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ON THE GEOMETRY OF MODULI SPACES 

DEDICATED TO KARL STEIN 

Georg Schumacher 

We construct  a K~hler metric on the moduli spaces of com- 
pact complex manifolds with cj<O and of polarized compact 
K~hler manifolds with Cl=O, which is a genera l izat ion of 
the Petersson-Weil metrlco I t  is induced by the var ia t ion  
of the K~hler-Einstein metrics on the f ibers  that  ex is t  
according to the Calabi-Yau theorem. We compute the above 
metric on the moduli spaces of polar ized to r i  and sym- 
p lec t i c  manifolds. I t  turns out to be the MaaB metric on 
the Siegel upper ha l f  space and the Bergmann metric on 
a symmetric space of type TIT resp. In pa r t i cu la r  i t  is 
K~hler-Einstein with negative curvature. 

The re la t ionsh ip  between deformation theory and Teich- 

muller theory of Riemann surfaces was invest igated by 

Weil. He used the fact  that  the Kodaira-Spencer class 

is given by a quadrat ic d i f f e r e n t i a l , t o  define a metric 

on the Teichm~ller space, which had been studied before 

in qui te a d i f f e r e n t  context by Petersson. Weil posed 

the problem about the possible K~hler property and the 

curvature of th is  metric. Ahlfors gave an a f f i rmat ive  

answer to the f i r s t  question and showed that  the Ricci 

Heisenberg-Stipendiat der Deutschen Forschungsgemein- 
schaft 
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curvature and the holomorphic sect ional curvature are 

s t r i c t l y  negative. However, the methods are res t r i c ted  

to Riemann surfaces. 

For higher dimensional manifolds, coarse moduli spaces 

ex is t  both in the algebraic and non-algebraic case. In 

the algebraic case, construct ions were given by Matsusaka, 

Mumford, Fogarty, Popp and others. Apart from the class 

of canonical ly  polarized manifolds one mostly considers 

polarized algebraic var ie t ies  - these are equipped with 

an embedding in to a pro jec t ive  space. In ana ly t ic  geometry 

one had to regard as "models" compact manifolds together 

with K~hler classes. The coarse moduli space of polarized 

Kahler manifolds with vanishing f i r s t  Chern class was con- 

structed in (SCH2) and in general for  polarized non-ruled 

manifolds in (SCH3] and independently by Fu j ik i  (FU). 

In the present paper we construct  an i n t r i n s i c  metric 

f i r s t  on local ,  universal fami l ies of manifolds with 

Cl<O and Cl=O and show i t s  K~hler property, The metric is 

induced by the var ia t ion  of the K~hler-Einstein metrics 

on the corresponding f ibers  according to the Calabi-Yau 

theorem: the norm on the tangent space is given by the 

norm of the harmonic representat ives of the Kodaira- 

Spencer classes with respect to the K~hler-Einstein 

metric. A par t ia l  resu l t  by means of a d i f f e ren t  construc- 

t ion was given by Koiso (KO]. He studies real deformations 

of Einstein metrics on f ixed manifolds and constructs a 

metric for  the classes of manifolds with Cl<O and Cl=O, 

b2=l. Both classes consist  of pro jec t ive  manifolds. Since 

the volume is kept f ixed in the l a t t e r  case, a l l  fami l ies 

are polarized by themselves. 
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We can show that  the above general ized Petersson-Weil 

metr ics can be pushed down to the moduli spaces in a 

unique way. Among K~hler-Einste in manifolds wi th non-posi- 

t i ve  curvature, there are classes, closed under small de- 

formations, which consist  j us t  of a lgebraic va r ie t i es ,  

namely those wi th Cl<O and the un i ta ry  manifolds, As the 

corresponding moduli spaces can be constructed from H i lber t  

schemes, one might suppose a possible re l a t i on  to K~hler 

( -E ins te in )  metrics on quas i -p ro jec t i ve  va r ie t i es .  The 

chosen approach al lows a computation in the remaining 

cases; namely fo r  moduli spaces of polar ized t o r i  we 

obtain the MaaB metrics on Siegel upper ha l f  spaces, and 

the metr ic on the coarse moduli space of symplectic mani- 

fo lds is induced by the Bergman metr ic on bounded sym- 

metr ic domains of type ~I, In both cases we get K~hler- 

Einstein metrics wi th negative curvature, 

I would l i ke  to thank Y,T, Siu fo r  drawing my a t ten t ion  
to the problem of a general ized Petersson-Weil metr ic,  
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I. Families of polarized K~hler manifolds, moduli spaces 

( I . I )  The assignment of a f ixed K~hler class to a compact 

K~hler manifold turned out to be the proper subst i tute 

for a model in the algebraic s i tua t ion .  Such objects, so- 

cal led "polar ized K~hler manifolds" are the correct  ones 

in regard of the construct ion and d i f f e r e n t i a l  geometric 

invest igat ion of moduli spaces, since the d i s t i nc t i on  of 

K~hler manifolds by polar izat ions is necessary for the 

Hausdorff property of moduli spaces. 

DEFINITION: ( i )  Let X be a compact complex manifold and 
o 

a K~hler c lass .  Then (X o, Xo) is ca l l ed  a polar ized 
o 

manifold. 

( i i )  A fami ly __~ polarized manifolds (Xs, 

smS, parametrized by a reduced complex space S, is 

given by a proper, smooth holomorphic map f:X ~ S 
1 f - I  together with XX/s~(RIf;,..~X/s)(S) such that (s)=X s 

and ~X/SIXs=X X for sES. 
s 

~X )' 
s 

( i i i )  Let ( f :X -~ S, XX/s) and (g:Y -+ S, Xy/s) 

be fami l ies of polarized manifolds, then an isomorphism 

hm~y is a biholomorphic map h: X ~  Y over S with /S = 

~X/S" In par t i cu la r ,  an isomorphism of polarized manifolds 

has to be compatible with K~hler classes. 
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DEFINITION: Let f :X -~S be a fami ly  of complex compact 

manifolds. Then a (strong) re la t i ve  K~hler form ~X/S is 

a re la t i ve  ( l , l ) - f o r m ,  which is given by ~X/sIUj= i~/s~/sPj  

with respect to a sui table open covering {Uj} of X. The 

funct ions pj have to be s t r i c t l y  plurisubharmonic on 

UjnXs, seS and Pj-Pk are harmonic on U aUj k" A weak re la -  

t i ve  K~hler form is given in a s im i la r  way, where the 

.nU ( Pj-Pk need only be harmonic on the f ibers  XsnU J k" ~/S 

and ~/S denote der ivat ives in f i be r  d i rec t ion ,  ) 

(1.2) PROPOSITION: Let (X-+S, ~X/S ) be a fami ly  o f  pola- 

r ized manifolds. Then, l o c a l l y  with respect to S, XX/S 

i s  represented by a (strong) re la t i ve  K~hler form mX/S" 

In  par t i cu la r ,  any re la t i ve  K~hler class is induced bs 

global K~hler form on X for  s u f f i c i e n t l y  small S. 

PROOF: By var ia t ion  of Hodge structures the real section 
1 1 

AX/sg(R fm~x/s)(S ) corresponds to a f ixed Aoe(R2fm~)(S) 

=H2(Xo , ~ ) .  Consider the short exact sequence 

Re 
0 § ]R X > 0 X > H X--+ 0 

where Re maps a holomorphic funct ion onto i t s  real part 

and L is the mu l t i p l i ca t i on  by i .  I t  induces 

R1 f"~X R2f;~]R X ---+ R2f.::O X 

By construct ion the image of ~o in (R2fmOx)(S) vanishes. 

On a neighborhood of s i t  is represented by a cocycle 
0 

OjkgZI(U, HX), where ZZ is a su i tab le  open covering of X. 
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So ~jk=Tj-Tk,Tj  real d i f f e ren t i ab le  functions. Set 

x=i~/s~/sTj .  On the other hand IX/s induces a d i f fe ren-  

t i ab le  fami ly of K~hler forms #=i~/s~/sqj  , qj-qk harmonic 

on f ibers,  so X= ~+i~/s~/sg, with a real funct ion g on X, 

So @=i~/s~/sr j ,  r =T -g and r - r k = ~  J j j jk" 

(1.3) DEFINITION: Let (X o, Io) be a polarized compact 

manifold. A deformation of (X o, Io) over a reduced com- 

plex space S with a dist inguished base point s ES is a 
O 

fami ly of polarized manifolds (X-+S, IX/S) together with 

an ismorphism (Xo, Io) -~  (X s , I X ). The usual notions 
O S 

O 

of deformation theory carry over l i t e r a l l y .  

(].4) PROPOSITION((SCH2,3)): Any polarized K~hler mani- 

fold possesses a versal K~hler deformation. 

(1.5) Compact complex manifolds X with negative f i r s t  
O 

Chern class are polarized ( in the or ig ina l  algebraic 

sense) by the (pos i t i ve )  canonical bundle. The ampleness 

is preserved under local deformations, the canonical 

bundle is homogeneous, and the automorphism group is 

f i n i t e .  Moreover by Matsusaka's theorem, in a fami ly of 

canonical ly polarized manifolds, one can choose a uniform 

power of the canonical bundles to be very ample. Thus the 

H i lber t  scheme induces complete deformations. For pola- 

r ized K~hler manifolds with vanishing f i r s t  Chern class 

we have an analogous s i tua t ion  ( fo r  a more general resu l t  

see [SCH3] ): 
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(1.6) PROPOSITION: Let (X-+S, ~X/S) be a family o f  pola- 

r ized manifolds with Cl(Xs)~=O. Then dim Aut(Xs)=Const. 

In pa r t i cu la r ,  any such manifold possesses a universal 

K~hler deformation. 

(1.7) In general, there may be s t i l l  isomorphic f ibers  

in a universal deformation. This s i tua t ion  is much l i ke  

the s i t ua t i on  with the Teichm~ller family:  i t  can be 

handled e i the r  by imposing an addi t iona l  s t ructure l i ke  

a marking to d is t ingu ish  between isomorphic f ibers  - 

th is  can be done with K3 surfaces - or rather by means of 

an i d e n t i f i c a t i o n  of corresponding points of the base. I f  

there ac tua l l y  ex is t  such points, one can see eas i ly  that  

there does no more ex is t  a family of manifolds over the 

quot ient  space. The base spaces of universal deformations 

of marked objects may patch together and y ie ld  universal 

fami l ies ,  In the other s i tua t ion ,  the f i r s t  question is 

for  the a n a l y t i c i t y  (and Hausd6rff property) of the 

quot ient  spaces, and the second is, to glue these quot ients 

together,  The resu l t ing  space is cal led a "coarse moduli 

space". 

(1.8) DEFINITION: The moduli functor  R with respect to a 

given co l l ec t i on  K of polar ized manifolds assigns to a 

complex space S the set ~(S) of isomorphism classes of 

fami l ies of objects from K over S. The map M(S) § ~(R) 

induced by a holomorphic map R § S is defined by means of 

base change, A coarse moduli space M for  the moduli 

functor  M is character ized uniquely up to isomorphism hy 

the fo l lowing condi t ions:  
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( i )  there exists a morphism of functors ~:M § h M 

( i i )  i f  p denotes the reduced point ,  then ~(p) is 

b i j e c t i v e  

( i i i )  i f  ~:R § h N is another morphism, then there 

is a unique holomorphic mapping F:M § N with 

~=h(F)o~. 

THEOREM (ISCH2)): There ex is ts  a coarse moduli space of 

polar ized compact manifolds with c I ,~=0  

A more general resu l t  was proved in ISCH3] and, indepen- 

dent ly  by Fu j i k i  IFU), 

( I . 9 )  Our aim is to give a d i f f e r e n t i a l  geometric descr ip-  

t ion of the coarse moduli space of compact polar ized 

manifolds with Cl<O and Cl=O. This w i l l  be done by con- 

s t ruc t ing  an i n t r i n s i c  K~hler metr ic on the bases of uni -  

versal deformations, which can be pushed down to the 

moduli space in a unique way. As one can construct  the 

coarse moduli spaces by the Calabi-Yau theorem, i t  is 

reasonable to invest igate the var ia t ion  of K~hler-Einste in 

metrics on the f ibers .  

2. Famil ies of polar ized K~hler-Einste in manifolds with 

non-posi t ive curvature - construct ion of the canonical 

metr ic 

(2.1) Let X be a compact K~hler manifold, We use the 

o z=zj=(z I fo l lowing notat ions. Let . . . . .  z~) be local 

(holmorphic) coordinates. A K~hler form is given by 
i w X = ~ g ~ (  z)dz~^dzB 

0 
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The f i r s t  Chern class is represented by the Ricci form: 

i I )IEH2(Xo, ~) .  Cl(Xo)= ~ Ricci(~Xo 

Ricc i (~  x ) = - i ~ l o g  det(ga~(z))=R~dz~^dzB. 
o 

The Ricci tensor can also be wr i t t en  as a contract ion of 

the curvature tensor. We use the convention 

R m -=+ ~__F a yoB azB Y~ ' R~+RYaBu 

(2.2)  We reca l l  Yau's theorem as fa r  as i t  concerns K~hler- 

Einste in manifolds. 

THEOREM(S.T. YAU): ( i )  Let X ~ be a compact complex mani- 

Cold wi th Cl(Xo)<O.Then there ex is ts  a unique K~hler 

form ~X wi th Ricci (~X)=-<~ " 
o 0 o 

( i i )  Let (X o, ~o ) be a polar ized mani- 

fo ld  w i t  h Cl(Xo)~=O. Then there ex is ts  a unique K~hler 

form mX ~ o '  which is R i c c i - f l a t :  Ricci (w X )=0, 
o 0 

(2.3) PROPOSITION: Let X§ be a fami ly  o__ff compact mani- 

fo lds with Cl<O, 9_[ l e t  (X§ be a fami ly  o__ff pola-  

r ized manifolds with Cl=O. Then the solut ions of the 

Calabi-problem y ie ld  a (s t rong) r e l a t i ve  K~hler metr ic .  

PROOF: Set ~X/S:=_2~cI(X/S)E(Rlfm~/s)(S)I  in the f i r s t  

case. The K~hler-Einste in metr ics on the f ibers  depend 

d i f f e r e n t i a b l y  on the parameter and thus give r ise  to a 

weak r e l a t i v e  K~hler metr ic ~X/S by [KO, I0. I, I0.5) (see 

also ISCHI)). With respect to an open covering {U~ of X 
J 
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i t  is given by i~ /S~/Sqj  as in ( I . I ) .  On the other  hand, 

by (1 .2 ) ,  i t  is represented by a strong K~hler form 

~X /S= i~ / sg / s r j .  So COX/S =~X/S+ig/sg/s r with a real func t ion  

r The 9 j : = q j - r j - r  s a t i s f y  ~/S3/SCj=O. Set p j : = q j - g j = r j + r  

so ~X /s IU j= ig / s~ / sP j  and p j - P k = r j - r k  is harmonic on Ujk. 

(2 .4)  Given a f am i l y  of mani fo lds wi th  a strong, r e l a t i v e  

K~hler form mX/S' we use holomorphic coordinates ( z , s )  

on X, wi th zcU=~ n and sES, such tha t  f ( z , s ) = s .  Then 

i 
~X/S=~ga~(z,s)dz~^dz 6, 

We w i l l  use holomorphic coord inates in the f i r s t  place 

together  wi th covar ian t  de r i va t i ves  in f i b e r  d i r e c t i o n s ,  

denoted by ind ices in c l ass i ca l  no ta t ion .  Problems w i l l  

be local  wi th respect to the base, so S can be thought of 

asa reduced subspace of  an open subset in a complex num- 

ber space, Thus t o t a l  and p a r t i a l  de r i va t i ves  by coo rd i -  

nate func t ions  s u v , s do make sense. 

LEMMA: L e t ~ / S  be a r e l a t i v e  K~hler form as above. Then 

(I) ~RB-y e~- ~g-B-Y + R K ~ K  R K ~g~ 

~s u = -g [--~j:~ Y ~s u as u 

o r  

(2) dz ^dz  : [] dz ^dz ]. 
~ s  L~s u " 

By con t rac t ion :  

~s u = - L~---~---J ;(~6 - ~ 8s u j 
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The i n f i n i t e s i m a l  K~h ler -E ins te in  cond i t ion  reads: 

DR ~gT8 
(4) Y6 = k" ", k~]R , here k=O,-I 

~s u ~s u 

o r  

(5) A = k. . - -  ; g = det(ge~).  
~ s  u 

Observe tha t  in general a l l  of  the above de r i va t i ves  are 

no global tensors;  s t i l l  we use the ca lcu lus of  covar iant  

de r i va t i ves  l o c a l l y .  

(2 .5)  A de r i va t i ve  of a r e l a t i v e  K~hler form by a tangent 

vector  on the base can only  be def ined as fo l lows:  Given 

a proper, smooth holomorphic map X § S as above, s mS a 
o 

d is t i ngu ished  po in t ,  S~Uc~ n such tha t  So=O, and mX/S a 

weak K~hler form. For a d i f f e r e n t i a b l e  t r i v i a l i s a t i o n  

@:X xS ~> X over S we def ine 
o 

{[ �9 ] ] d := ( r  I * d ~ (~x/s) 
u ~X/S X~ ds s-o , ds u _ 

S=O 

PROPOSITION: Let mX/S be a weak r e l a t i v e  K~hler form and 

~:X xS ~ X a dif feomorphism over S. Then 
0 

( i )  d 
ds u ~X/S s=o is a closed complex 2-form. 

( i i )  [d-~ wx/S s=o]EH2(X~ ) does not depend on 

the choice of  { .  

( i i i )  I f  ~X/S is a strong r e l a t i v e  K~hler form, then 

t ;~ ~X/S s=o 
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REMARK: One can rea l i ze  any representa t ive  of the above 

cohomology class by d i f f e r e n t i a b l e  coordinates. But these 

are no longer t r i v i a l i z i n g  - not even over a complex one- 

dimensional base. 

We choose an open covering {Uj}  of X with holomorphic co- 

ordinates ( z j , s ) ;  f ( z j , s ) = s .  Denote by Zjk t r a n s i t i o n  

funct ions:  

( z j , s ) = ( Z j k ( Z k ,  S),S). 

We may assume thatr  x{O}= id. Thus we get an extension o 
w. of holomorphic coordinates on the centra l  f i b e r  to 

J 
d i f f e r e n t i a b l e  coordinates of the whole fami ly .  

w.=w ( z j , s )  z j ,O J j , wj( )=zj  

wj=wjk(Wk)=Zjk(Wk ,0) 

And r  is given by ( z j , s )  > ( w j ( z j , s ) , s ) .  

Now, because of the r e l a t i v e  closedness of ~X/S' one can 

show in an elementary way: 

(6) dwx/s 9gm#(z,s) 
= +bjum;#+bju#; m dz~^dz~ 

ds u s=o ~s u s=o J J 

~ X 
dz~^dz~ +bju=;=dz%^dz~o#- + b 

J J ju~;T J J 

9z~(wj s) 
where b~ = b~ __(zj) = J ' s=o 

ju ju ~s u w=z 

az (wj,s) 
and b~ = b~ ( z )  = s=o 

JU JU j ~s u w=z . 

These quan t i t i es  s a t i s f y  the fo l low ing  t ransformat ion ru les:  

I 1 (7) b ju (Z j )  = 3z~ " b~u(Zk) - 9s u 

240 



SCHUMACHER 

~Z~k(Zk,O ) - 
(8) b~.u(Zj) = ~z~ "b~u(Zk) 

= B = b SO B~u : b~. u and u~3 : j u ;~  are (g lobal)  tensors. 

B~__=_ b ~ _ REMARK: Since l oca l l y  uB u;B ' th is  tensor defines 

a ~-closed (O,1)-form with values in the tangent bundle 

on X , In fact ,  i t  represents the image 
0 

pl d-~--]CHl(Xo, TX ) of ~ cT (S) LdsUj o ds u So 

under the Kodaira-Spencer map p of the given deformation 

(see (KO-SP)). 

We prove the proposi t ion:  ( i )  fo l lows d i r e c t l y  from the 

local descr ipt ion of g ~ ( z , s )  and (6). An i n f i n i t es ima l  

var ia t ion  of ~ with ~IX =id kept f ixed is given by a set 
0 

~ ,  ~B of vector f i e l ds  on X with a cer ta in condit ion 
U U O' 

on commutativity. The e f fec t  on the to ta l  der ivat ive of 

WX/S is given by 

bjua --+ bju~ + Eua ; b jug- - *  bjug + Eug" 

This shows ( i i ) .  Now le t  WX/S be a strong K~hler form, 
# 

Then ~ WX/S is a d i f f e ren t i ab l e  fami ly  of closed 

d i f f e ren t i ab l e  forms on X with constant cohomology class o 
in H2(Xo,~ ). So by standard harmonic theory we have 

# 

=  x/slXo + d (s) 

where v(s) is a d i f f e ren t i ab l e  fami ly  of l - forms, Taking 
d der ivat ives - -  on e i ther  side gives ( i i i ) ,  

ds u 
We get the fo l lowing set of equations on X : 

0 
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(9a) 
~gJ#(zj, s) 

~s u S=O 
+ bju~; s + Bus;# = Eus;#- Eu~;s 

(9b) B -B  =E -E  
uc~;y uT;s us;T uy;s 

(9c) B u ~ -  Bu~ =EuB;6-Eu6;B 

(2.6) From now on, ~X/S w i l l  be a strong re l a t i ve  K~hler 

form, which is Kahler-Einste in on a l l  f ibers  according 

to (2,3) .  In equations (9) the l - forms --EusdZS+Eu~z B are 
i 

unique up to cocycles. So there is s t i l l  the scope to 

apply such tensors, 

�9 L E M M A :  Given the re la t i ve  K~hler-Einste in s i tua t ion  with 

k=O or k=- l ,  l e t  

A s 3 d S  
U#~z~ 

be the harmonic representat ive of 

P uB ~z s 

,,%_ YF_..-, Then o._.nn X o, i .e .  ~uB;yg -u, 

A _ _ = A  
uB6 u6B 

E PROOF: The class p d is represented by uB "= uB- u ; 5 '  

where Cu#~=Cu~. Now set A~=CS~--+Fe = " u r n  u~ u;~ Then Au#~-dzB^dz6 

#-boundary. So we have to show that  AuR--~d~ zB^dz6-- is a 

is harmonic. Now 

~ '~(  a u~d zB^ d z ~) =~( ( A uB-6; s -A u6-#; s ) gaS d z 6 ) =~( A~u~; sd z ~) +0 
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Set L~=A~u~; ~ 

and 

So 

A~_ , then, as l o c a l l y  u~B;T=au;~y , we get 

L~ = a C~ a 0 Rc~ c~ k. 
u;~6 + u o6(~ - a u ; ~  + au6 

Hence 

LB; B L~;~ = k ' (au6:B au~;~).  

~(Au-~-dz6,,dz6 ) = k.Au~ZB^dj; k<O 

[] (AuB-~-dz6-^dz~) = 0. 

Observe tha t  in the above s i t u a t i o n  FuB-dz6 is Y-c losed.  

Pick F , such tha t  F u u~ c~dza+F~ up ~-dZB is  d -c losed  and r e -  

place a l l  tensors E by E := E -F .Set 
U U U U 

A : = B  - E  
UC~ U~ UCY, 

The new equat ions (9) are: 

~dg~- + b  + B  - E  E -  
(9a ' )  3s u s=o jug:(~ u(~;6 ua;#-  uB;a 

(9b ' )  B - B = E - E 
u~;y uy;~ u~;T uy;~ 

(9c ' )  BuB6 - BuS~B - Eu~;~-  Eu~;~B 

The terms bju#; -Eu~;m 

AuB-~ Uj = aju6;m" 

~gm# 

(lO) Is=o 

are of  the form aju#; m 

We a r r i ve  at 

+ a j u ~ ; +  Aue;#= 0 

(11) A -A =0 u ( B ; y  u y ; ( B  

with 

(12) AuB 5 AuB- ~ = 0 
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The harmonicity of A ~-  8 dz B means 
U~z~ 

e~ ~YB (13) Au~; yU = 0 

o r  

A~__ (14) uB;m = 0 . 

PROPOSITION: A dz m is harmonic: 
UO~ 

(15) Aum;~ = O. 

- -  m 

Observe that a l l  B-:=B and A-:=A tensors enjoy analo- 
U U U U 

gous propert ies,  

LEMMA: m~ ) : k.gm6aj 
A(g aju~; m u#;m 

The proposi t ion fo l lows from the lemma and (5): 
I 

5(ga~Au~;~) = k'ga6Au~;~ with k~O, 

(2.7) DEFINITION: Let f :X § S or ( f :X § S, kx/s) resp. be 

a holomorphic fami ly  of compact manifolds X s wi th Cl<O 

or a fami ly  of polarized compact manifolds wi th Cl(Xs)~=O, 

Then the corresponding KShler-Einstein metrics gm# on the 

f ibers  (according to the Calabi-Yau theorem) give r ise to 

a hermitian form on the tangent space of S: 

(Z 
:= Au~(Z,s)'A ( z , s ) ' g ( z , s ) ' d v ( z , s )  

X 
S 
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A ~ - ~  dz ~ is the harmonic representat ive of 
uB ~z ~ 

.m - -  - -  

s , g=de t (g~)  and dV=~m dzl^dz I . . . . .  dzm^dz m, 

The fac t  that  G - ( s )  is a hermit ian form on T (S) fo l lows 
UV S 

from (6) and (10). From the symmetry (12) we get: 

(17) G-(s) = Au~-~(z,s)- uv y(Z,S) gB~" gc~-. g. dv 

X 
S 

(2.8)  Since automorphisms of polar ized manifolds with 

Cl<O or Cl=O resp. are isometr ies wi th respect to the 

unique K~hler-Einste in metr ics,  the above hermit ian form 

is i n t r i n s i c l y  def ined. 

PROPOSITION: Given a universal K~hler deformation of  a 

polar ized manifold with Cl<O o_rr Cl=O according to ( I . 6 ) ,  

the hermit ian form (15) i s  pos i t i ve  d e f i n i t e .  

PROOF: Any G - is pos i t i ve  because of (17) and the fac t  
UU 

A~__ that  uB is the harmonic representat ive of the non-vani- 

shing Kodaira-Spencer class. 

(2.9) I f  f :X § S is a (proper, f l a t )  fami ly  of complex 

manifolds, then any section of the tangent bundle of S 

a sect ion of RIf~:JX/S. In pa r t i cu la r ,  i t  assigns induces 

to a po int  s an element of Hl(Xs,7 X ). (See also IB-P-SCH)). 
S However, i t  is not c lear  from the beginning that  the har- 

monic representat ives depend d i f f e r e n t i a b l y  on s, unless 

one fac t ,  w e  knows that  dim HI(x s, /Xs)=const .  In have 
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so fa r  to r e s t r i c t  ourselves to these points ,  whereas 

in the case of po lar ized manifolds wi th vanishing f i r s t  

Chern class we can overcome th i s  d i f f i c u l t y .  

(2.10) PROPOSITION: Let (X § S,~X/S) be a universal  local  

fami ly  o__ff po lar ized manifolds with Cl=O (over a reduced 

space). Then the hermit ian metr ic  (16) depends d i f f e r e n -  

t i a b l y  on s. 

PROOF: We use the s t ruc tu re  theorem for  such manifolds 

(see (B]) .  There is an unbranched f i n i t e  covering ~ :Y§  

such tha t  the f i be rs  Y have t r i v i a l  canonical bundles. 
s 

So h I (Ys ,Ty )=cons t .  These manifolds become polar ized 
, S 

by ~y/s=~ ~X/S and the pul l -backs of  the K~h ler -E ins te in  

forms on X solve the Calabi problem on Y . Furthermore, 
S S 

one can pul l  back t r i v i a l i z i n g  coordinates and show tha t  

there ex i s t  pu l l -backs of  the A ~-  uB' which stay harmonic 

with respect to the K~h ler -E ins te in  forms on Y . But 
S 

t h i s  means (see (17))  t ha t  the Guv(S ) can be evaluated 

on Y as wel l ,  where they are known to depend d i f f e r e n -  
s 

t i a b l y  on s. 

(2.11) S ta r t i ng  from real ana l y t i c  deformation theory of 

E ins te in  metr ics on a f ixed d i f f e r e n t i a b l e  manifold,  

Koiso produced a canonical K~hler metr ic  on the base of 

a universal  fami ly  of  K~h ler -E ins te in  manifolds with 

Cl=O and b2=l. Since the volume is l e f t  f i xed in t h i s  

se t t i ng ,  these manifolds form a po lar ized fami ly  from 

themselves. Furthermore, a l l  of  these manifolds are 
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algebraic.  We begin with a universal K~hler deformation 

as constructed in [SCHI], see (1.6) .  Since we are i n t e r -  

ested in the fami ly rather than in the central f iber ,  we 

speak about " local  universal fami l ies"  

THEOREM: Let (X § S, IX/S) be a local universal fami ly o_ff 

polarized K~hler manifolds with Cl=O. Then the var ia t ion 

of the K~hler-Einstein structures on the f ibers induces 

a K~hler metric on S, which is given ~ (16). 

(2.12) The coarse moduli space of polarized K~hler mani- 

folds with Cl=O was patched together from quotients of 

bases of universal local fami l ies by f i n i t e  groups of 

automorphisms. Namely, given such a family, th is  group G 

consists of automorphisms r of S, which can be extended 

to the family.  

X r X 

L 1 
S ~ S 

As a l l  r  ) ~7 (Xr162 are isometries, 

is an isometry of S. So the K~hler metric on S can be 

pushed down to S/G. In s ingular  points one applies the 

Riemann extension theorem forplur isubharmonic functions 

as proved by Grauert and Remmert[G-R]. 

THEOREM: The coarse moduli space o__ff compact polarized 

manifolds with Cl=O i sa  (reduced) K~hler space. The 

K~hler st ructure re f lec ts  the var ia t ion of the corres- 

ponding K~hler-Einstein st ructures.  
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(2.13) The analogue of (2.10) is not c lear fo r  canonic- 

a l l y  polar ized manifolds. Koiso gives a canonical metr ic, 

but leaves th is  point  to the reader. One can probably 

not argue by a vanishing of the second tangent ia l  coho- 

mology groups H2(Xs,TX ). We r e s t r i c t  ourselves here to 

the smooth points of b~ses of universal deformations and 

show the K~hler property - a d i f f e r e n t  construct ion was 

given by Koiso in (K). 

THEOREM: Given a local universal fami ly  of compact com- 

plex manifolds with Cl<O, then (16) defines a K~hler 

s t ructure on the base. 

THEOREM: The var ia t ion  of K~hler-Einste in metrics on 

compact complex manifolds with Cl<O induces a K~hler 

s t ructure on a Zar isk i  open subspace of the corresponding 

coarse moduli space, which contains a l l  points with 

H2(Xs,7 x )=0, 
S 

3. Proof of the K~hler property 

(3.1) In order to show the K~hler property of the hermi- 

t ian metr ic (16), we have to introduce simultaneous t r i -  

v i a l i z i n g  coordinates. In th is  paragraph, X + S is always 

provided with a strong re l a t i ve  K~hler form ~X/S of 

K~hler-Einste in metric on the f ibers  with k=O or - I .  

As everything is i n t r i n s i c l y  defined, one can work at 

s i n g u l a r i t i e s  of the base e i ther  with the tangent space 
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of S and i t s  sections or with a des ingu la r i za t ion  of S 

and pul l -backs.  Although we lose the pos i t i ve  d e f i n i t e -  

ness, th is  is s u f f i c i e n t  to show the closedness of the 

( l , l ) - f o r m  in question. 

Any d i f f e r e n t i a b l e  t r i v i a l i z a t i o n  of X § S is induced by 

a set of  commuting vector f i e l ds  on X, which pro jec t  

down to a a a a_ . Thus we have a 
as I ' as ~ as as ~ 

2~-parameter fami ly  ~ of diffeomorphisms of X, which 

pro jec t  down to t rans la t ions .  So~_t  induces a d i f feomor-  

phism X t § X s, which we denote by z (w ,s , t ) .  For f ixed 

t th is  induces a diffeomorphism of the t r i v i a l  fami ly  

X xS to the o r i g ina l  fami ly  with parameter t ,  which f i t s  
s 

in to the arguments of section 2. 

(3.2) The der i va t i ve  of the general ized Petersson-Weil 

metr ic (16) is given by 

(18)  d G - ( s )  = 
r uv 

ds 

s t=s ? 

X w=z~ "dv(z(w, s, t ) ,  t ) ]  

s 

(3.3) We can now def ine the quant i t i es  of equations (9) 

to (15) with parameters: 

az~ (w j , s , t )  
(19) b~ (z , s ) : =  t=s 

j r  j at r w=z 
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and get 

(20) A~r#(Z,S) = B~(z ,  s) - E (~r;#(z, s) 

where the E~(z,s) on X s depend d i f f e ren t i ab l y  on s, 

LEMMA: 

(21) - ~ I g ( z ( w ,  s, t ) "  dv(z(w, s, t ) ) ]  
ds ~ t=s 

W=Z 

(E Y + Er-~) g (z ,s ) .dv (z ,s )  r ;y  

PROOF: Fi rs t :  

dsdrg(Z(w't's)'s)It=Sw=z 

g'gB~" 18g~B( s) + L 3sr z, 

second 

d,,,,,,,dv(z(w,t,s)) 
ds r 

abYrr(Z, s) 

~gc~ 6 1 bY(z s) + br(z,s) 
~z Y ' ~z ~ 

t = s  

W=Z 

. g (z ,s ) -dv (z ,s ) .  

The claim fol lows from (9a ' ) ,  

(3.4) A straight forward ca lcu la t ion of (18) y ie lds terms, 
which are no global tensors. So we introduce tota l  der i -  
vatives of corresponding d i f f e ren t i a l  forms with values 

in the holomorphic tangent bundle, 
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DEFINITION: 
dP u dPu :_ = 

ds r ds r ( - I ,  1 ) 

~A~u-#( z, s) A ~-- b Y + A m-- -B # _AYbC~ + A~__B~- _ 8 dz- # 
3s r + uB;y r uB;6 r uI~ r;y u6 r;Bl3z~ 

~)s r 

dp~ dp~ 

ds r := ~ s  r (1 , -1 )  = 

A ~ B ~ A6_B B + ,~vo~;yb Y + r Te~;~ r vcz r ; ~  
A~b Y ] 8 dz ~, 

+ ~y rmJsz# 

REMARK: I f  the canonical pa i r ing  is denoted by a dot, then 

(22) drGuv(S) = 
ds 

{dd-Pr u}'Pv + Pu }+(EY +E6 - �9 ds r r ; y  r ;6)Pu g dv 

X 
S 

(3,5) The proof of the K~hler proper ty  is now organized 

as fo l lows:  The p a r t i a l s  of the harmonic representat ives 

of the Kodaira-Spencer classes are hard to con t ro l ,  where- 

as the p a r t i a l s  of the representat ives B~-(z ,s)~/~z m dz # 

enjoy much symmetry. The d i f fe rence  is given by a fami ly  

of coboundaries. Furthermore, the in tegra l  of the pro- 

duct of a ~-boundary and a harmonic form is zero. However, 

the ~-opera tor  and the t o ta l  de r i va t i ve  wi th respect to a 

parameter do not commute. But we can s t i l l  e l im ina te  

pa r t i a l  de r i va t i ves  wi th respect to the parameter. So 
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f i n a l l y  
~Gu~(S) ~Gr?(S) 

~s r ~s u 
can be computed as an i n t e -  

gral  of  j u s t  terms A and E and t h e i r  covar ian t  de r i va t i ves .  

DEFINITION: We set 

and 

~ dz # e u = B u F ( Z , S )  az ~ 

E = Em ~) ; Pu = 0 -~-~ 
u u ;)z m u u 

By the cons t ruc t ion  of  z ( w , s , t )  we can see eas i l y  tha t  

the vector  f i e l d s  

B (z ,s )  = ~) + bO~(z,s) ;) + B6(z,s) 2_ 

u ~s u u - - ~ ) z  ~ u ;)zB 

and 

B ? ( z , s )  - ~s v ~z ~ + b (z,s).~zB_ 

commute: [Bu,Br) = 0 : (Bu,Bv) = 0 . From t h i s  f ac t  

we can deduce: 

LEMMA: d@ 
(23) 

ds r 

d8- 
(24) v 

ds r 

de =__[ r  
( - I . I )  ds u 

de 
r 

( I , - I )  ds v 

( - l , l )  

( l , - l )  

dBr denotes the ( l , - l ) - componen t  of  the t o t a l  
Here ds ~ ( l , - l )  

de r i va t i ve  of  the ( l , - l ) - componen t  of  O r , i . e .  

[ i  B~r;c~ BBr;c~y v r;(z6 v r;c~ v;(S + r ; y  v;o~]~)z B dzc~ s-~- + BZ + B~ -b  ~- _ B ~ b ~- - ? B ~- L 
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COROLLARY: 
dP u dP r 

ds r ds u 
dr(2E u) + 

ds ds 

(3 .6 )  REMARK: L e t X b e  a ( l , O ) - v e c t o r  f i e l d  on X . Then o 

I (3Z) 'PT  g dv = 0 . 

X o 
The p roo f  f o l l ows  d i r e c t l y  from the ha rmon i c i t y  o f  p~. 

LEMMA: 

(25) - [ } = - EYB~- + Ee B T -  ~-[ d ] d -~s u u r~ ; x  u y rB 
[ds r uJ ds r 

COROLLARY: 

(26) [ d 
ds r u ds--~u r 

"Pv g dv = 

X o 

+ + Avm g 'dv 

X 0 
I 3 

(3 .7 )  As @ I = , where = , we get 
r l ( l , - l )  r r r 3z ~ 

LEMMA: 

[d---~ ] r v  3z# 3 ds v r r 

COROLLARY: 

(28) Pu (Ov) g dv =-  Au#( r6  vm g 
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F ina l l y :  

LEMMA: 

(29) 

Al together:  

ds ( l ,  - I  ) ds r v 

[ B  6 6B  ] 
+ E~-~Bre-EvBrm # 

( l , - l )  

�9 ~_ dz (l 
~z B 

PROPOSITION: 

(30) d-dsrGuv(S) - ddsuGrv(S) = 

[ m B 6 B6B B B 6 E#_ B Au#(-B~Bvm + r v J  + rm v6 Brm6E~) 

X - (Terms with u and r exchanged) s 

+ - (E~y 
E m 

+ g dv 

The above terms are generated from in tegra ls  wi th an in -  

t r i n s i c  meaning and should be wr i t t en  down in some nvar i -  

ant form. But th i s  does not seem to make the remaining 

ca lcu la t ions  simpler.  

(3.8) The rest of the proof is the computation of (30). 

We have to make extensive use of the harmonic and symme- 

t r i c  propert ies of Pu and p~ , i . e .  equations (lO) to (15). 

The f i r s t  step is to reduce everything to A- and E- ten-  

sors. In de ta i l  we get the fo l lowing summands: 
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u8 r A .dv = 0 - ( r  and u exchanged) = 0 

+ f ~ - ~ 4 ~  + ~.~ m ~  ~ v~ - ~  o~ ~ ~ v~ ~.~.~v ~ 

- |(EYA~-A ~ ) g d v =  0 
J u r~ vm y 

- ( E u A r g A T a ) ~ g d v  = 0 + ( r  and u e x c h a n g e d )  

+I(A ~ A6E B A m A 6 E-8 A m # E ~ A#A ~ E # 
uB-rv~# + uB-r~- u#r~#?- u rB-?~# 

A ~ A ~ E  # # ~ - u(~ r# v-~ + Au~ArsEv)  g dv = . . . =  0 

f ~ r  ~-- ~ ~  ~.~v 0 + (A E ~ v6 - AusEr#Evm)" = 

_+I(r and u exchanged) 

+f(-~ + ~  ~r + ~-~_ ~ ).~-~ 
u r~y uSy r u~ ry ve~ 

4. Computation of the genera l ized Petersson-Weil  metr ic  - 

moduli spaces of  po la r i zed  t o r i  and symplect ic  mani fo lds 

(4 .1)  There are few examples of  compact, complex (a t  least  

two d imensional )  mani fo lds,  say wi th  Cl=O, where a K~hler -  

E ins te in  ( i . e .  R i c c i - f l a t )  metr ic  has a c t u a l l y  been con- 

s t ruc ted .  These are more or less t o r i  and Kummer surfaces 

together  wi th poss ib le  gene ra l i za t i ons  to h igher dimensions. 

However, we w i l l  compute the v a r i a t i o n  of  the K~h le r -E in -  

s te in  metr ic ,  i . e .  the genera l ized Petersson-Weil  metr ic  

in the most i n t e r e s t i n g  cases, where i t  w i l l  be 
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K~hler-Einstein with negative curvature. The remaining 

classes consist  of p ro jec t ive  va r i e t i es .  

(4.2) We f i r s t  quote the c l a s s i f i c a t i o n  theorem of com- 

pact K~hler manifolds with vanishing f i r s t  Chern class, 

which is by i t s e l f  a theorem on R i c c i - f l a t  manifolds. I t  

is based on resu l ts  of Berger and de Rham. 

THEOREM ( (B) ) :  Let Z b__~e a compact K~hler manifold with 

Cl=O. Then i t  possesses a f i n i t e  unramified covering, 

which decomposes into a product of t o r i  and i r reduc ib le ,  

sim#yconnected, symplectic and uo i ta ry  manifolds. 

The l a t t e r  manifolds are character ized by the fo l lowing 

propert ies:  The canonical bundle is t r i v i a l ;  for  un i ta ry  

manifolds H~ for  o<p<dim(Y), dim(Y)~3, and for  

symplectic manifolds the dimension dim(X)=2r is even, 

and there ex is ts  a nowhere degenerate holomorphic 2-form 

with H~  q) = ~#q for  O~q~r and in a l l  other cases 

H~ 

(4.3) In a forthcoming note (SCH4] , we show, how to com- 

pute the coarse moduli space of a l l  polar ized manifolds 

with Cl=O from the moduli spaces of polar ized manifolds 

of the above types. As un i ta ry  manifolds are algebraic 

by Kodaira's theorem, one should study these in the alge- 

braic context f i r s t ,  although the inves t iga t ion  of general 

K~hler classes cannot be reduced to the theory of ample 

l ine  bundles. 
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(4.4)  THEOREM: The Petersson-Weil metr ic  on the f ine  moduli 

space of compact, po lar ized,  marked, complex t o r i  coincides 

with the MaaB metr ic  on the Siegel upper ha l f  space. In 

p a r t i c u l a r  i t  is  K~hler -E ins te in  wi th negative curvature.  

PROOF: We use c lass ica l  notat ions.  Let x I . . . . .  X2n be 

d i f f e r e n t i a b l e  coordinates,  E the ( n x n ) - i d e n t i t y  matr ix ,  

Ze#={zE~n2; Z=Z t ,  Im(Z)>O} and z m= ~ x  j , ~=(E,Z).  The 
J 

torus corresponding to a modular po int  Z has holomorphic 

coordinates z m, (~ spans the l a t t i c e  only up to a f ixed 

coordinate t ransformat ion of ~2n.)  

(31) z ~= ( ~ + ~ )  (~T_~T), ~a=x~+ixn+a ' ~=w 

As in the const ruc t ion of the canonical metr ic ,  given a 

modular po int  Z , we need t r i v i a l i z i n g  coordinates w fo r  o 
the universal  fami ly ,  centered at Z o, i . e .  w=z for  Z=Zo; 

one can show: 

i[ )-l im(Zo)-I ] (32) z = ~ (Zo-Z). Im(Z ~ "w + (Z-Zo)" "wj 

As harmonic forms have constant coe f f i c i en t s  wi th respect 

to p a r a l l i z i n g  coordinates,  the terms of (17) become 

(33) A m _ a2ze 

jkB ~w#Zj k 
Z=Z 

0 

W=Z 

where the holomorphic parameter is tu=t jk=ZJ k. So 

1 jk~ - 8Z 3 (Z_~o) . im(Zo)- I  cz = ~6 j (  -1)k  

k 

And 
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(34) 
_ _  m 

A m _ 1 im(Zo)-I )m jk8 A-~I-~ = 4( )kT'( Im(Zo ) - I  j 

Observe that  in th is  context, as we are deal ing with f l a t  

metr ics,  the tensors A and B of sections 2 and 3 agree, 

which is t yp ica l  of f l a t  metr ics.  In pa r t i cu l a r  the func- 

t ions in (34) are constant. So the canonical metr ic on ~ is 

(35) 1 ) - I  G = # t race[ Im(Z .dZ.Im(Z) - l - d z ] "  

This is exact ly  the MaaB metr ic from (MA]. 

(4.5) We come to the discussion of i r reduc ib le  symplect ic 

manifolds. This class is stable under small deformations 

by [BE, prop. 9]. 

THEOREM: The Petersson-Weil metr ic on the moduli space 

o f  polar ized symplectic manifolds is a K~hler-Einste in 

metr ic with negative curvature. B~ the period map i__tt i s  

re la ted to bounded symmetric domains of type ]11 according 

t__o E. Cartan, i . e .  to S0o(2,b-3 /SO(b-3). 

Symplectic manifolds possess unlversal K~hler deformations. 

By Bogomolov's theorem, the base is smooth. Beauvi l le 

develops the theory of i r reduc ib le  symplect ic manifolds 

from the period map ([BE)).  We quote his resu l ts :  

Let f:X§ bea local universal fami ly  of i r reduc ib le  sym- 

p lec t i c  manifolds. Provide i t  wi th a marking, i . e .  an iso-  

morphism R2fj7+.,. S• where Xo is a f i be r  o f  f .  

Then the period map p: S - +  p(H2(Xo,~) is given by a 

258 



SCHUMACHER 

section Cef.~2 (S) in a way that  p(s) corresponds to the 
x/s 2 

complex l ine  in H (Xo,~) spanned by r  Furthermore 

H2(Xo,77 ) is equippped with a quadrat ic form with s ig-  

nature (3, b2-3 ), whose extension to H2(Xo,~) can be com- 

puted by in teg ra t ion :  m,BsH2(Xo$) then 

(36) q(a,6) = ~ r ( r  

X 

r I ~ ( l - r )  r  . c r~ r - I  B + ( l - r )  c r - l c r  B. c r ~ r - I  

LOCAL TORELLI THEOREM: Let Q~ Pb - l '  b=b2' b__ee the open 

subset of a smooth quadric defined b Z 

= {gSPb_l; q(r q(9,r 

Then the period map p :S+~  is a local isomorphism. 

(4.6) We consider a local universal fami ly  of marked 

polar ized symplect ic manifolds (X+S, Xx/s). Then XX/S 
corresponds to a if ixed class XsHI ' I (x  o, ~)cH2(Xo,~ ), 

wi th q(k,~)>O. And we can see eas i l y  by the local T o r e l l i  

theorem that  the base S corresponds exact ly  to an open 

subset of 

The signature of q, res t r i c ted  to the orthogonal comple- 

ment of k is (2, b-3). 

For K3 surfaces one has a stronger resu l t  (see(SCH2)), 
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based upon the strong To re l l i  theorem (BU-RA, LO-PE]. 

Namely there ex is ts  a f ine moduli space of marked pola- 

r ized K3 surfaces, which is an open subset of some ~=~ .  

missing points s, ~sH l ' l ( x  s ,~ )  is no longer In the 

pos i t ive  de f i n i t e .  The coarse moduli space is a quot ient  

of the f ine  moduli space by the group of a l l  automorphisms 

of the l a t t i c e  (H2(Xo,Z) ,q) ,  which ac tua l l y  (and of course 

according to the general theory of moduli spaces) acts in 

a proper, discontinous way on ~. At least  in the algebraic 

case one can i n te rp re t  the gaps of the moduli space in 

as type I degenerations. The volume forms of the R icc i -  

f l a t  metrics can be extended to these points, but not 

the metrics. 

(4.7) As in the Andreott i -Wei l  se t t ing of the period map 

of K3 surfaces, one has a close re la t i onsh ip  between 

periods of symplectic manifolds and the Kodaira-Spencer 

map (see (BE]). The evaluat ion of d i f f e r e n t i a l  forms on 

tangent vectors y ie lds  an isomorphism 

(37) Hl(Xs,f~~)~H~ )-~ Hl(Xs,~# )cH2(Xs,~)=H2(Xo,~). 
S S S 

where the image vector space is in a canonical way iso-  

morphic to the tangent space of ~ at the period point  p(s).  

However, we w i l l  need a more precise descr ip t ion of the 

tangent spaces of ~ and ~ resp. 

(4.8) We prove the main theorem in the fo l lowing form: 

THEOREM: Let (X§ be a local universal fami ly  o_~f 

polar ized i r reduc ib le  symplectic manifolds. I f  i t  is 
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provided with a marking, then the period map i s  an iso-  

metry of S with the generalized Petersson-Weil metric and 

an open subset of the period domain ~=SOo(2,b-3)/SO(b-3 ) 

equipped with the Bergmann metric. 

REMARK: The canonical metr ic on 2 resembles much the 

Fubini-Study metric on P - jus t  replace the canonical n 
hermitian form on Cn+l by -q. For a period pointCand a 

tangent vector r at th is  point i t  is given by 

(38) G = Gr162 = - q ( r 1 6 2  q(r162 + q ( r 1 6 2  q(r162 
q(r 

(4.9) We compute the Petersson-Weil metric e x p l i c i t l y .  

Let r y(Z,s)dzm^dz Y be a nowhere degenerate, re la t i ve  

holomorphic 2-form. Since we are interested in the norm 

of a tangent vector, we can r e s t r i c t  ourselves to a 

smooth one-dimensional base. Let s =0 be the dist inguished o 
base point.  Then r162 y(O)dz~^dzY induces the period 

d_~ is the to ta l  der ivat ive with point and r  Cs=o 

respect to a d i f f e r n t i a l  t r i v i a l i z a t i o n  in the sense of 

section 2. We compute (38). By arguments used before, 

r is d-closed, sincer is not only 3-closed, but also 

d-c losed.  The coef f i c ien ts  of a holmorphic d i f f e r e n t i a l  

form are para l le l  according to Bochner's theorem (R~O). 

The value of (38) only depends upon d-cohomology classes 

of r and r resp. So we use 

261 



SCHUMACHER 

rp_~ ~F ~ F yB~-+Fc~obOy+F~yb~ 1 (39) r = [ ~s (z,O)+ e~Yb(;+ dzO~^dzY 
~z ~ ~z1: 

+ 2F yBY~dzm^dz B 

r ~_~_y_~ ~ F ~ F - +F~ya~mll 
~ [ 9s (z,O)+ eYba+ e_Y BT+F a? dzC~^dz u 

z ~ 9 z % ~d 

+ 2F yAY~dzm^dz 6 

=:  i2,o) +  il,l) 

The d i f ference equals d(F (~E~ see(9)- (15) .  We_ w i l l  

e l iminate r  by the harmonici ty of A~-~/~z c~ dz B, A 

mere pro jec t ion to the ( l , l ) -component  as in the proof 

of the local T o r e l l i  theorem is not s u f f i c i e n t .  Observe 

that  r  represents the cup-product of p and r 

in the view of (37). 

(4.101 We use harmonic representat ives and come to: 

LEMMA: 

I i ; r I , I )  FeryA dz ~',,dz 8 is harmonic. 

The proof fo l lows from (14) and the fact  that  Fmy is 

pa ra l l e l .  

Further ca lcu la t ions y ie ld :  

(40) q(o,r  = q (o(0 ,2 ) , r  for  any 2-form o. 
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(41) q(m( l , l ) ,B(2 ,0) )=O ; q (m( l , l ) ,u  

for  any (2 ,0) -  and (0,2)-forms B and u resp. In par t i cu la r :  

_ _  m _ _  

(42) q(~b',~b') = q(~b l , l ) '  , I )  ) + q ,0) '  )" 

LEMMA: 
~b(2,0)-~br-I c.(~ r, cs~ 

The proof fol lows from the fact  that  ~I, I~..  is harmonic 
and #' is d-closed. 

COROLLARY: 

(43) ~(*i2,0),~i0,2) ) q(*,~)= q(*i2,0) ,~) q(*,~io,2)) 

PROPOSITION: 
- q ( * i l , l ) ' * i l , l )  ) (44) G = 

q ( ~ , ~ )  

for  harmonic representat ives as above. 

LEMMA: 
(45) - -  - -  - - I  l , r - I  . , r  ] * i  I, I ) ' * ( I ,  1 )=-4~_ A~ .q~r.#r 

IT O 

PROOF: We use coordinates such that  in a given point 

r 
= ~ f .  dzJ^dz J+r 

j= l  J 
A 

~ r - l = ( r - l ) !  ~ f " . . ' ~ . "  . ' f  dz l^dzr+l^ . .^dzJ^dz j+r^. ,^dzr^dZ 2r 
j l  j r 

Now 
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r O - -  - - T  ~ - -  - -  
~( l , l ) '# i l , l )=Fm~A ~F6~A #dz ^dzB^dz6^dz u 

One can show that the coeff icient of dzJ^dz J+r^dzk^dzk+J 

i --v equals in ~ 1,1) ~ ( I , I )  

- -~ Aj #k+r + A J + r ~  AJ+r__#k+r -f jfk(AJkAkj + ~ j k j+r + k+r j+r 

=: - f j f  k Hjk 

and 
(~r-I r-ld# I )q~'- 

1,1 ( l , l )  = 

i r 2.Hj ] - ( ( r - l ) ! ) 2  j - I  ~- I f l l 2 " ' ' ' I f  Ir k "dzl^dzr+l^"^dzr^dz2r 

k=l 
^dY^dz r+l . . . .  dzr^dz 2r 

I (~ W~- r~- , r  ~A#A ~qb 
r 

PROOF OF THE THEOREM: By (45) 

I I A~B~ ~r~r 
G-  r I~r~r 

Observe that #r~r is a volume form of the type lhl2dv, 
where h is a holomorphic function. By the Calabi-Yau 
theorem i t  equals c'g-dv, c>O, since its curvature form 
vanishes. So 

G -- - 
r Ig dv 

which is up to a positive constant exactly the Petersson- 
Weil metric. 
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