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Summary. Using the Oberbeck-Boussinesq (O-B) equations as a mathematical model, asymptotic solutions 
in closed form and numerical solutions are obtained for the peristaltic transport of a heat-conducting fluid in 
a three-dimensional flexible tube. The results show that the relation between mass flux and pressure drop 
remains almost linear and the efficiency of the transport depends mainly on the ratio of the wave amplitude 
h and the average radius of the tube d. However, the 3-D flow is much different from the 2-D flow in the 
following ways: (i) The 3-D flow is much more sensitive to the Change of the volume expansion coefficient ~T; 
(ii) Trapping and backflow are much more common in 3-D case; (iii) The longwave asymptotic 
approximation in 3-D case is not as good as in 2-D case, especially when aT is not small; (iv) The 3-D flow is 
more sensitive to Reynolds number change. 

1 Introduction and summary of previous results 

Peristaltic pumping, the physiological phenomenon of a circumferential progressive wave of 

contraction or expansion propagating along a flexible tube, plays an essential role in 
transporting fluid inside living organisms. Many modern mechanical devices have been designed 

on the principle of peristaltic pumping to transport fluids without internal moving parts, for 

example, the blood pump in heart-lung machine and peristaltic transport of noxious fluid in 

nuclear industry. In the latter case, temperature plays a significant role and has to be considered. 
The earlier mathematical work on the problem of peristaltic transport was based upon 

a viscous fluid model governed by the Navier-Stokes equations subject to a prescribed velocity 

on the boundary of the tube. A review of the research results can be found in the articles by Jaffrin 

and Shapiro [1] and Winet [2]. Numerical studies of two-dimensional and axisymmetric 

peristaltic flows can be found in the articles by S. Takabatake, K. Ayukawa and A. Mori  [3], [4]. 

Recently more refined models have been developed to deal with the peristaltic transport of 
a fluid-particle mixture or a heat-conducting fluid. The former was studied by Hung and Brown 
[5], Kaimal [6], Fauci [7], and the latter by Bestman [8] and Tang and Shen [9], [10]. In the papers 

of Tang and Shen [9], [10] the existence and uniqueness of a solution to the O-B equations subject 
to Newton's  cooling law at the boundary were proved, and the asymptotic methods developed 

for the approximate solution of the O-B equations were justified. The problem was solved over 

a two-dimensional channel numerically and asymptotically. It is found that: (i) Long-wave 
expansion is a good approximation to the exact solution; (ii) Temperature has a significant effect 
on the flow and can cause trapping and back flow; (iii) The relation between mass flux and 

pressure drop is almost linear. 
However, from the physical point of view, it is more practical to consider a three-dimensional 

tube rather than a two-dimensional channel. In this paper, we intend to solve the problem in an 
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axisymmetric tube (see Fig. 1). The presence of temperature makes it necessary to solve the 

problem in three-dimensional setting. The O-B equations are used as the governing equations. It 

is also assumed that the boundary of the tube is in the form of a sinusoidal travelling wave. 
Because the stream-vortex function method works for 2-D case only, equations in terms of the 

primitive variables have to be used. We formulate the problem in Section 2. In Section 3, 

longwave asymptotic expansion was developed and solutions in closed form were obtained for 

the zeroth order approximation. In Section 4 an iterated numerical method is presented to solve 

the exact equations. Then finally, numerical results were presented and discussed in Section 5. 

2 Formulation 

We consider the peristaltic motion of a heat-conducting fluid in a three-dimensional tube (see 
Fig. 1) with boundary F defined by 

F:  r = d + h sin 2~(x - cO~l, (2.1) 

where 0 < h < d, h is the wave amplitude, d the average radius of the tube, l the wave length, c the 
wave velocity. The radial velocity of the tube is given by 

vr = dr~dr = -27~c(h/1) cos 2~(x - cO/l.  (2.2) 

We assume that the tube has no horizontal and azimuthal motion. In reference to a coordinate 

system moving with the travelling wave in the x-direction, the tube becomes stationary, and we 
further assume that the fluid motion is steady. Using c as measure for velocity, d as unit length, 

and introducing cylindrical coordinates: 

X = X ~  

y = r cos O, 

z = r sill 0, 

and the cylindrical representation of the velocity field u = (u, vr, Wo) in terms of the Cartesian 

representation: 

u = u, (2.3) 

vr = v cos 0 + w sin O, (2.4) 

Vo = - v  sin 0 + w cos O, (2.5) 

Fig. 1. The flexible tube with its boundaries 
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the nondimensionalized governing equations [10], [11] are given by 

au au Vo au ap 1 
u ~xx + v, ~r + . . . . .  r aO ax + ~ V2u, (2.6) 

al) r a tu  V 0 OV r (V0) 2 a p  1 ( v~ 2 aVo'] 

u ~ + ~ . U r  + - -  _ r 630 r c3r + R \g2vr r 2 r 2 a0J + a r T  s i n  0, (2.7) 

OVa aVo VoaVo VoV~ t o p  1 {  2 0v~ Vo'~ 
U ~x  + v~ ~rr + -r ~ + r -- r aO + R ~ V2v~ + r 2 aO ~ j  + aTT cos O, (2.8) 

Ou v~ av, 1 aVo 
a~ + - r  + ~ r  + r a0 - -0 ,  (2.9) 

aT  aT  Vo aT  
U ~xx + V~ ~r  + r aO - P~- tV2T + Qr '  (2.10) 

F: r+ = 1 + a sin 2~ctx, (2.11) 

(u, v,  v0)Jr = ( - 1 ,  - 2 = a a  cos 2=ax, 0), (2.12) 

pe_ i aT  T) ~n + hT = (P, 
F 

(2.13) 

p(l. y.  z) - p(O. y .  z) = p~. (2.14) 

QT, ~o are prescribed functions which are periodic in x with period 1 = l/a, a = h/d is the 
amplitude/radius ratio, R is the Reynolds number, P~-a is the Peclet number, hT is a heat 
conducting coefficient, aT is the constant volume expansion coefficient, Pa is the prescribed 
pressure-drop, and 

a 2 0 2 1 a 1 a z 
V 2 = - -  + + - -  + - - - -  ( 2 . 1 5 )  

ax 2 ~ r  2 r & r 2 a0 2" 

To facilitate numerical computations, we finally map the domain to a rectangular block by the 
transformation 

= x,  tl = r/[1 + a sin 2nax], 0 = 0. (2.16) 

Equation (2.16) transforms {(x, r, 0) ] 0 --- x _< l/a, 0 -< r < 1 + a sin 2gax, 0 < 0 -< 2~} to 
{(4, ~/, 0) ]0 < ~ < l/a, 0 < q < 1, 0 _< 0 < 27@ Using the following formulae: 

L~ = &  + 2f~.,~ + L . , ~  2 + L , = .  f .  = L . , 7 .  

fxx + f .  = &  + 2f~.~x +L . ( ,x  2 + , 2 )  + L , = .  

the system can be rewritten in terms of (4, q, 0) and is solved numerically in Section 4. 
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3 Longwave asymptotic expansion 

In this Section we will try to find the longwave solutions in closed form using the techniques 
developed by Bestman [8] and Tang and Shen [10]. A closed form solution will enable us to see the 
flow properties clearly. It can also be used as the numerical initial condition to gain fast 
convergence. We introduce the notation 

(u, vr, Vo) = (u* - 1, v, w ) ,  

and then drop the * for convenience. We also prescribe the flux condition [10] instead of the 
pressure drop condition. The system becomes 

w 1 
- - U x  -}- UUx -}- I)Ur q-  - -  UO : - - P x  -}- V 2 U ,  

r 

1( 2) 
- - v x  + uvx + vvr + - -  Vo - p ,  + 172v Wo + 7 T T  sin 0, 

r r -R  r 2 r 2 

w v w  1 1 (  2 ~2) 
- - w x  + uwx  + vvr + - -  wo + . . . .  Po + V2w  + Vo - -  + a r T  COS 0, 

r r r R 7 

v 1 
ux + - + v, + - -  wo = O, 

r r 

- r ~  + u r~  + vT~ + w To = P e - l [ 7 2 T q  - Q T ,  (3.1) 
r 

F: r + = l + a s i n 2 n e x ,  

(u, v,, Vo)lr = (0, - 2 n a e  cos 2 n ~ x ,  0) ,  

( P e - I  •T  T )  
F 

r+ 2n 

.[ 5 (u - 1) ~ dr dO = Q,~ 
0 0 

where the subscripts by x, r, 0 indicate partial derivatives and Qy is the prescribed flux. Noting 
that along the tube 

(7 = (u - 1, v,, Vo) = ( -  1, - 2nac~ cos 2 n ~ x ,  0) ,  

and that the normal direction of F in cylindrical coordinates is given by 

n = (nx, nr, no) = ( -  2~ac~ cos 2nctx,  1, 0), 

we have: 

U" nlr  = O. 

We apply the divergence theorem to the integral 

o = S  v. Vav=~ O. .dS+~ #7.naS+I Ve..dS 
r~* v l 1"2 r a 

=--I (u--1) dS+5 (u-1) dS, 
El F3 
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where F~ is the cross section of the tube at x = x~, i = 1, 3 respectively, F2 is the tube lateral surface 
between the two cross sections and f2* is the volume bounded by these surfaces. F rom here, it is 

clear that  

(u-1) dS=5 (u - 1 )  dS, 
FJ. F3 

i.e., Qs in (3.1) is a constant. To introduce the longwave asymptotic  scheme, we make the 
following assumptions:  

c~ = d/ l  ~ l ,  v = O(c~), w = O(cO, R = O(cO, 

Using * to indicate the new variables, we have 

(c~x, r, O) = (x*, r, 0), (u, v, w) = (u*, cw*, c~w*), 

R = erR*, Pe 1 = k r * / a ,  hT = hT* / e ,  Q r  = Q T * / e ,  

We substitute these into (3.1) and drop all the *'s, 

( w) 1 
0~2 --lAx AV UlAx AC Ublr -[- - -  IAO = - - P x  -F" (O~2Uxx q- V 2 2 u ) ,  

r 

( 0~3 - - / ) x  + UVx -t- VVr + - -  V0 - -  - -  
r 

Pe = 0 ( ~ ) ,  h r  = O(1/c~), p = O(e-2).  

O/ax = ~ O/ax*,  

(p = q~*/0~, p = p*/(c~2). 

+ c t rT  sin 0, 

( w 
O~ 3 - - W  x + UWx + Vf)r + - -  W 0 + = _ - -  

r 

v 1 
ux + - + v, + - -  w o = O ,  

r r 

2)) 
r 2 r 2 WO 

Po + O~3Wxx -~- O~ V22W A7 [70 - -  

+ e T T  COS 0, 

( w) 
a 2 - - T x  + u T x  + vTr  + - -  To = P e - l ( ~  + 172 2 T )  + Qr, 

r 

F: r+ = l + a s i n 2 n x ,  

(u, vr, Vo)Lr = (0, - 2 h a  cos 2nx, 0), 

(3.2.1) 

pe_ -2rcao~2(cos 2rex) T~ + T, T) 
(1 + (2zae c o s  27CX)2) 1/2 -]- hr  r = ~o, 

r+ 2~ 

f f ( u - 1 )  r d r d 0 = Q f ,  
0 0 

where 

(~2 1 0 1 0 2 
[72 2 = ~? .~  -~- - -  -1- - - -  

r & r 2 DO z .  

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.8) 

(3.2.9) 
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The equa t ions  for the zero th  order  a p p r o x i m a t i o n  are 

1 V22u ~ = Pox, 
R 

Pot = 0, 

Poo = O, 

Uo]r = 0, (3.3) 

r+ 2~r 

I 5 (uo - a) r dr aO = Q: ,  
0 0 

pe-~vi ; ro  = - Q ~ ,  

(pe-ITo + hrTo)lr = ~o. 

Uo, To and  Po can  be solved f rom here. F o r  s implici ty,  a s suming  Qr and  q~ to be constants ,  we get 

2) 0 5 )  ,34, Uo = \7rr+2 + 

; J 8 Q f  r+ - 4  d x  - 8 Po = --  R~- ~ r+ -2 dx + po(0). (3.5) 

0 0 

q) Qr 1 
To = h r  + ~ r+ + ~- _ _  (r+ 2 _ r2), (3.6) 

where  

r+ = 1 + a sin 27rx. (3.7) 

In the fo l lowing we will  t ry  to  de te rmine  Vo and  Wo. E l imina t ing  p f rom the first two equa t ions  

of (3.2) by  cross differentiat ion,  c o m p a r i n g  the O(~) te rms and  using the ident i t ies  

wo2wooo 
( r V 2 2 W o )  - -  Wo~r q-  -I- - -  rV22 ( r w o )  

r V r 2 ~r ' 

 2,o0 2.o ( 1 ; )  --  - -  + = rF22 (Vo) 
r ~ -  

we come  up with  

F r o m  the (3.2.3) we have 

Uox + Vo 1 
- -  + Vor -t- - -  Woo = O. 
r r 

The b o u n d a r y  cond i t ions  for Vo and  Wo are 

(Vo, Wo) = ( -  2rca cos 2Tcx, 0) = ( - r + ' ,  0), 

(3.8) 

(3.9) 

(3.1o) 

(3.11) 

(3.12) 
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where the prime ' indicates the derivative with respect to x. Let 

R R 
Vo = go(x, r) sin 0 -- i 6  P~ - 2 Bo'r, (3.13) 

Wo = he(x, r) cos 0, (3.14) 

where go and ho are to be determined and satisfy 

go(x, r+) ~- O, ho(x, r+) = 0. (3.15) 

It  can be checked easily that  the boundary  conditions for Vo and Wo are satisfied. Using 
(3.10)-(3.15) and the techniques in [8], going through some tedious manipulations, we obtain 

P, Rc~rQr 
go - 384 [ r  2 - -  r+2] 2, (3.16) 

ho - P e R a T Q r  (5r2  _ r + 2 )  (r  2 _ r + 2 ) "  (3 .17)  
384 

Therefore, 

PeRO~TQT R ,, 3 R 
. . . .  Bo'r, (3.18) Vo 384 [r~ r+2] 2 s i n 0 - i 6 p o  r 2 

PeRo:TQr (5r2 _ r+2) (r 2 _ r+2) cOS 0, (3.19) 
Wo = 384 

where 

32Qy 16 ) 
po"(x) = + r + ' ,  

B o ' ( X )  - 4 Q ; -  , 
R~zr+3 r+ , 

and again the prime ' indicates the derivative with respect to x. 

Back to the original parameters  and quantities used in Section 2, we have the zeroth order 
longwave approximat ion to the solution of the system (2.6)-(2.14): 

Uo= \~ r+  2 + 2  1 - r - ~  - 1 ,  (3.20) 

Rc~rQT ( 2QI 1 ) 2Q 
Vo = 384kT [r2 -- r+z]z sin 0 -- \~ r+  s + r~  5 r+ ' r  3 + ~r+I 3 r+'r, (3.21) 

RO:TQT (5r2 _ r+2) (r 2 _ r+2) COS 0, (3.22) 
Wo = 384kr 

8QI r+ -4 dx - 8 Po = -- R-~- ~ r+ -2 dx + po(0), (3.23) 

0 0 
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q~ Q r  1 QT (r+2 __ r2). 
To = hTT + 2~T r+ + ~ -~-r (3.24) 

l l 8f 
Pe - R ~  r+-*  d x  - -R r+ -2 d x .  (3.25) 

0 0 

These solutions are used as numerical initial condition in the numerical computations. 

fr162 j, k) = [f(i + 1, j, 

L.(i, j. k) = If(i, j + 1, 

foo(i, j. k) = If(i,  j. k + 

f~.(i, j. 1,) = [f(i  

f~(i, j, k) = ar 

f~(i, j ,  k) = 6 .o f  

fo(i, j ,  k) = 6oof 

where 

4 N u m e r i c a l  m e t h o d  for  the  e x a c t  e q u a t i o n s  

We use the regularized central difference scheme and the extended successive-over-relaxation 
(E.S.O.R) iterative method suggested by Strikwerda [12], [13] to solve the system (2.6)-(2.14). 
The finite difference scheme used here is briefly explained below. Let db d2 and d3 be the spans of 
finite differences for 4, ~, 0, respectively. The following formulas were used for the derivatives to 
convert the differential equations into finite difference equations: 

f ( i ,  j ,  k) = J(~,, rlj, Ok) = f ( i  . d~, j . d2, k . d3) , 

k) + f ( i  - 1, j ,  k) - 2f(i ,  j ,  k)]/d,  2, 

k) + f ( i , j  - 1, k) - 2 f ( i , j ,  k)]/d2 2 . 

1) + f ( i , j ,  k - 1) - 2 f ( i , j ,  k)]/d3 2. 

+ 1 , j  + 1, k) - f ( i  - 1 , j  + 1, k) - f ( i  + 1 , j  - 1, k) + f ( i  - 1 , j  - 1, k)]/(4d,d2),  

-- (1/6) d12~r 

(1/6) 2 2 -- d 2 3 , _ f i , + f .  

- 0 / 6 )  d , % _ a L f .  

(6r (i, j ,  k) = [f( i  + 1, j ,  k) - f ( i  - 1, j ,  k) l / (2dl) ,  

(at+f) (i,j, k) = [f(i + 1,j, k) - f ( i , j ,  k )] /d , ,  

(ar ( i , j ,  k) = [ f ( i , j ,  k) - f ( i  - 1 , j ,  k )] /d , ,  

and the corresponding differences for 1/and 0 can be defined similarly. The iterative scheme is 
given below: 

u*(i. j. k) = u(i. j. k) - o~ {u(i. j. k) 

u(i. j. k + 1) + u(i. j. k - 1) 
+ da2 + rZ(2ugn~lx + u~q~x) 

- - R r 2 ( u ( u r  r u n q , ] /  

[ ( 2  2 ) 22] } (4.1) r2 ~ + d 2  -~(~2+"r2) + ~  , 
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f 
v*(i, j, k) = v(i, j, k) - co ~v(i, j, k) 

I r2 (V( i+ l , j , k )~_2v ( i - l , j , k )~  + v ( i , j + l , k , + v ( i , j - l , k ) d 2  z (t/x 2 + tlrZ )) 

v(i, j,  k + 1) + v(i, j,  k - 1) 
+ + rZ(2vcnt/~ + v~tlx~) 

d32 

- Rr2(u(vr + Vntlx ) + vv~tlr + pntlr- o~ TT sin 0) -- Rr(wvo - -  W 2) q- rvnrlr- 2woOl 

w*(i, j, k) = w(i, j,  k) - co {w(i ,  j,  k) 

I r 2 ( - w ( i + l ' j ' k ) + w ( i - l ' j ' k ) w ( i ' j + l ' k ) + w ( i ' j - l ' k )  ) 
--  dl-- 2- + d2 2 ( t/x2 ~- t/r 2) 

w(i, j, k + 1) + w(i, j, k - 1) 
+ d3 2 + r2(2wr + W~tlxx) 

- Rr2(u(wr + w,rl~)+ vw,rlr-O~TTcosO)-- Rr(wwo + wv + Po)+ rw,rlr + 2Vo[/ 

+ - -  (r/x 2 + r/~ 2) + - -  + 1 (4.3) 
da z d3 2 . 

T*(i, j, k) = T(i, j, k) - co {T(i, j, k) 

T(i, j, k + 1) + T(i, j, k - 1) 
q- -]- r2(2Tcnt/x q- Tnrlxx) 

d32 

- r2 (u (Tr  + Tntlx) + vT~rlr)/Pe -1 - rwTo/Pe -1 + r2Qr/Pe -1 + rTntlr~/ 

p*(i. j. k) = p(i. j. k) - 7{[r(ur + u,~lx ) + v + rv,tlr + Wo] - 6}. (4.5) 

where u*, v*, w*, T* and  p* are the upda ted  values of the cor responding  functions, co and  ? are 
i teration constants.  N o t e  according  to Strikwerda, instead of satisfying the equat ion  

V.u=0 ,  

we nse 

17 . u  = 6, (4.6) 

where 6 is the average of 17 �9 u and is of the order  of t runcat ion  error  after some iterations. This 

improves convergence.  
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The values inside {-..} of (4.1)-(4.5) are actually the imbalances of the corresponding 
equations and are used as the measurements of the errors of the computations.  

For  the boundary  conditions in i-direction, we impose periodic conditions for u, v, w and 
T and the pressure drop condition for p: 

p(l, tl, O) = p(O, q, O) + pd. 

At t / =  1, cubic interpolation was used for pressure, and boundary  conditions (2.12)-  (2.13) were 
used for (u, v, w) and T. Periodic conditions were imposed for all functions at 0 = 0, 21c. 

Due to the singularity of the polar  coordinate system, special arrangement  has to be made for 
the boundary  conditions at t / =  0 [14]. For  the pressure and temperature, we take averages of the 
function values around the i-axis (i.e., t / =  0) and then use cubic extrapolation for the function 
values at t / =  0. In terms of formulas, let 

n - - 1  

f~(i) = ~ f(i ,  1, k)/n, 
k = 0  

n - 1  

f2(i) = ~ f(i ,  2, k)/n, 
k = 0  

then the function values at t / =  0 are given by 

f(i ,  0, k) = (4 "f~(i) - f2 ( i ) ) /3 ,  k = 0 . . . . .  n. 

The polar  coordinate representation of the velocity field is multivalued at q = 0. Let (V, W) be 
the Cartesian representation, then the relation between (V, W) and the polar  notat ion (v, w) is 

given below: 

v = V c o s 0 + W s i n 0 ,  

w = - V s i n  0 + W cos 0. 

To determine the values of (v, w) at q = 0, we first compute the Cartesian velocity (V, W) at 
j = 1, 2, the neighborhood around j = 0. Then in the same way as we did for the scalar function, 
we find the values (Vo(i), Wo(i)) of(V, W) at q = 0 (note: (V, W) is single valued). Now the values of 
(v, w) can be calculated from 

v(i, O, k) = Vo(i) cos Ok + Wo(i) sin Ok, 

w(i, 0, k) --- -Vo(i) sin Ok + Wo(i) cos Ok, 

where Ok = (2~k)/n. 
Our  experience indicates that co = 0 .1 -1 .0  and 7 = 0 .1-0 .01  give good convergence. 

Computat ions  were carried out for various situations and results are given in Section 5. 

5 Results of the computations and discussions 

We are interested in the accuracy of the longwave approximation,  the flux-pressure drop 
relations, the efficiency of the transport  and the influences of various parameters  on the flow. 
Special attention was paid to observe differences between the results from the 3-D model and the 
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results f rom the 2-D model.  To show the 3-D solut ion,  different cross-sections were t aken  to 

observe the details of  the flow. As an  example,  Fig. 2 gives 0-cross sections of the u - v velocity 

field, the pressure and  tempera ture  field at 0 = 0 ~ and  90 ~ x-cross sections of the v - w field at 

x = O, 1/4, 1/2 a n d  3l/4. In  the u - v di rect ion field, darker  lines indicate  positive flow where flow 

goes faster t h a n  the wave speed. W h e n  drawing  the pressure and  tempera ture  fields, a cross " X "  

a) u - v  field 

0=00 

0=900 

Num. Solution. Longwave Solution 

b) p-field Num. Solution. 

Pndn~228 

0-=--900 

Longwave Solution 

c) T-f ield Num. Solution. Longwave Solution 

8=-0o 

0=90 ~ 

d) v -w  field, x=O x = q 4  x = i / 2  x=3 l /4  

+ 

Fig. 2. Velocity, pressure and temperature field of solutions R = 0.1, Pe = 0.1, h T = 10, c~r = 100, QT = 10, 
~0 = 10, Pa = -- l ,  ~ = 0.1, a = 0.5 
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ind ica tes  whe re  the  field gets m a x i m u m  a n d  a do t  "-"  ind ica tes  m i n i m u m .  By s t u d y i n g  the  

so lu t ions ,  we h a v e  the  fo l lowing  o b s e r v a t i o n s :  

(i) Accuracy of the longwave approximation 
F r o m  Table  1 we see t h a t  the  l o n g w a v e  so lu t ions  p r o v i d e  g o o d  a p p r o x i m a t i o n s  to  the  exact  

so lu t ions ,  especial ly  for  u, T a n d  p. T h e  a p p r o x i m a t i o n s  for  v a n d  w were  n o t  as good .  T h e  r e a s o n  

for  th is  is t h a t  the  a s s u m p t i o n s  v = O(e) a n d  w = O(c~) are  n o t  t rue  w h e n  e r  is n o t  small .  Tab le  2 

shows  t h a t  the  re la t ive  e r ro r s  for  v a n d  w can  be  as h i g h  as 2 3 %  w h e n  c~r = 100 a n d  ~ = 0.1. 

F i g u r e  2 shows  c lear  differences be t w een  l o n g w a v e  a n d  n u m e r i c a l  so lu t ions .  

(ii) Velocity field: positive motion, trappings and backflow 
O u r  resul t s  s h o w  t h a t  back f low  a n d  t r a p p i n g s  are  m u c h  m o r e  c o m m o n  in 3-D case t h a n  in 2 -D 

case. I t  is c o m m o n  in 3-D case  to h a v e  back f low  at  the  n a r r o w e r  p a r t  of  the  t ube  (neck) a n d  a p a r t  

Table 1. Comparison between the longwave and the numerical solutions R = 0.l, Pe = 0.1, hr  = 10, c~ r = 10, 
Q T = 1 0 ,  (p=10 ,  P a = - I , a = 0 . 5  

c~ u v w T p 

Longwave solution relative imbalance 

0.025 0.000 052 8 0.016166 0.025 201 0.000 008 4 
0.05 0.0001951 0.009 964 0.017 561 0.000 032 3 
0.1 0.000 716 7 0.006192 0.011763 0.000119 4 

0.000 000 04 
0.000 00012 
0.000 000 34 

Numerical solution relative imbalance 

0.025 0.000 000 2 0.000 015 0.000 033 0.000 0001 
0.05 0.000 0011 0.000 009 0.000 021 0.000 000 4 
0.1 0.000 005 7 0.000 006 0.000 013 0.000 0012 

0.00000105 
0.00000163 
0.000 004 59 

Relative errors of longwave solution compared to numerical solutions 

0.025 0.0061613 0.034 728 0.052 036 0.005 743 5 
0.05 0.018 343 8 0.026 451 0.039 928 0.019 7051 
0.1 0.058 627 8 0.041004 0.029 868 0.055 710 6 

0.002 367 76 
0.003 375 50 
0.005 093 89 

Note: (i) Longwave solutions give good approximation in general 
(ii) When e becomes smaller, the approximation becomes better for u, p, T as expected; the 

approximations for v and w did not improve because the assumptions v = O(c~) and w = O(e) are 
not true when c~r is not smal. 

Table 2. Errors ofc~r computations R = 0.1, Pe = 0.1, hr  = 10, QT = 10, q) = 10, Pe = --1, c~ = 0.1, a = 0.5 

er  U V W T p 

Long wave relative imbalance 

0 0.000 716 7 0.002 817 0.000 000 0.000119 4 
10 0.0007167 0.006192 0.011763 0.0001194 

100 0.000 716 7 0.055 204 0.115 071 0.000119 4 

0.000 000 23 
0.000 000 48 
0.000 003 42 

Numerical solution relative imbalance 

0 0.000 002 5 0.000 002 0.000 003 0.000 0001 
10 0.000 005 7 0.000 006 0.000 013 0.000 0012 

100 0.000 005 9 0.000 045 0.000 097 0.000 0013 

0.000 002 27 
0.000 004 59 
0.00001216 

Relative errors of longwave solution compared to numerical solutions 

0 0.058 6821 0.033 668 0.001595 0.056 373 0 
10 0.058 627 8 0.041004 0.029 868 0.055 710 6 

100 0.065 888 7 0.138 638 0.235 067 0.055 6214 

0.002 216 58 
0.005 093 89 
0.034 323 04 
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of positive motion at the wider part  of the tube. Trapping then occurs between the positive 

motion and the boundary. This is because the cross area of the 3-D tube is proport ional  to the 

square of the radius while the cross "area" of the 2-D channel is linearly proportional to the width 
of the channel. That makes the pushing in 3-D case much harder when the tube contracts. The 

fact that backflow appears at the narrower part  of the tube indicates that the fluid is leaking 
backwards there. The positive motion part  is twisted when C~T is not small due to buoyant  effect. 

The twisting is more noticeable when e r  is larger. 

(iii) Pressure field 
The contour lines of the pressure fields are shown in Figs. 2 and 3. The figures show that the 
maximum of pressure appears at the right side of the "neck" and the minimum appears at the left 

side of the neck. So the pressure increases when passing the neck and decreases when going 

through the wider part of the tube. When er  becomes large, the pressure fields becomes twisted. 

The maximum appears at the lower part  of the tube and the minimum appears at the upper part 
of the tube. The pressure then pushes the fluid upwards. This agrees with the velocity field. 

(iv) Influence of O~ T on the solutions 
Figure 3 shows the u - v cross sections and pressure field for various C~T values�9 When c~r = 0, 
there is no buoyant  effect�9 Therefore, the flow is axisymmetric. When C~T becomes larger, the 

buoyant  effect becomes more apparent and the vertical motion becomes more noticeable. 

Figure 4 gives 2-D velocity fields for comparison�9 At 7T = 100, the flow is almost symmetric�9 

Even at C~T = 999, the buoyant  effect is still very small. It takes a much smaller change of C~T to 

u - v  field. 

, r r o , - - -  " , . t r . , - - ~  * 

p---field 

~T =0" 

 =1oo 

 =500 

Fig. 3. u - v field and p field with er change. 0 = 90 ~ R = 0.1, Pe = 0.1, h T = 1 0 ,  QT = 10, q~ = 10, Pa = -- 1, 
c~ = 0.1, a = 0.5 

C~T=lO0 ~ o~=999 

Fig. 4. Two dimensional u - v field with C~T change 
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R=0.1 

R= l . 0  

R=IO 

Fig. 5. 

f f i : : : : ! f  f i : : : :  

�9 ~ . = . 

Pd=-lO00 

Pd=O 

Pd=3000 

Fig. 6. 

a=0.2 

a=0.4 

a=0.8 

Fig. 7. 

Fig. 5. u - v  field with R change. 0 = 90 ~ , Pe = ~ = 0.1, 
er = Qr = ~o = 10, Pa = -50, a = 0.5. Fig. 6. u -  v field 
with Pd change. 0 = 90 ~ R = Pe = c~ = 0.1, 
h r = Q r = @ = e r = 1 0 ,  a=0.5.  Fig. 7. u -- v field 
with a = h/d change. 0 = 90 ~ R = c~ = Pe = 0.1, 
hr = c~r = Qr = 10, Pa = - 1  

show a considerable change in the flow in 3-D case. Therefore, temperature is a much more 

important  factor than we might have guessed based on the knowledge from 2-D channel flow. 

(v) Influence o f  Reynolds number on the f low 

Figure 5 shows that the solution is sensitive to the changes of Reynolds number. From the figure, 

we can see that when R -- 0.1, there is backflow at the neck. However, when R = 10, there is no 

backflow at all. This is because when the fluid is thinner (i.e., R is larger), the pressure is able to 

push the fluid forward all the way through. We also note that the flow in the vertical direction 

becomes more noticeable when the Reynolds number  becomes larger. The v, w components are 

no longer small. The reason is the same: when the fluid becomes thinner, the buoyant  force causes 

more noticeable motion in the vertical direction. This also explains why the longwave 

approximation becomes poorer for larger R values. Numerically, smaller iterative parameters 

~o and ~ should be chosen to compute for larger R values. 

(vi) Influence o f  pressure drop on the f low 

Pressure drop is the main driving force of the flow. Figure 6 shows that when the pressure 

decreases more over the path, it pushes the flow harder, the positive port ion becomes larger and 

more fluid is pushed forward. 
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(vii) Influence o f  a-change on the f l o w  

Figure 7 gives the velocity fields with respect to the moving frame for a = 0.2, 0.4 and 0.8 where 
a = hid is the wave amplitude/tube radius ratio. When a is small, there is no positive flow, no 
trapping. When a increases, gradually, a small positive flow region appears near the center of the 

tube. When a becomes larger, the positive flow region becomes larger, a is the main parameter 
which has major influence on the flux, i.e., the efficiency of the fluid transport. When physically 

possible, the larger a is, the more efficient the transport will be. But when a is too large (i.e., very 

close to 1.0. a has to be less than 1.0), the tube may not be able to bear the stretching. So 

consideration must be given to both the efficiency and the elastic property of the tube. The flux vs. 

a curve is given in Fig. 8. 

R= 0.1 alp=0.1 kt=lO a=0,5 R=0.1 alp=0.1 kt=lO a=0.5 

Qf 

-1000 IOO0 

-0.242 Pd 

flux-=-2.329 ftux*=-0.242 Pd=-looO--IO00 

Qf 

3.93,2 

- 5 0 O O ~  

-6.502 

5O00 

~ d 

flux-=-6.502 flux*= 3.932 Pd =-5000-- 5000 

R=0.1 alp=0.1 kt=lO at=lO Pd=-l.0 R=0.1 alp=0.1 kt=lO a=0.5 Pd=-l.0 

Qf 
0.1 0.9 a 

-3.030 
flux-=-3.030 flux,=-O.051 a=0.1-0.9 

Qf 

10000 
f ~  

O( T 

-0.887 

/ 

f[ux-=- 1.284 flux*=-0.887 at = 1000-10000 

Longwave 

Fig. 8. Flux curves with Pd, O;T and a = h/d chanNng 

Numerical 
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(v i i i )  F l u x  curve s  

Figure 8 gives Qy  - pa, Qy - a and Qy  - c~r curves. The Qy  - pa curve is almost linear. The 

Q - a curve (flux-wave amplitude) shows when 0.1 _< a < 0.6, the relat ion is almost  linear. When 

0.6 < a, the increase becomes slower. I t  seems 0.6 < a < 0.7 is a good region to gain good 

efficiency without  requiring extreme stretching of the tube. The Qr  - c~r curve shows that  flux 

increases with ~r  and then the curve becomes almost flat when 7r  > 8 000. 
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