance in the case of  isotropic structural materials) 
the dependence of f2 on (cT, a) yields. Hence, the function f3 (~, a) = f2 (Sn, A). 

Generally the function fa, associated to f2 by the procedure invoked in the Proposition 5, 
fa (c7, a) := f2 (Sn, A) -~ f2 ((Re)TcrR e, (Re)Ta),  remains still dependent on the elastic rotation 
(due to the fact that  R e represents the local deformation from the relaxed configuration to the 

actual one). 

Proposition 8. We assume that: 

1. The elasto-plastic model describes a structurally isotropic material; 
2. The energy function involved in (4.2) allows the decomposit ion 4 r  c~)= 

~1 (C e) + ~2 (6z), with ~2 - the so-called stored energy, then 
a) S E Sym, L ~ = (Re)T~ ' (Re)R  e with 

2 ( W )  := 2 B e ~ ( W )  ~ Sym, 
O13, 

Of 1 _ Of 1 
b) ~ ~ Sym, D ;  = # 1 ~  and 

Of  1 e Ofl  (Re)T, where 

where B e = Fe(Fe) T 

W ;  = 0, with 

(94) 

(95) 
f l (Z ,A )  = f1(2,13) with r = R e Z ( R e )  T, /3 = ReA(Re)  T 

c) According to the adopted definitions the following formulae: 

DnP = # lRe (BeOf l~  O~js (Re)  T, W n  p = #IRe \(Be 0~0ZjA (Re) T (96) 

hold. 
Moreover,  W n  p = 0 if and only if B e and Ofl/O~, or equivalently if C e and OfffOZ, are 

permutable tensors. 

Obviously, this is the case when the yield function describes the isotropic hardening (the 
internal variables are scalar), while for a material which kinematically hardens this is not true. 

Concluding remarks 

(i) The associative evolution equations for I )  p, (in our notation) of  the particular form of 
Eq. (51) were derived in [19], [20], assuming a yield function dependent on Sn and .A-  internal 
scalar variable. They adopted the flow rule (46) (together with WnP = 0, since the skew-sym- 

4 The micromechanical motivation for such an assumption can be found in Teodosiu and Sidoroff [11]. 
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metric of CeL p has no dual driving force and does not contribute to the energy dissipation 
rate) as a point of departure. 

Constitutive descriptions of the inelastic deformation processes are expressed in terms of 
(FeLV(Fr and o, (i.e. with respect to the actual configuration) in Besseling and Van der 
Giessen [14], starting from an appropriate model M1, but involving some non-symmetric ten- 
sorial internal variables (similar to Z). Just this I)  p - cf. Eq. (36.2) was employed by Dafa- 
lias [18], in the case of small elastic deformations. The evolution equations for the plastic spin 
VCP = (FCLP(F e) 1)A were derived (independently on the dissipation principle), by using the 

representations theorems for anisotropic bodies, given in Liu [21]. 
(ii) The nine-dimensional flow rule was proposed by Mandel [6] (see also Halphen [12], 

Halphen and Son [13]) associated to the yield function dependent on Z and .4, i.e. the evolu- 
tion equations of the form (41). A discussion about this flow rule and also about equivalent 
evolution equations with respect to the reference and the intermediate configurations can be 
found in Lubliner [8], [15]. In Cleja-Tigoiu [22] some ~ -  models were proposed for anisotro- 
pic finite elastoplasticity, when the yield condition is a function of Mandel's stress measure, 
which in general is not a symmetric tensor. The considered models are of the form Eq. (41) 

and (42). Some comments about the associated plastic spins {CCLP}A and {LP}A are also 

made. 
(iii) Furthermore, based on the thermodynamic arguments, since G and L p are conjugate 

variables, an evolution equation written in terms of L p as dependent on Z (i.e. on the quasi- 
static Eshelby stress tensor (l~q)za) and some proper internal variables, is equally justified. 
Only when the maximum dissipation postulate is considered a certain undeterminancy occurs 

as pointed out in Lubliner [15] and Cleja-Tigoiu [22]. 
(iv) The different elasto-plastic theories elaborated for anisotropic bodies are not equiva- 

lent, as we emphasized in our analysis concerning the connection between them. 
(v) The elasto-plastic boundary value problems at large deformations can be correctly 

formulated and solved only if the evolution equations for the plastic spin are considered, 
too. It becomes evident when we look at the dynamic equations written for instance in the 
form (19), given by Maugin [5]. The dynamic Eshelby stress tensor, 1~, contains the full 
stress T and the motion gradient F in its anisotropic part and also the free energy function 
and pseudo-potential of dissipation. Let us remark that the pseudo-potential of dissipation 
is dependent on L p and &, and on the other hand W is a function of F ~ =  F(F  p) 1. 
Hence, not only G p = ~'P(F p) L, but (FP) -1 itself is necessary in order to have correctly 

defined functions. 
(vi) When the evolution equations for plastic deformation and internal variables are pre- 

dicted based on thermodynamic arguments, then (ceI,P)s and & are described. Although the 
plastic spin is irrelevant from the thermodynamical point of view, i.e., only (CeLP)s contri- 
butes to the energy dissipation rate, the problem of the determination of the evolution equa- 
tions in finite elasto-plasticity remains still open. Therefore, additional hypotheses, indepen- 
dent on the dissipation principle, have to be introduced in order to postulate evolution 

equations for plastic deformations. 
(vii) Finally, we note, on the one hand, that basing on the thermodynamic arguments, 2' 

and L p being the conjugate variables, an evolution equation written in terms of I_d as depen- 
dent on Z (i.e., on the quasi-static Eshelby stress tensor (l~q)~) and some proper internal vari- 

ables is equally justified. 
On the other hand, we remark that the Eshelby stress tensors (more precisely these in- 

variant combinations containing Eshelby stress tensors) can be utilized in describing the evo- 
lution equations, written in invariant form, with respect to the intermediate configuration. 
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