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SOME RESULTS ON THE OCCURRENCE OF 

COMPACT MINIMAL SUBMANIFOLDS 

Gregory J. Galloway 

Varying the situation considered in Myers theorem, 
we show, via standard index form techniques, that a complete 
Riemannian manifold which admits a compact minimal submanifold 
is necessarily compact, provided a suitable curvature object 
is positive on the average along the geodesics issuing ortho- 
gonally from the minimal submanifold. By slightly recasting 
this result, one establishes the nonexistence of compact 
minimal submanifolds (in particular, closed geodesics) in 
complete noncompact manifolds which obey an appropriate 
curvature condition. A generalization of a result of Tipler 
concerning the occurrence ofzeros of solutions to the scalar 
Jacobi equation is also obtained. 

i. Introduction 

Gromoll and Meyer [7] and Cheeger and Gromoll [3] 

gave a penetrating analysis of the structure of complete, 

noncompact manifolds of positive and nonnegative curvature. 

One of the results obtained by Gromoll and Meyer ([7], p. 80) 

is that a complete noncompact Riemannian manifold with 

positive Ricci curvature is connected at infinity. Using 

index form techniques and a recent result of Tipler [i0] on 

the conjugacy of the scalar Jacobi equation, Chicone and 

Ehrlich [4] improved this result by showing that it suffices 

to require that the integral of the Ricci curvature along 

complete geodesics be positive. 
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2 GALLOWAY 

It seems reasonable to consider what other results, 

which are known to hold for positively curved manifolds, 

hold also for manifolds in which the curvature is assumed 

to be positive only on the average (in some sense). Using 

the second variation of arc length, Gromoll and Meyer show 

([7], p. 81) that a complete noncompact Riemannian manifold 

M with positive sectional curvature admits no compact 

immersed totally geodesic submanifolds; in particular, M 

contains no closed geodesics. (In fact their Theorem 4, 

p. 85, shows much more, namely, that complete geodesics must 

go to ~). 

In this paper the preceeding result is generalized 

in several different respects. The nonexistence of compact 

minimal submanifolds is established under much weaker curva- 

ture conditions. The (in general, weaker) curvature objects 

considered are required to be positive only on the average 

in some sense. The essential point, as Theorem 1 of the next 

section illustrates, is that a complete Riemannian manifold 

which admits a compact minimal submanifold is itself going 

to be compact if the curvature is sufficiently positive. 

2. The main results 

We take a moment to introduce some notation and ter- 

minology. Let < , > denote the metric of a Riemannian 

manifold M. If t § y(t) is a curve in M, denote its 

tangent vector field by y'(t). If t § X(t) is a vector 

field along y, denote its covariant derivative by X'(t). 

By convention, all curves considered are parameterized by 

their arc length. Let R(X,Y) denote the Riemann curvature 

transformation, and let K(X,Y) denote the sectional cur- 

vature of the plane spanned by the vectors X and Y. 

If K is an r-plane spanned by the orthonormal 

vectors el, e2, ..., e r at some point p of M and X 

is a vector orthogonal to ~ at p, define 

r 
(i) K(K,X) = ~ K(ei,X). 

i=l 
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GALLOWAY 3 

It is easily checked that K(K,X) is independent of the choice 

of the orthonormal frame which spans E. If codim H = 1 

then K(K,X) = Ric(X). If y: [0,~) § M is a geodesic and 

H 0 is a plane through y(0), let K t denote the parallel 

translate of E 0 along y through y(t). 

Finally, the scalar Jacobi equation, 

(2) x" + k(t)x = 0 

is said to be focal on the interval [0,~) if there exists a 

solution to (2) on [0,~) which satisfies the initial conditions 

(3) x(0) = i, x' (0) = 0 

and which has at least one zero on (0,~). 

Our first theorem is a variation of Myers theorem 

(and generalizations of it; see especially [I]). 

Theorem i. Let M be a complete Riemannian manifold with 

dimension > 2. Let V be a compact immersed minimal sub- 

manifold of dimension r ~ i. If along each geodesic 

T: [0,~) + M issuing orthogonally from V, 

L 
eo 

(4) K(Et,y' (t))dt > 0 

holds, where H 0 is the tangent space o_~f V a_~t y(0) then 

M i_ss necessarily compact. For simplicity of notation, we have 

= lim inf t which will adopted in (4) the convention: I 0 t + ~ I0 ' 

be employed throughout the paper whenever such integrals arise. 

The proof of Theorem 1 is a variation of the tech- 

nique considered in [6] and relies on the following two 

lemmas. 

Lemma i. Let V be an r-dimensional immersed minimal sub- 

manifold of a Riemannian manifold M. Let y: [0,~) § M be 

a geodesic issuing orthogonally from V a_tt p = T(0). If 

(2) is focal, where k(t) = K(Kt,T' (t))/r and H 0 is the 
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4 GALLOWAY 

tangent space of V at p, then there exists a focal point 

to V along y. 

Proof of Lemma i. The proof uses standard Morse Index 

Theory techniques. Since (2) is focal, there exists a 

solution 4: [0,~) § R to (2) and (3) such that ~(t 0) = 0 

for some t 0 > 0. 

Let i be the collection of smooth vector fields 

[0,t0] which are perpendicular to y, tangent 

X(t0) = 0, X' (0) = 0. 

y [O,to]. For X,Y c i 

X along 

to V at y(0), and which satisfy 

Introduce the index form I along 

we have (see [2], p. 221), 

(5) ~0 t0 X" ,Y>dt + I(X,Y) = - < + R(X,y')7' 

<bTX(0) ,Y(0)> , 

where T = y' (0) and b T is the second fundamental form of 

V at y(0). 

Let {el, e 2 ..... e r} be an orthonormal basis of 

the tangent space of V at u Extend the basis vectors 

to orthonormal vector fields along yl[0,t0], by parallel 

translation. For each i = i, ..., r, define, 

(6) X. (t) = #(t)e.. 
1 1 

Note that each X. ~ i. Substitution of (6) into (5) gives, 
l 

I(Xi,Xi) = /0t0(~ '' + k(ei, )~)~dt + - y' <bTe i,ei>. 

Then, using (i), we obtain upon summation, 

I(Xi,X i) = -rf0t0(~ " + k(t)~)~dt + trb T = 0, 
i=l 

since ~ is a solution of (2) and V is minimal. 
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GALLOWAY 5 

Therefore, for some i, I(Xi,X i) ~ 0. However, by 

standard index form results (see, e.g. Theorem 4, p. 228 in 

[2]) we must have I(Xi,X i) > 0 unless there is some point 

on u [0,t0] which is a focal point to V along YI[0,t0 ]. 

The following result of Tipler and the geometric 

Lemma 1 provide sufficient conditions for the occurrence of 

focal points. 

Lemma 2 (Tipler [i0]). l_ff I 0k(t)dt > 0 then (i) is focal 

on [0,~). 

In the next section a more general condition on 

k(t) is obtained. Because of the more technical nature of 

this generalized condition we find it preferable in this 

section to state our main results in terms of Tipler's 

condition. 

We now prove Theorem i. 

Proof of Theorem i. Suppose M is not compact. Then there 

exists a sequence of points {qi } such that d(qi,V) § ~. 

(Here d is the metric distance function). Let 

Yi: [0'ti] § M be a geodesic from a point Pi = Yi (0) c V 

to qi whose length realizes the distance from qi to V. 

Ti = Yi' (0) is necessarily orthogonal to V. Since the unit 

normal bundle of V is compact, there exists a subsequence 

{ (pj,Tj)} which converges to a point (p,T) in the unit 

normal bundle. Let u [0,=) § M be the geodesic issuing 

from p c V with initial tangent T. It is not hard to see, 

using the continuous dependence of geodesics on the initial 

data, that for each t, the length of the segment Yl[0,t], 

realizes the distance from y(t) to V. In particular, 

y is focal point free. But (4) and Lemmas 1 and 2 imply, 

on the contrary, that there is a focal point along 

y. 

The following corollary to Theorem 1 singles out the 

codimension one case. 

Corollary i. Let M be a complete Riemannian manifold and 

let V be a compact immersed minimal submanifold of codimension 
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6 GALLOWAY 

one. If along each geodesic y: [0,~) § M issuing ortho- 

gonally from V, the condition, 

00 

I 0 Ric(y'(t))dt > 0 

holds, in particular if Ric > 0 o__nn M, then M i_ss 

necessarily compact. 

Corollary 1 shows that in the proof of a theorem of 

Frankel ([5], p. 70) it is not necessary to consider the 

(more complicated) "M noncompact" case. 

Theorem 1 can be recast to make a statement about the 

nonexistence of compact minimal submanifolds in complete non- 

compact manifolds. A ray emanating from a point p in M is a 

geodesic y: [0,~) § M such that y(0) = p and the length 

of each segment of y realizes the distance between its end 

points. It is well known that if M is complete and noncompact, 

there is at least one ray emanating from each of its points. 

Intuitively, a ray emanating from a point p is a minimal 

geodesic from p to ~. 

Theorem 2. Let M be a complete noncompact Riemannian mani- 

fold. Suppose along each ray y: [0,~) + M the condition 

(7) I 0 K(Ht,Y'(t))dt > 0 

holds for every r-plane N 0 a_tt y(0), perpendicular t_oo u (0). 

Then M contains no compact immersed minimal submanifolds o_ff 

dimension greater than or equal t__0_o r. 

Proof. If K is an s-plane perpendicular to X, where 

s > r, then K(H,X) can be written as a sum of terms K(P,X) 

where P is an r-plane perpendicular to X. Indeed, if K 

is spanned by the orthonormal vectors el, e2, ..., e s 

then 

where 

S 

= 1 
K(K,X) r ~ K(Ki'x) ' 

i=l 

~i is the r-plane spanned by ei mod r' e(i+l)mod r' 
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GALLOWAY 7 

"''' e(i+r-l)mod r" Thus, (7) holds for all ~0 of dimension 

S > r. 

NOW, suppose V is a minimal submanifold of 

dimension s > r. The proof of Theorem 1 shows that there 

exists a ray u [0, ~) § M issuing orthogonally from V 

which is focal point free. But this contradicts (7) and 

Lemmas 1 and 2. 

The following two corollaries single out the 

dimension one and codimension one cases. 

Corollary 2. Let M b_@e a complete noncompact Riemannian mani- 

fold. Suppose alonq each ray y: [0, ~) § M the sectional 

curvature condition, 

co 

I 0 K(X(t),y' (t))dt > 0 

holds for each parallelly propagated vector field X along 

and orthoqonal to y. Then M contains no compact immersed 

minimal submanifolds of dimension > i. I__n_n particular , M 

contains no closed geodesics. 

Corollary 3. Let M be a complete noncompact Riemannian 

manifold. I__ff along each ray the condition, 

oo 

I 0 Ric(y'(t))dt > 0 

holds, in particular if Ric > 0 o__nn M, then M contains 

n__o compact immersed minimal submanifo!ds o_~f codimension one. 

3. A generalization of Lemma 2 

In this section we modify Tipler's argument, using well known 

methods in the theory of conjugate ordinary differential 

equations (see [8],[9]) to obtain a generalization of Lemma 2. 

The following lemma extends Tipler's result to a slightly more 

general self-adjoint differential equation. 

Lemma 3. Consider the initial value problem, 
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8 GALLOWAY 

(8) (q(t)x') ' + p(t)x = 0, 

x(0) = x 0 > 0, 

x' (0) = x~, 

where q(t) and p(t) are continuous on [0,~) and q(t) > 0 

on [0,~) . If 

(9) 

oo 

/e l q(t) dt = + ~, 

and 

( io )  
! 

/0 ~ q0x0 
p(t)dt > x0 

(where q0 = q(0)) then every solution to (8) has a zero on (0,~). 

Proof. Let x(t) be a solution to (8) on [0,~) and suppose, on 

the contrary, that x does not have a zero on (0,~). The 

quantity z = -qx'/x obeys the differential equation 

2 
z' = z~ + p . 

q 

Integrating this equation from 0 to t 9ives, 

(ii) /o < /o z(t) = 2/q dt + p dt x0 

number 

(12) 

The inequality (i0) implies that there exists a 

t 1 ~ 0 a n d  a n u m b e r  c > 0 s u c h  t h a t  

! 

0 t q0x0 > c 
p d t  Xo 

for all t s [tl,~). Thus (ii) and (12) imply 

fo t2 z(t) > z /q dt + c 

for all t s [tl,~). Introduce the function R(t) by, 

216 



GALLOWAY 9 

t 

R(t) : /0 z2/q dt + c. 

R > 0 and R' = z2/q > R2/q on [tl,~). Dividing by R 2 and 

integrating from t I to t we obtain, 

1 f t l  1 
(13) R(t) > -- dt - 

t I q R(t I ) 

Equation (9) implies that the right hand side of (13) tends to 

+ ~ as t § ~, which contradicts the fact that R is positive 

on [tl,~). 

The following theorem can be used in lieu of Lemma 2 

to obtain refinements of the results presented in Section 2o 

Theorem 3. Suppose for some a > 0 and some I < i, 

< ~ 12 1 
(14) (a+t) Ik(t)dt > 4(i-I--------~ al-1 

Then (2) is focal on [0,~). 

Note that (14) reduces to the condition of Lemma 2 

when I = 0. However, it is easy to construct examples in 

which the condition of Lemma 2 is not satisfied but (14) is. 

For each positive integer n, define: 

k (t)= 
n 

-2, 0 < t < e 

1 , n < t < n + s 

0 , elsewhere on [0,~). 

Then, for all n, I0kn(t)dt < 0. However, for any a > 0 

and any X, 0 < I < i, (14) is satisfied (with k(t) = k (t)) n 
for all n sufficiently large. 

Also, note that (14) can be rewritten as follows, 

~0 ~ - ] dt > 0 
12 

(a+t) 1[k (t) 
1 

4 (a+t) 2 

Proof of Theorem 3. The argument is patterned after the proof 

of a theorem of R.A. Moore (see Theorem 2, p. 127 in [9]). 
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I0 GALLOWAY 

Let g(t) = a + t, and make the substitution , 

gxl2 
x = (t)y, 

Then (i) becomes 

(q(t)y')' + p(t)y = 0, 

where, 

q(t) = gl(t) and p(t) - I(2-I) 1 + gl k 
4 2-I " 

g 

Now, 

dt = + )l dt = - 

and 

/0 /0 =_ + (t+a) Ik (t) dt p(t)dt 4(1-I) a l - X  

)t 1 
> 

2 l - X  
a 

_ q ( O ) y '  (0)  
y(O) 

Therefore, by Lemma 3, y has a zero on (0, ~) and, hence, 

so does x. 

As a final remark, Theorem 3 can be used to refine 

Tipler's Theorem 2 in [i0] which establishes the conjugacy of 

(i) under the assumption, I~ k(t)dt > 0. As a consequence, 

one obtains refinements of the geometric applications of 

Tipler's Theorem 2 considered in [4]. 
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