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ON THE GEOMETRY OF MODULI SPACES

DEDICATED TO KARL STEIN
Georg Schumacher$

We construct a Kdhler metric on the moduli spaces of com-
pact complex manifolds with c,<0 and of polarized compact
KahTer manifolds with ¢.,=0, which is a generalization of
the Petersson-Weil metric. It is induced by the variation
of the Kdhler—-Einstein metrics on the fibers that exist
according to the Calabi-Yau theorem. We compute the above
metric on the moduli spaces of polarized tori and sym-
plectic manifolds. It turns out to be the MaaB metric on
the Siegel upper half space and the Bergmann metric on

a symmetric space of type Il resp. In particular it is
Kdhler-Einstein with negative curvature.

The relationship between deformation theory and Teich-
miiller theory of Riemann surfaces was investigated by
Weil. He used the fact that the Kodaira-Spencer class
is given by a quadratic differential, to define a metric
on the Teichmiiller space, which had been studied before
in quite a different context by Petersson. Weil posed
the problem about the possible Kahler property and the
curvature of this metric. Ahlfors gave an affirmative

answer to the first question and showed that the Ricci
" Heisenberg-Stipendiat der Deutschen Forschungsgemein-
schaft
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curvature and the holomorphic sectional curvature are
strictly negative. However, the methods are restricted

to Riemann surfaces.

For higher dimensional manifolds, coarse moduli spaces
exist both in the algebraic and non-algebraic case. In

the algebraic case, constructions were given by Matsusaka,
Mumford, Fogarty, Popp and others. Apart from the class

of canonically polarized manifolds one mostly considers
polarized algebraic varieties — these are equipped with

an embedding into a projective space. In analytic geometry
one had to regard as "models" compact manifolds together
with Kdhler classes. The coarse moduli space of polarized
Kahler manifolds with vanishing first Chern class was con-
structed in (SCH2) and in general for polarized non-ruled
manifolds in (SCH3) and independently by Fujiki (FU).

In the present paper we construct an intrinsic metric
first on local, universal families of manifolds with

c1<0 and c1=0 and show its Kdhler property. The metric is
induced by the variation of the Kahler-Einstein metrics

on the corresponding fibers according to the Calabi-Yau
theorem: the norm on the tangent space is given by the
norm of the harmonic representatives of the Kodaira-
Spencer classes with respect to the Kéhler-Einstein
metric. A partial result by means of a different construc-
tion was given by Koiso (KO). He studies real deformations
of Einstein metrics on fixed manifolds and constructs a
metric for the classes of manifolds with c1<0 and c1=0,
b2=1. Both classes consist of projective manifolds. Since
the volume is kept fixed in the latter case, all families

are polarized by themselves.
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We can show that the above generalized Petersson-Weil
metrics can be pushed down to the moduli spaces in a
unique way. Among Kahler-Einstein manifolds with non-posi-
tive curvature, there are classes, closed under small de-
formations, which consist just of algebraic varieties,
namely those with c1<0 and the unitary manifolds. As the
corresponding moduli spaces can be constructed from Hilbert
schemes, one might suppose a possible relation to Kahler
(-Einstein) metrics on quasi-projective varieties. The
chosen approach allows a computation in the remaining
cases; namely for moduli spaces of polarized tori we
obtain the Maall metrics on Siegel upper half spaces, and
the metric on the coarse moduli space of symplectic mani-
folds is induced by the Bergman metric on bounded sym-
metric domains of type II. In both cases we get Kidhler-

Einstein metrics with negative curvature.

I would 1like to thank Y.T. Siu for drawing my attention
to the problem of a generalized Petersson-Weil metric.
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1. Families of polarized Kighler manifolds, moduli spaces

(1.1) The assignment of a fixed Kahler class to a compact
Kdahler manifold turned out to be the proper substitute
for a model in the algebraic situation. Such objects, so-
called "polarized Kiahler manifolds" are the correct ones
in regard of the construction and differential geometric
investigation of moduli spaces, since the distinction of
Kahler manifolds by polarizations is necessary for the

Hausdorff property of moduli spaces.

DEFINITION: (i) Let Xo be a compact complex manifold and

AO a Kdhler class. Then (XO, ko) is called a polarized
manifold.

(i1) A family of polarized manifolds (Xs. AX )s
s

seS, parametrized by a reduced complex space S, is
given by a proper, smooth holomorphic map f:X — S

. 1 1 -1
together with xx/sg(R f*QX/S)(S) such that f (s)=XS

and AX/S|XS=AXS for seS.

(iii) Let (f:X — S, XX/S) and (g:Y — S’XY/S)
be families of polarized manifolds, then an isomorphism

AX/S' In particular, an isomorphism of polarized manifolds

has to be compatible with Kahler classes.
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DEFINITION: Let f:X —S be a family of complex compact

manifolds. Then a (strong) relative Kahler form Wy /s is

a relative (1,1)-form, which is given by wX/S|Uj=1a/Sa/Spj

with respect to a suitable open covering {Uj} of X. The
functions pj have to be strictly plurisubharmonic on
U.nX_, seS and p.-p, are harmonic on U.nU,. A weak rela-
s J Tk gk —

tive Kahler form is given in a similar way, where the

p pk need only be harmonic on the fibers X nU nU (B/S

and a/s denote derivatives in fiber d1rect1on )

(1.2) PROPOSITION: Let (X—S, KX/S) be a family of pola-
rized manifolds. Then, locally with respect to S, XX/S

is represented by a (strong) relative Kadhler form Wy /5

In particular, any relative Kdhler class is induced by a

global Kahler form on X for sufficiently small S.

PROOF: By variation of Hodge structures the rea] section
X/SS(R f, QX/S)(S) corresponds to a fixed A e(R L R)(S)

:H (XO,R). Consider the short exact sequence

2 Re e Ho s 0

Oy X

where Re maps a holomorphic function onto its real part

and & is the multiplication by i. It induces

R'fully — REFR, —> R?

. £,0

X
By construction the image of Ao in (sz*OX)(S) vanishes.

On a ne1ghborhood of S, it is represented by a cocycle

JkEZ (U,H ), where u is a suitable open covering of X.
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So Ojk=Tj—Tk,Tj real differentiable functions. Set

X=18/S§VS'%. On the other hand /S ihduces a differen-
tiable family of Kéh]ef—forms w=1a/sa/sqj, qj_qk harmonic
on fibers, so x= ¢+ia/sa/sg, with a real function g on X,

So ¢b18/sa/srj, rj=Tj—g and rj—r 0. .

k™ jk

(1.3) DEFINITION: Let (XO, XO) be a polarized compact
manifold. A deformation of (XO, AO) over a reduced com-
plex space S with a distinguished base point sOES is a
family of polarized manifolds (X—S, XX/S) together with
an ismorphism (XO,AO) 43—(XS Ay }. The usual notions

¢} S
o}

of deformation theory carry over literally.

(1.4) PROPOSITION((SCH2,3)): Any polarized Kahler mani-

fold possesses a versal Kéhler deformation.

(1.5) Compact complex manifolds Xo with negative first
Chern class are polarized (in the original algebraic
sense) by the (positive) canonical bundle. The ampleness
is preserved under local deformations, the canonical
bundle is homogeneous, and the automorphism group is
finite. Moreover by Matsusaka's theorem, in a family of
canonically polarized manifolds, one can choose a uniform
power of the canonical bundles to be very ample. Thus the
Hilbert scheme induces complete deformations. For pola-
rized Kahler manifolds with vanishing first Chern class
we have an analogous situation (for a more general result
see (SCH3)):
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(1.6) PROPOSITION: Let (X—S, AX/S) be a family of pola-
rized manifolds with c1(XS)R=O.Then dim Aut(XS)=const.

In particular, any such manifold possesses a wuniversal

KahTler deformation.

(1.7) In general, there may be still isomorphic fibers
in a universal deformation. This situation is much Tike
the situation with the Teichmiiller family: it can be
handled either by imposing an additional structure like
a marking to distinguish between isomorphic fibers -
this can be done with K3 surfaces - or rather by means of
an identification of corresponding points of the base. If
there actually exist such points, one can see easily that
there does no more exist a family of manifolds over the
.quotient space. The base spaces of universal deformations
of marked objects may patch together and yield universal
families. In the other situation, the first question is
for the analyticity (and Hausdorff property) of the
quotient spaces, and the second is, to glue these quotients
together. The resulting space is called a "coarse moduli

space".

(1.8) DEFINITION: The moduli functor /1 with respect to a

given collection A of polarized manifolds assigns to a

complex space S the set /I(S) of isomorphism classes of
families of objects from A over S. The map M(S) — M(R)
induced by a holomorphic map R - S is defined by means of

base change. A coarse moduli space M for the moduli

functor M is characterized uniquely up to isomorphism hy

the following conditions:
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(i)  there exists a morphism of functors &:/ -+ hM

(ii) if p denotes the reduced point, then &(p) is
bijective

(ii1) if Y1 ~ hN is another morphism, then there
is a unique holomorphic mapping F:M > N with
Y=h(F)od.

THEOREM ((SCH2)): There exists a coarse moduli space of

polarized compact manifolds with c],R=O

A more general result was proved in (SCH3) and, indepen-
dently by Fujiki (FU).

(1.9) Our aim is to give a differential geometric descrip-
tion of the coarse moduli space of compact polarized
manifolds with c1<0 and c1=0. This will be done by con-
structing an intrinsic Kéhler metric on the bases of uni-
versal deformations, which can be pushed down to the
moduli space in a unique way. As one can construct the
coarse moduli spaces by the Calabi-Yau theorem, it is
reasonable to investigate the variation of Kahler-Einstein

metrics on the fibers.

2. Families of polarized Kahler-Einstein manifolds with

non-positive curvature - construction of the canonical

metric

(2.1) Let XO be a compact Kahler manifold. We use the

following notations. Let z=zj=(z}....,zg) be Tocal

(holmorphic) coordinates. A Kahler form is given by

=1 B

o
wxo > gdg(z)dz ~dz".
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The first Chern class is represented by the Ricci form:

c1(X0)= 7%% [Ricci(wxo)}eHz(Xo,R).

XO)=~18§709 det(gdg(z))=RdédzaAdzB.

Ricci(w

The Ricci tensor can also be written as a contraction of
the curvature tensor. We use the convention

+—§:Ta

. , R -==+RY =
YoB 4 B YO *

(¢4
R aB aBy’

(2.2) We recall Yau's theorem as far as it concerns Kahler-

Einstein manifolds.

THEOREM(S.T. YAU): (1) Let XO be a compact complex mani-

fold with c1(XO)<O.Then there exists a unique Kahler

form Wy with Ricci (wx )=—wX .
) o) o
(ii) Let (XO, Ao) be a polarized mani-
fold with c](XO)RzO.'Then there exists a unique Kahler

form Wy sko, which is Ricci-flat: Ricci(wx )=0.
0 0

(2.3) PROPOSITION: Let X-+S be a family of compact mani-
folds with ¢

1<0, or let (X+S,kx/s) be a family of pola-

rized manifolds with c]=0. Then the solutions of the

Calabi-problem yield a (strong) relative Kihler metric.

PRODF: Set Ay jq:=-21c; (X/S)E(R ' £40y /) (S) in the First

case. The Kdhler-Einstein metrics on the fibers depend
differentiably on the parameter and thus give rise to a
weak relative Kahler metric wy /g by (Ko, 10.1, 10.5) (see
also (SCH1)). With respect to an open covering {U}-of X
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it is given by 18/§§/qu as in (1.1). On the other hand,
by (1.2), it is represented by a strong Kahler form
Wy /s 18/5 /S .So %VS +18/S /S¢ with a real function

o. The wj:=qj—rj—¢ sat1sfy B/S /Swj=0. Set pj:=qj—wj=rj+¢,

o] wX/SlUj=1a/Sa/Spj and pj—pk=rj—rk is harmonic on Ujk'

(2.4) Given a family of manifolds with a strong, relative

Kahler form g we use holomorphic coordinates (z,s)

on X, with zedgg% and seS, such that f(z,s)=s. Then
mX/S:%gaE(z,s)dzaAdzB.

We will use holomorphic coordinates in the first place
together with covariant derivatives in fiber directions,
denoted by indices in classical notation. Problems will
be Tocal with respect to the base, so S can be thought of
as a reduced subspace of an open subset in a complex num-
ber space. Thus total and partial derivatives by coordi-

. u v
nate functions s, s do make sense.

LEMMA: nguk/s be a relative Kdhler form as above. Then

oR~ = — _
(1) By _ _gad ag@# + RS ng- _RALK < 9%
s 3sY];a8 T 3s BY 5qu
or
R —
(2) _By dzB dz¥ = [ BY dzBAdz }
s s
By contraction:
=R 995 o
(3) YB Y8 _ océ YB[ BY]_ s = A[gYBagBY]
5eU NeU Jio N
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The infinitesimal Kdhler-Einstein condition reads:

(4) Y8 _ ke Y8 : keR , here k=0,-1
3sY asY
or )2 3g
(5) A[—-—-—} = ke— ; g = det(g 5).
g as” 9 oS ap

Observe that in general all of the above derivatives are
no global tensors; still we use the calculus of covariant

derivatives locally.

(2.5) A derivative of a relative Kahler form by a tangent
vector on the base can only be defined as follows: Given
a proper, smooth holomorphic map X - S as above, so€S a
distinguished point, Selel" such that so=0, and Wy /g @

weak Kahler form. For a differentiable trivialisation

|

S=07.

@:XOXS ——> X over S we define

d

T Wy 5| (®_1|Xo)*{[ d Q*(wX/S)]

dsY

S=0

PROPOSITION: Let Wy /5 be a weak relative Kéhler form and
@:XOXS > X a diffeomorphism over S. Then

(i) _d_ Wy /s is a closed complex 2-form.
ds! $=0

(i1) [—gﬁ'wX/S gHZ(XO,m) does not depend on
ds s=0

the choice of 0.

(iii) If Wy /5 is a strong relative Kdhler form, then

d
[E U)X/SIS=O]= 0.
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REMARK: One can realize any representative of the above

cohomology class by differentiable coordinates.

But these

are no longer trivializing - not even over a complex one-

dimensional base.

We choose an open covering {U.} of X with holomorphic co-

ordinates (zj,s); f(zj,s)=s. Denote
functions:

(zj,s)=(zjk(zk,s),s).

by zjk transition

We may assume that®|X0X{O]= id. Thus we get an extension

w. of holomorphic coordinates on the central fiber to

differentiable coordinates of the whole family.

wj=wj(zj,s), Wj(zj’0)=zj
wj=wjk(wk):zjk(wk,0)

And &

is given by (zj,s) — (wj(zj,s),s).

Now, because of the relative closedness of wX/S' one can

show in an elementary way:

(6) dwx/S i Bgdg(z,s)

ds" |s=o s S=0

g, &

+b . 6 EdzJAdzJ

N o 3% (w.,s)

where b. =0b. (z.) = BN R
ju o Tgut T
s

— - aég(w.,s)

and 6 = bs (z.) = —J
ju u 3cY

I
+bjuu:E+bJUB:u dZJAdZJ
+ b. s Yd dz
S=0
w=Z
S=0
W=7 .

These quantities satisfy the following transformation rules:

a
o ) Bz.k(zk,O) »
(7) b% (z,) = —I5=—=—+b) (z
JurTi azz ku

240
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Bzgk(zk,O)

B §
(8) bju(zj) = .bku(zk)

$
B B sz
B ._ B = a
So Bu : bju and B% ug - bju;B are (global) tensors.
REMARK: Since Tocally Bg§= bi_é», this tensor defines

a o-closed (0,1)-form with values in the tangent bundle
on Xo' In fact, it represents the image
d - d
ol—| eH, (X ,7, ) of — eT_ (S)
[dsu} 1™ Xo dsY %o
under the Kodaira-Spencer map p of the given deformation
(see (KO-SP)).

We prove the proposition: (i) follows directly from the
local description of g E(z s) and (6). An infinitesimal
variation of & with ®|X =id kept fixed is given by a set
Ea, EB of vector f1e1ds on Xo’ with a certain condition
on commutativity. The effect on the total derivative of
wX/S is given by N

bjua - bjua the bjd§”_+ bjd@ T EgE

This shows (ii). Now let wX/S be a strong Kahler form.
Then ®¢wX/S is a differentiable family of closed
d1fferent1ab1e forms on X with constant cohomology class

in H (X ,L). So by standard harmonic theory we have

(@ wx/s)(s) = wX/SIXO + dv(s)

where v(s) is a differentiable family of 1-forms. Taking

derivatives _Q_ on either side gives (iii).
ds!
We get the following set of equations on XO:
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ag(\)]LE(Z -3 S) ~ ~
(9a) —2—1— + bzt Bues=Eueig BB
3sY <=0 JuBia uQ s ua; upsa
(9b) B -B . =FE _ -E
uasy uysa uasy uysa
(9C) BUB_ = BU—B = Eug;g— EUE;E

(2.6) From now on, Wy /s will be a strong relative Kahler
form, which is Kahler-Einstein on all fibers according
to (2.3). In equations (9) the 1-forms Euudzu+Eu~€dzB are

unique up to cocycles. So there is still the scope to

apply such tensors.

- LEMMA: Given the relative Kdhler-Einstein situation with
k=0 or k=-1, let

Wi a2
USs2
be the harmonic representative of
d o 3 B
) o 208
ds" up oz
o_  YB_
on Xo' AUB:Yg =0, Then
__=A__
Ugs usp
: d a_, _pd FO
PROOF: The class D[dsu] is represented by CuB' BuB Eu;B ,
I QA0 O B ,.§
where CuBG_CuéB' Now set AUB—CU-—B—H:U;6 . Then Auégdz ~dz

is a d-boundary. So we have to show that AuégdzBAdgg

is harmonic. Now o
aB O\ m a0 S
dz )~8(Au6;adz

55*(AuggdzBAdzé)s§((AQEE;Q—A )+0

ugéfa)g
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Set L§=A§§;a , then, as locally A353Y=a3'57 , we get
o O /0 [0

L5 =208 * 2% Rgoa = a8 * K203
and

5.8~ Es = CusE - 2EE)
So o _

O(A —dPdz®) = koA —dPadz®: k0

ugsd% » uBd PoKE

Hence

B & _
D(Auégdz ~dz”) = 0. -
Observe that in the above situation FuédzB

Pick F , such that Fuadz O F EdzB is d-closed and re-

place a11tensors E by E 1= Eu—Fu.Set

is d-closed.

= B - B .
uo uo. uo,

The new equations (9) are:

3g J
(9a ) S o + bjuE:OL + BUOL;E = EUOL;E— EUE;OL
(9b7) Buiy 7 Buyia T Buasy ™ Buvse
(9C ) Buﬁ - BU(S_B = Eu—;g~Eug;E
The terms b, are of the form a, = with
juBso B ¢! juB;a
JEE'U = 2 We arrive at
j v
09 &
o8 _ -
(10) R * A gt Auoa,B_O
an Auu;y - Auy;u= 0
(12) AUB—<S - AU—B = (
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The harmonicity of Aiggia dzB means
a YB _
(13) AUB;Yg 0
or
a —
(14) Adé}a =0.

PROPOSITION: ~ A dz" is harmonic:

(15) Aua:E'= 0.
Observe that all BE:=§; and AU:=K; tensors enjoy analo-

gous properties.

LEMMA: ) )

aB_ ) = ke oB
A(g ajuB;(x g a

juBia .

The proposition follows from the Temma and (5):

= k-gaBAua;é»with k=0.

A(gaBAua{g)
(2.7) DEFINITION: Let f:X + S or (f:X ~» S,AX/S) resp. be

a holomorphic family of compact manifolds XS with CT<O

or a family of polarized compact manifolds with CT<XS)R=0'
Then the corresponding Kahler-Einstein metrics gdé-on the
fibers (according to the Calabi-Yau theorem) give rise to

a hermitian form on the tangent space of S:
G (_Q_ }
s

ds!
= G’z i E s .
= [AUB(Z,S) Ava(z’s) g(z,s)+dv(z,s)
X

d

¥

s dsVv

]

(16) GuG(S) :

S
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where Aq—aﬁt dzB
o
0z _

.m s
o _ i T, m ,.m
s] . g—det(gaB) and dv=ga dz Adz a...Adz Adz .

is the harmonic representative of

p[_d_
ds!
The fact that Guv(s) is a hermitian form on TS(S) follows

from (6) and (10). From the symmetry (12) we get:

(1) 65(s) = |Aig(z,s) Ay (2.8) o Veg pguay

X
s
(2.8) Since automorphisms of polarized manifolds with
c1<0 or c1=0 resp. are isometries with respect to the
unique Kahler-Einstein metrics, the above hermitian form

is dintrinsicly defined.

PROPOSITION: Given a universal Kghler deformation of a
polarized manifold with ¢,<0 or c1=0 according to (1.6),

the hermitian form (15) is positive definite.

PROOF: Any Guﬁ is positive because of (17) and the fact
that Aié-is the harmonic representative of the non-vani-

shing Kodaira-Spencer class.

(2.9) If f:X > S is a (proper, flat) family of complex
manifolds, then any section of the tangent bundle of S
induces a section of R]f*TX/S' In particular, it assigns

to a point s an element of H1(XS,7X ). (See also (B-P-SCH)).
However, it is not clear from the bgginning that the har-
monic representatives depend differentiably on s, unless

one knows that dim H1(Xs,7X )=const. In fact, we have
s
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so far to restrict ourselves to these points, whereas
in the case of polarized manifolds with vanishing first

Chern class we can overcome this difficulty.

(2.70) PROPOSITION: Let (X - S’AX/S) be a universal local

family of polarized manifolds with c,=0 (over a reduced

space). Then the hermitian metric (16) depends differen-

tiably on s.

PROOF: We use the structure theorem for such manifolds
(see (B)). There is an unbranched finite covering m:Y~>X
such that the fibers YS have trivial canonical bundles.

So h1(Ys’/Y )=const. These manifolds become polarized
% S
by AY/S=W AX/S and the pull-backs of the Kdhler-Einstein

forms on XS solve the Calabi problem on Ys' Furthermore,
one can pull back trivializing coordinates and show that
there exist pull-backs of the Aig, which stay harmonic
with respect to the Kidhler-Einstein forms on Ys' But
this means (see (17)) that the Guv(s) can be evaluated
on YS as well, where they are known to depend differen-

tiably on s.

(2.11) Starting from real analytic deformation theory of
Einstein metrics on a fixed differentiable manifold,
Koiso produced a canonical Kadhler metric on the base of
a universal family of Kahler-Einstein manifolds with
c1=0 and b2=1. Since the volume is left fixed in this
setting, these manifolds form a polarized family from

themselves. Furthermore, all of these manifolds are
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algebraic. We begin with a universal Kdhler deformation
as constructed in (SCH1), see (1.6). Since we are inter-
ested in the family rather than in the central fiber, we

speak about "local universal families'".

THEOREM: Let (X - S,AX/S) be a local universal family of

polarized Kdhler manifolds with c1=0. Then the variation

of the Kahler-Einstein structures on the fibers induces

a Kghler metric on S, which is given by (16).

(2.12) The coarse moduli space of polarized Kdhler mani-
folds with c]=0 was patched together from guotients of
bases of universal local families by finite groups of
automorphisms. Namely, given such a family, this group G
consists of automorphisms ¢ of S, which can be extended
to the family.

X -2 x
52
1 :(

As al @IXS XS,AX ) — (X ) are isometries,
s

dD(S)’Axcb(S)

¢ is an isometry of S. So the Kahler metric on S can be
pushed down to S/G. In singular points one applies the
Riemann extension theorem for plurisubharmonic functions

as proved by Grauert and Remmert(G-R).

THEOREM: The coarse moduli space of compact polarized

manifolds with c1=O is a (reduced) Kahler space. The

Kahler structure reflects the variation of the corres-

ponding Kdhler-Einstein structures.
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(2.13) The analogue of (2.10) is not clear for canonic-
ally polarized manifolds. Koiso gives a canonical metric,
but leaves this point to the reader. One can probably
not argue by a vanishing of the second tangential coho-
mology groups HZ(XS,7X ). We restrict ourselves here to
the smooth points of b3ses of universal deformations and
show the Kéahler property - a different construction was

given by Koiso in (K).

THEOREM: Given a local universal family of compact com-

plex manifolds with c]<0, then (16) defines a Kahler

structure on the base.

THEOREM: The variation of Kdhler-Einstein metrics on

compact complex manifolds with c1<0 induces a Kahler

structure on a Zariski open subspace of the corresponding
coarse moduli space, which contains all points with
20y 7 -

H (XS,/XS)—O.

3. Proof of the Kghler property

(3.1) In order to show the Kahler property of the hermi-
tian metric (16), we have to introduce simultaneous tri-
vializing coordinates. In this paragraph, X - S is always
provided with a strong relative Kahler form wX/S of
Kahler-Einstein metric on the fibers with k=0 or -1.

As everything 1is intrinsicly defined, one can work at

singularities of the base either with the tangent space
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of S and its sections or with a desingularization of S
and pull-backs. Although we lose the positive definite-
ness, this is sufficient to show the closedness of the

(1,1)-form in question.

Any differentiable trivialization of X >~ S is induced by

a set of commuting vector fields on X, which project

9 o Seees _QE' 2 . Thus we have a

851 3s ] 9s 3§E
28-parameter family ¢ of diffeomorphisms of X, which

down to

project down to translations. So<1>s_t induces a diffeomor-
phism Xt > Xs’ which we denote by z(w,s,t). For fixed

t this induces a diffeomorphism of the trivial family
XSXS to the original family with parameter t, which fits

into the arguments of section 2.

(3.2) The derijvative of the generalized Petersson-Weil

metric (16) is given by

r uv

(18) 46 _(s) =
ds

d o B )
o |tes AuB(Z(w.S.t),t)Ava(Z(W.S.t),t)g(Z(w.S.t).t)
w=Z

o

sdv(z(w,s,t),t)

X
S

(3.3) We can now define the quantities of equations (9)
to (15) with parameters:

o 3z%(w.,s,t)
(19) b7 (z.5) :=—J——J—r—— t=s
J J ot w=z
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and get
(20)  Alg(z,s) = Blz(z,s) - El.5(z,5)

where the Ei(z.s) on Xs depend differentiably on s.

LEMMA:

(21) —Q;{g(z(w,s,t)-dv(z(w,s,t))]
ds

t=s
wW=Z

(), + B patas)avzs)

PROOF: First:

d _
dsrg(Z(w,t,S),S) =g
w=Z
Ba |°%B 99,5 99,8 T
Ro 0B al .Y af , &
geg - (z,s) + —== b'(z,s) + —= b _(z,s)
Bsr SZY r 826 r
second
a4 _
dsrdV(Z(w,t,s)) tog =
w=2Z
2b7(z,5) bf(z,s)
+ ——eg(z,s)*dv(z,s).

az' 528
The claim foliows from (9a').
(3.4) A straightforward calculation of (18) yields terms,
which are no global tensors. So we introduce total deri-

vatives of corresponding differential forms with values

in the holomorphic tangent bundle.
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DEFINITION:
%y Py _
ds” ds" (-1, 1)
A% —(z,s) _ _ _
B N A S MCAN
r uBsy r ug:;ér uB-rsy uS r;Bl.. a
0s 0z
dpv dpv
—Y = =Y (1,-1) =
_ ds ds
ey 3 5 5 8.8 5 3 .o
—Ye a2 Yy AR B0 L AR BP o AR pY | g%,
3s" VoY T vo;dr va r; o vYTrals B

REMARK: If the canonical pairing is denoted by a dot, then

22y g () =

rouv
ds

d Y S N
o (B +E 5o, oy g dv

ds”

d
CPuley + oy

X
s

(3.5) The proof of the Kahler property is now organized

as follows: The partials of the harmonic representatives
of the Kodaira-Spencer classes are hard to control, where-
as the partials of the representatives qu(z,s)a/Bza dzB
enjoy much symmetry. The difference is given by a family
of coboundaries. Furthermore, the integral of the pro-
duct of a 3-boundary and a harmonic form is zero. However,
the 3-operator and the total derivative with respect to a
parameter do not commute. But we can still eliminate

partial derivatives with respect to the parameter. So

251



SCHUMACHER

aGu;(s) BGrv(s)
finally - - 5 can be computed as an inte-
ds as

gral of just terms A and E and their covariant derivatives.

DEFINITION: We set 6 = B%(z,s) - dzP
—_— u up aza

By the construction of z(w,s,t) we can see easily that

the vector fie]ds

B (z s) = -2 4+ p° (z s) + BB(z,s)—Q:
Bs z u 9z
and N
B=(z,5) = == + BX(z, $)-2 4 bB( Vo)
85V 3™ 328

commute: (B ,B ) =0; (B ,B-) =0 . From this fact
ur u'v

we can deduce:

LEMMA: d6u der
S (G D Rl [
d@v der
24 — = ——
@ el = alaen .
der
Here —— denotes the (1,-1)-component of the total
v (19_])

derivative of the (1,-1)-component of er, i.e.

|

Q@
'S@

B a 3 2 z Y
Tria LB gy, g8 8 B‘S b2 BB B— |- 42°
r;oy v r;od v r; v

Qo
< |

S
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COROLLARY: do do

u r d = d =
- = - L@ ) + S(Ge)
ds"  ds" ds" U ds¥ T

(3.6) REMARK: Let Abe a (1,0)-vector field on X+ Then

[(51)-pv gdv=20.

X
0

The proof follows directly from the harmonicity of v

LEMMA:
Fid | d 5| - Y o pY_
(25) a{dsrgu] dsr[agu] - EuBrB:Y * Eu;YBrB
COROLLARY:
TR AT
ds ds
Xo
EYRO Y e B .
[( EuBrB + E YBPB E B'— By " PY uB) A= 09" dv
X
0
_ ap ~ _ B8
(3.7) As 6r|(1’_]) = aer , where er = Br 2€ , we get
LEMMA:
d d > B 6 B 3 o
27) —=H =03|—=H6 B B~ —
(27) dsvV " {ds ] + (- va Beraé) 3P dz
COROLLARY:
4 5 — B o8
(ZS)qu dsr(ev) gdv = [ B(BréBva r vad) g dv
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Finally:
LEMMA: o
d d B o6 B
(29) —4(9e-) - 9| -de [eB88 _¢Sp
g v (1,-1) ds’ (1,-1) 4 vé ro v orad
. ?_ dz*
Altogether: 328
PROPOSITION:
(30) dsr‘ Guv(s) - d—‘uGrV“)
o_ gBad . S8 S B o8
AuB( BrGBv Ber st tB Evd BraGE )
XS - (Terms with u and r exchanged)
YR Y YrQ Y
+ (-E BrBY + EUYBPB + ErBuBY EryBuB) A

o (€] + E oL AB - (€] + E 5 A ABQ g dv

The above terms are generated from integralswithan in-
trinsic meaning and should be written down in some invari-
ant form. But this does not seem to make the remaining

calculations simpler.

(3.8) The rest of the proof is the computation of (30).

We have to make extensive use of the harmonic and symme-
tric properties of ey and o5 i.e. equations (10) to (15).
The first step is to reduce everything to A- and E- ten-

sors. In detail we get the following summands:
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JAﬁgAf A%dgg-dv =0 - J(r and u exchanged) =0
Ya® 4B L p% Y B Y A% AB Yugedy -
+J(-EuArBYAva + B A, BN ATGAD ) gedv

Yo aB _
. j(EuArBAva)Ygdv._ 0

_ J(EiAﬁgA%u)g@;dv =0 + [(r and u exchanged)

o 6B, a0 .8 B a0 B 8 a5, (B
+J(AuBAr vas | AuBAruEvé AuBAraéEv AuArBEvaé

S 0 B, B _aa 8 o
—AuaArBEvé + AuaéArBEv) gdv=...=0

(a2 (& B po B S _
+J (AUEEY‘OL EV - AUBEY‘(SEVOL) g dv = 0

.
+|(r and u exchanged)

[/ eYee o Y O £Y Y g0 v B o
+J( EuErBY+ EuYEPB + EUBYEP EUBEPY) Ava gedv 0

4, Computation of the generalized Petersson-Weil metric -

moduli spaces of polarized tori and symplectic manifolds

(4.1) There are few examples of compact, complex (at least
two dimensional) manifolds, say with c1=0, where a Kéhler-
Einstein (i.e. Ricci-flat) metric has actually been con-
structed. These are more or less tori and Kummer surfaces
together with possible generalizations to higher dimensions.
However, we will compute the variation of the Kdhler-Ein-
stein metric, i.e. the generalized Petersson-Weil metric

in the most interesting cases, where it will be
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Kdhler-Einstein with negative curvature. The remaining

classes consist of projective varieties.

(4.2) We first quote the classification theorem of com-
pact Kdhler manifolds with vanishing first Chern class,
which is by itself a theorem on Ricci-flat manifolds. It

is based on results of Berger and de Rham.

THEOREM ((B}): Let Z be a compact Kahler manifold with

c1=0. Then it possesses a finite unramified covering,

which decomposes into a product of tori and irreducible,

simply connected, symplectic and unitary manifolds.

The Tatter manifolds are characterized by the following
properties: The canonical bundle is trivial; for unitary
manifolds HO(Y,Q$)=O for o<p<dim(Y), dim(Y)z3, and for
symplectic manifolds the dimension dim(X)=?r 1is even,
and there exists a nowhere degenerate holomorphic 2-form
& with HO(X,Qiq) = ¢¢q for 0=2qgsr and in all other cases
HO (X, 29)=0.

(4.3) In a forthcoming note (SCH4) , we show, how to com-
pute the coarse moduli space of all polarized manifolds
with 1

of the above types. As unitary manifolds are algebraic

=0 from the moduli spaces of polarized manifolds

by Kodaira's theorem, one should study these in the alge-
braic context first, although the investigation of general
Kahler classes cannot be reduced to the theory of ample

line bundles.
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(4.4) THEOREM: The Petersson-Weil metric on the fine moduli

space of compact, polarized, marked, complex tori coincides

with the MaaB metric on the Siegel upper half space. In

particular it is Kdhler-Einstein with negative curvature.

PROOF: We use classical notations. Let xq,...,x, be
differentiahle coordinates, E the (nxn)-identity matrix,
Ze§=(7c00%; 7-7%, 1In(2)>0} and 2% szj . 0=(E.Z). The
torus corresponding to a modular point Z has holomorphic
coordinates z% . (9 spans the lattice only up to a fixed

coordinate transformation of Rzn.)

(31) 2= ()2 V), W™, P

As in the construction of the canonical metric, given a
modular point Zo’ we need trivializing coordinates w for
the universal family, centered at Zo’ i.e. w=z for Z=ZO:

onhe can show:

(32) z = %((70—2)-Im(20)_1-w ¥ (Z—ZO)°Im(ZO)—1°W}

As harmonic forms have constant coefficients with respect

to parallizing coordinates, the terms of (17) become

9"z
Jk8 awhzJ

wW=Z [

where the holomorphic parameter is tu:tjk:ZJk' So

——6 (I(Z) 1k

p% ——a{<zz>1m<2)
g B

And

257



SCHUMACHER

B ] -1
& P = (2™

(34) A k

~1\m
Observe that in this context, as we are dealing with flat
metrics, the tensors A and B of sections 2 and 3 agree,
which is typical of flat metrics. In particular the func-

tions in (34) are constant. So the canonical metric on % is

—

(35) G = + trace(Im(Z) +dZ-Im(Z) +d7).

=y

This is exactly the MaaB metric from (MA).

(4.5) We come to the discussion of irreducible symplectic
manifolds. This class is stable under small deformations
by (BE, prop. 9).

THEOREM: The Petersson-Weil metric on the moduli space

of polarized symplectic manifolds is a Kdhler-Einstein

metric with negative curvature. By the period map it is

related to bounded symmetric domains of type II according

’

to E. Cartan, i.e. EQ_SOO(Z,b~3)/SO(b—3).

Symplectic manifolds possess universal Kdhler deformations.
By Bogomolov's theorem, the base is smooth. Beauville
develops the theory of irreducible symplectic manifolds

from the period map ((BE)). We quote his results:

Let f:X+S bea local universal family of irreducible sym-—
plectic manifolds. Provide it with a marking, i.e. an iso-
morphism RZFJZ—> S><H (X /AR where X is a fiber of f.
Then the period map p: S-—+ P(H (X @) is given by a
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section ¢ef, QZ (S) in a way that p(s) corresponds to the

X/S 5
complex Tine 1in H (X ,C) spanned by ¢(s). Furthermore

H (X ,ZZ) is equippped with a cuadrat1c form with sig-
nature (3, b2
puted by integration: «a,BeH (X m) then

[rl(qﬁ)“ J(q;a)'“']a
X

0 (
(Pr)JM”E‘”a-[J&r']B + (1-r) Jd>’”‘16”e-J¢"6”‘1a]

3), whose extens1on to H (X ,C) can be com-

N —

(36) q(a,B) =

LOCAL TORELLI THEOREM: Let 5<:Pb_1, b=b2, be the open
subset of a smooth quadric defined by

0 = {beP, ;5 q(®,9)=0, a(v,¥)>0}

Then the period map p:S-+§ is a local isomorphism.

(4.6) We consider a local universal family of marked
polarized symplectic manifolds (X+S,XX/S). Then AX/S
Bl R) HA(X L D),

with q(A,1A)>0. And we can see easily by the local Torellj

corresponds to a fixed class AeH

theorem that the base S corresponds exactly to an open
subset of
= {vef; q(U, 2)=0} .

The signature of g, restricted to the orthogonal comple-
ment of A is (2,b-3).

For K3 surfaces one has a stronger result (see(SCH2)),
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based upon the strong Torelli theorem (BU-RA, LO-PE}.
Namely there exists a fine moduli space of marked pola-
rized K3 surfaces, which is an open subset of some Q=§A.
In the missing points s, A5H1’1(XS,R) is no Tlonger
positive definite. The coarse moduli space is a gquotient
of the fine moduli space by the group of all automorphisms
of the Tattice (HZ(XO,Z),q), which actually (and of course
according to the general theory of moduli spaces) acts 1in
a proper, discontinous way on Q. At least in the algebraic
case one can interpret the gaps of the moduli space in Q
as type 1 degenerations. The volume forms of the Ricci-
flat metrics can be extended to these points, but not

the metrics.

(4.7) As din the Andreotti-Weil setting of the period map
of K3 surfaces, one has a close relationship between
periods of symplectic manifolds and the Kodaira-Spencer
map (see (BE)). The evaluation of differential forms on

tangent vectors yields an isomorphism
1 1oy, 10 2\ ~ 4l 1 2 4l
(37) H (XS,QXS)@H (XS,QXS) > H (XS,QXS)cH (XS,Q)—H (XO,Q).

where the image vector space is in a canonical way iso-
morphic to the tangent space of Q at the period point p(s).
However, we will need a more precise description of the

tangent spaces of Q and Q resp.
(4.8) We prove the main theorem in the following form:

THEOREM: Let (X+S,XX/S) be a local universal family of

polarized irreducible symplectic manifolds. I

it is
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provided with a marking, then the period map is an iso-

metry of S with the generalized Petersson-Weil metric and
an open subset of the period domain Q:SOO(Z,b—3)/SO(b—3)

equipped with the Bergmann metric.

REMARK: The canonical metric on © resembles much the
Fubini-Study metric on Pn ~ just replace the canonical
hermitian form on ¢n+1 by —-gq. For a period point¢ and a

tangent vector ¢' at this point it is given by

! _g£¢'!6') ((Dva) +ﬂ£¢'!6) <¢16’)
(38) G =Gy (6') = : — 4
q(¢,9)

(4.9) We compute the Petersson-Weil metric explicitly.

Let ¢(s)=FaY(z,s)dzaAsz be a nowhere degenerate, relative
holomorphic 2-form. Since we are interested in the norm

of a tangent vector, we can restrict ourselves to a

smooth one-dimensional base, Let s =0 be the distinguished
base point. Then ¢=¢(0)=Fay(0)dzaAsz induces the period

point and o= d is the total derivative with
~ds Ts=0

respect to a differntial trivialization in the sense of
section 2. We compute (38). By arguments used before,

¢' is d-closed, sinced is not only d-closed, but also
d-closed . The coefficients of a holmorphic differential
form are parallel according to Bochner's theorem (Rz0).
The value of (38) only depends upon d-cohomology classes

of ¢ and ¢' resp. So we use
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SF SF
(39) o' = {~—Y(z 0)+ —61b —QYpT ¢ b +F>\ b dz%.dzY
9z 3zt
+ 2F BY-dz%.d2°
ay B
F 6]
N [—l(z 0)+ oy, 4——:Y eTF a0 4F dz% . dzY
Y 37T ao® Y Xy a

Y o B
+ 2F ATpdz’ adz

= 90.0) T O, 1y .

The difference equals (F E dz% )y see(9)-(15). We will
eliminate ¢(2 0) by the harmon1c1ty of A% 8/82 dz6 A
mere projection to the (1,1)-component as in the proof
of the Tocal Torelli theorem is not sufficient. Observe
that ¢&1,]) represents the cup-product of p[:%;] and o
in the view of (37).

(4.10) We use harmonic representatives and come to:

LEMMA:

% ¢&1’1) Fy A gdz AdzB is harmonic.
The proof follows from (14) and the fact that F
parallel.

ay 1S

Further calculations yield:

(40) q(o,0) = q(o(O’Z),¢) for any 2-form o.
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(41) q(a(1.])’6(2,0))=0 H q(a(1,])!Y(0’2>)=0

for any (2,0)- and (0,2)-forms 8 and y resp. In particular:
(42) Q(dD'.a;') = q(d)&-l'-l)vge'l"l)) + q(d)eZ’O)vaeoyz))-

LEMMA:
¢&2 O).¢r—1= ced', cel

The proof follows from the fact that ¢&1 ) is harmonic

and ¢' is d-closed.

COROLLARY:

PROPOSITION: ., _,
(44) G = q(¢(1,1)'¢(1,1))

q(¢, )

for harmonic representatives as above.

LEMMA:
1 © .KT r —r

Y‘—1 —"I"—’I 1 | _ R . Y
(45) d> .d) .d)(],]) dD(—I"I)—"ZI;'é‘AT ol d) d> ]

PROOF: We use coordinates such that in a given point

r . .
¢ = f. dzdadzd?"
=19
VA NEV2AN

"1 A 1 1

67 =(r-)1 ] forcfoes dz ' ~dz T, ~adzdndZ 3, adz"rd2T
J J r

Now
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/ ry, = O 7T o B . 8 ¥
Cb(]v]).d)(_ly])_FuOA _.e_rg%_A 'YdZ AdZ AdZ AdZ .
One can show that the coefficient of dzd.dz j+rAdeAdzk+J

in ¢&1’1)'¢é1’1) equals

—fjfk(A kA

j___fEIF j+r_fE j+r___—FIF
ERAN A T A iR TR A wre R

=1 —fjfk ij
and
r=T—r-1,"

o 0 cb(m)?ﬂ(m) =

“((r-1)1)2 |2-ij vdz ' adz™ L. ad2"ad22"
J
k

2
lf1l e fr

N Ho~1-s

1
1 —

r+1 2r

AdZ‘I ~dz A-.AerAdZ

PROOF OF THE THEOREM: By (45)
@ 58 L rer
jA A o o ¢

1 B
6=y r
j¢ o}
Observe that ¢r$r is a volume form of the type lh]zdv,

where h is a holomorphic function. By the Calabi-Yau
theorem it equals ceg+dv, ¢>0, since its curvature form

vanishes. So

o 5B
. 1 JA BA o9 dv
r

Jg dv

which is up to a positive constant exactly the Petersson-

Weil metric.
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