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M U L T I P L I C I T Y  O F  P O S I T I V E  S O L U T I O N S  O F  N O N L I N E A R  E L L I P T I C  

E Q U A T I O N S  W I T H  C R I T I C A L  S O B O L E V  E X P O N E N T  I N  S O M E  C O N -  

T R A C T I B L E  D O M A I N S .  

Donato Passaseo 

In this paper we prove that, for every positive integer k, there exists a 

contractible bounded domain 12 in R N with N >_ 3, where the problem 

(*) (see Introduction) has at least k solutions. 

I n t r o d u c t i o n  

Let ~ be a bounded domain in ~:~N with N > 3. In recent years 

there has been much interest in nonlinear elliptic equations of the form 

(,) 

where 2* - -  2 N  
N - 2  

HoL2 (a) CLP(a). 

A u + u  2 . - 1 = 0  in f~ 

u > 0  in f~ 

u = 0 on 0~, 

-- is the critical exponent for the Sobolev imbedding 
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The problem (,) is a simplified model of some variational prob- 

lems in physics and geometry, whose common feature is a lack of 

compactness (see for example the Yamabe's problem in [1], I25]). 

Indeed, the solutions of (,) correspond to the critical points u of 

the functional 

f (u)  = ~ ~-; ]ul 2 dx, with u > 0 ;  

but this functional does not satisfy the classical Palais.Smale's condi- 

tion, since the imbedding Hol'2(f]) C_ L ~* (~) is not compact; therefore it 

is not possible to use the standard variational methods to find critical 

points. 

A first contribution to problem (,) is the following negative result 

due to Pohozaev. 

T h e o r e m  (Pohozaev [21]). If  the bounded domain ~ is star-shaped, 

then (*) has no solution. 

Nevertheless, more recently Brezis and Nirenberg have pointed 

out that lower-order perturbations of the nonlinear term in (,) can 

reverse this situation, and the perturbed problem can have solution, 

as follows also from general bifurcation theory (see [22], [19]). 

Among the other results, Brezis and Nirenberg obtain in [6] the 

following theorem. 

T h e o r e m  (Brezis-Nirenberg [6]). Let ~C_~ N with N >_ 3 and ~1 

denote the first eigenvalue of - A  in ~I,2 - " o  (f~)" There exists )~ * in 

[0,)~1[, such that, if A E]/~*,),I[, then problem 
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Au + u 2.-1 + Au = 0 in 

u >  0 in 

u = 0  on 0~2 

has at least one solution. Moreover )~* = O, when N >_ 4. 

Note that  in this theorem no special assumption is made about 

the bounded domain f2o 

On the other hand, one can exploit the shape of [2 in order to 

find solutions of the problem (,):  for example, if f~ is an annulus (i.e. 

~Q = {x e R y : r l  < Ixl < r2}), it is easy to verify (see Kazdan- 

Warner [15]) that  (*) has a radial solution. 

Therefore the existence of solutions of the problem (,) seems to be 

connected with the shape of f2. 

The most remarkable result in this direction is the following theo- 

rem of Bahri-Coron. 

T h e o r e m  (Bahri-Coron [2],[3]). If  the domain ~ has nontrivial topol- 

ogy (see [2], [3]), then the problem (*) has at least one solution. 

In [4] H. Brezis has pointed out the question whether  it is possible 

to replace in Pohozaev's theorem the assumption "f2 is star-shaped" by 

"f~ has trivial  topology"; in other words, whether there exist domains 

f2 with trivial topology on which (,) has solution. 

An existence result for solutions of (*) in some contractible 

bounded domains has been obtained by W. Ding (see also remark 

(29)): 

T h e o r e m  (W. Ding [11]). Assume N > 4; let f2 = Ar\C~,  where 
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Ar = {x e R N : 0 < r < IX i < 1} and Ce is the cylinder defined in 

notations (4). 

There exists r o e  (0,1), such that, for r e (0, ro) there exists c(r) > 0 

such that, if r E (O, ro) and e E (O,e(r)), then (*) has a solution on 

= A , \ C ~ .  

A weaker result is obtained by Ding when N = 3 (see [11]). 

In this paper we obtain existence and multiplicity results for so- 

lutions of the problem (,) in some contractible bounded domains (see 

theorem (8)). 

The proof uses essentially some results of P.L. Lions and Struwe 

(see theorems (11)and (16)), which applie the "concentration-compa- 

ctness principle" to analyse the minimizing sequences for the best 

Sobolev constant S (see definition (9)), and the Palais-Smale's se- 

quences of the functional f .  

At the end, we point out that the solutions of problem (,), which 

we find in this paper, correspond to critical values in ] ~ S  y/2,  

2 s N / 2  [ of the related functional f ,  while the critical values obtained 

in [6] (and also in [7], [8])lie in the interval ]0, ~ s N / 2 [ .  

The author wishes to thank prof. A. Marino and prof. M. Degio- 

vanni for the useful discussions. 

Let ~ be a bounded domain in RN with N > 3 and 2* 2N 
' - -  - -  N - 2  

be the critical Sobolev exponent for the imbedding ~D'I'2(~)CLP(~).o 

We are concerned with the following problem: 
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(1) 

A u  + u 2 . -1  = 0 in 

u > 0  in 

u = 0 on 8 ~  

We shall use the following functionals:  

(2) D e f i n i t i o n .  Let V -- {u e Hl'2(r~)ifaluydx = 1}; we define 
~1,2 the  funct ionals  f : ~ ' o  (f~) --+ R;  ~ :  V -+ R;  F :  H I ' 2 ( R  N) -+ R 

and  g : Hol'2(f~) -+ R in the following way: 

f (u )  = ~ ~-; 

~(u) = f a  ]Dul2dx Vu e V; 

1 / ~  iDul2d x -  1 /~ [ul2*dx Vu E H~'2(]RN); 
F(u)  = -~ ~ ~ N 

g(u) -/r~ XNiU(X)[2*dx Vu e H~'2(~) (where x = (x,,...,XN)). 

(3) 

a) 

b) 

R e m a r k .  It is easy t o  verify tha t :  

a function u in H~'2(~) ,  u >_ 0 and u f~ O, solves problem (1) if 

and only if u is a critical point for the functional f ;  

a function u in HoL2(~t), u ~ O, is a critical point for f if and 
N - - 2  

only if  ~ -- "~ = 1[~][2. is a critical point for ~ and u IID~II: ~ ~. 
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Then, problem (1) is equivalent to search nonnegative critical 

points of ~. 

We introduce the following notations: 

(4) N o t a t i o n s .  Let 

B(~,r) : {~ c R ~ :  ix - d < ~} 

= (x  = (x~, . . . ,xN) e R ~ I ~  > 0, C~ 
k 

VcE]R N, r > 0 ;  

N - 1  

i : l  

Vc > 0; 

For every k E IN, let Tk be the bounded cylinder 

Tk = ~x = (xl , . .  ,~N) e R ~ l -  1 < x~  < k; 
k 

N - 1  

i ~ l  

Let ck = (0,...,0, h) E ~:~N for every h = 0, 1,. . . ,k - 1; given k 

1 for h = 0 , ! ,  k - 1 ,  let real numbers rh, with 0 < rh < ~ .... , 
k--1 

Dk = Tk\ U B(ch,rh). 
h=O 

It is evident that  the bounded domain Dk\CE is contractible for every 

c > 0 .  

(5) D e f i n i t i o n .  Suppose that  the domain g~ in ~=~N have radial sym- 

metry with respect to the axis xg ,  that  is it results T(s = gt for 

every transformation T in RN of the type 

T(Xl '""XN) = ( O ( X l , . . . , X N _ Z ) , X N )  
(~) 

with 0 orthogonal transformation in R N-1 

We call H~(a) the space of all the functions of H~'2(a)  with the same 

symmetry, that  is: 

Hs(~)  = {u e H~'2(g~)lu o T = u V transformation T of type (6)}. 
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Note that the domains Dk and Dk\C~ (see notations (4)) have evi- 

dently radial symmetry with respect to the axis XN. 

(7) R e m a r k .  Suppose that ~ has radial symmetry with respect to the 

axis x~v. One can easily verify that A-l(tul2*-2u) lies in Hs(12) (see 

definition (5)) for every u in Hs (l't); therefore we have that grad f (u)  E 

Hs(~) for every u in Hs(~) and grad ~(~) E H~(~) for every ~ in 

H~(a)nv. 
Consequently, every critical point for f [or for ~] on Hs(~) is a critical 

point for f [or for p]. 

The main result in this paper is the following theorem: 

(8) T h e o r e m .  For every k E l~i, there exists a contractible bounded 

domain g~ in R N with N >__ 3, such that the problem (1) has at least 

k solutions. 

Precisely, there exists -( > 0 such that, if ~ = Dk \CE (see notations 

(4)) with 0 < ~ < ~, then problem (1) has at least k solutions in Hs(~).  

Moreover, if we call ul,  uk the solutions and set ~h - -  ~ f o r  ""' -I1~11~* 
h = 1, ..., k, we have: 

f n  'D~h[2d~ =min  { f [Du[2dx[u ~ H~(~); 

I1~11~* = 1; h -  1 < g(~) < h} 

for every h = 1, . . . ,k  (see de~nition (2)). 

The proof, reported at the point (18), is based on the results 

which follow. 

Let S be the best constant for the Sobolev imbedding 

Hol'2(~)_CL 2. (~), defined as follows: 
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It is well known that the constant S verifies the following properties 
(see [21], [6], [24], [20], [13], [141); 

(10) Propos i t ion .  Let S be the best Sobolev constant(see (9)). Then: 

a) S is indipendent of f~; it depends only on N ;  

b) S is not achieved in any bounded domain f~; 

c) when f~ - ]R N, then S is achieved by the function 

U 1 
- -  with U(z)= 

v - Uvll:, (1 + I~]~) ~e~ 

moreover, all minimizers for S are of the form 

d) 

- -  m UO~2CO 
Ua,=o where Ua,=o(X ) = U ( ~ )  , 

with ~r > 0 and So E I ~  N . 

if u in r41'2(~ N) is a critical point for the functional F (see 
~ 0  

t~ definition (2)) and u >_ O, u ~ O, then it results II~Uh*- = U~,=~ 
for suitable ~ > 0 and xo in ~ g .  

We recall the following result of P.L. Lions: 

(11) T h e o r e m  (P.L. Lions [17]). Let (u,,)~, be a minimizing sequence 

for (6), that is: 

~ e H J ' ~ ( ~ ) ;  f~N I~!  ~*d~ = 1 /or every n e r~, and 
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lim fiaN IDunl2dx = S. 
f/, ---+ O O  

Then there exist two sequences (y,~),~ in l:~ N and (a~)n in R with 

~rn > O, such that the sequence (ztn),~ in H~'2(IR N) defined as follows: 

'5n(x)= a ~  un ( x + yn 

is relatively compact in L 2. (RN). 
It is evident that ((t~)~ is also a minimizing sequence and, if (in --~ (t 

in L 2. (N;N), then 

/ ~  Dfzl2dx = S .  
N 

We deduce the following proposition: 

(12) Proposi t ion.  If the minimizing sequence (u~)~ of theorem (11) 
is in Hl '2(a) ,  with a bounded domain Of JR N, then the sequence (o,~)n 

(see theorem (11)) satiges lim an = + o o .  
n----~ o 0  

Consequently, we can find a point ~ in -~ and a subsequence (un~)~ 

such that 

f ~  E * (13) .lim v{u.,,[ 2 dx = v(g) 

for every function v which is continuous in f~. 

Proof. Suppose, by contradiction, that (a~)n (or a subsequence) is 
bounded; then (Yn)n (see theorem (11)) is bounded too and therefore 
the sequence (un)n is in H~'2(B(O,p)) for p sufficiently large; if we 
suppose that (Un)n (or a subsequence) converges to ~ in L v(ItN),  
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then  the inf imum in (9) is obta ined by the funct ion ~ in the bounded  

domain  gt = B(0,  p), in cont radic t ion  with  proposi t ion (10) (point 

(b)). 
Now we observe tha t  

u,~(x) = a ~  a,~(x - x,~ where  x~ = , 
O" n 

it follows tha t ,  for every c > 0, (un),~ (or a subsequence)  verifies 

(14) 

lim /. f 

lu,~l 2 dx = lim lunl 2 dx = 
n~oo JB (o ,~)  

= f~N 1~12" gx = 1. 

Since f~  lul l  2. dx = 1 for every n e IN, (14) implies t ha t  the sequence 

(Xn)n is bounded  and,  if a subsequence (Xn,)i converges to ~, then  

lies in f~ and (13) holds. 

The  funct ionals  f and p defined in (2) verifie the following Palais- 

Smale 's  condit ion:  

(15)  P r o p o s i t i o n .  Let N > 3 and ~ N .  Then we have: 

a) every sequence (~)~ i~ g~o'~(~) 8~ch that 

n-+oo r ~ E ] 1 s N / 2  2 s N / 2  lim j~ nj j ~ , ~ [ 

~im (If'(u.~)lfH-.,.(~) = O, 

is relatively compact in H~'a(f]); 
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b) every sequence (~,~),~ in V (see definition 2)) such that 

22o0 ~(~,,) e ]s,2~s[ 

lira II ~o' (u,,)ll,~-,,= = 0 ,  

is relatively compact in H~ '2 (~). 

The proof, reported at the point (17), is based on the following 

result of Struwe: 

(16) T h e o r e m .  (Struwe [23]). Let N > 3 and f~C]R N. Suppose 

that the sequence (Un)n in Hol'2(~) satisfies sup f(un) < +oo and 
nEIN 

l i r a  ]lf' (Un)l lH-l ,z(n)  : O. 

Then, there exist a number ~ ~ go, a f~netion no i= g] '2(a)  critical 

point for the functional f ,  and -k functions Ul, ...,U-~ in -'-'o~l'2(~g) 
critical points for the functional F (see definition (2)), such that (u,~)n 
(or a subsequence) verifies: 

us --~ Uo weakly in ..~rl'2(~)'o 

J = 0  

2im f(~.) =/(no) + X: r( .j)  
J = l  

(17) Proof of Proposition (15). 

a) Let Uo and k be the function and the number which appear in 

theorem (16); it suffices to prove that k = 0. 
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b) 

First  we observe that ,  if U J  has constant sign and u j  ~! 0, then 

proposition (10) (point (d)) implies that  F(ug)= -~ S~r/2; 
on the contrary, if the sign of ug is not constant,  we have F(uj) = 
r(u+j) + F(uj),  where u~ = max{ug,0}  7~ 0 and u j  = 

m a x { - u j ,  0} ~ 0; using the properties of the Sobolev constant 

S (see proposition (10)) one can easily verifies that  F(u:~) > 
• S N/2 and F(uj)  > ~ SN/2; therefore it is evident that  we 
N 

cannot have f(uo) = 0; on the other hand, if Uo ~ 0, then 

f(uo) > ~ S g/2 and so we obtain that  k =  0. 

In our assumptions, there exists a sequence (An)~ of multipliers 

such tha t  

lira I I ~  + A~A-l ( Ignl2*-=~) l lH- , .=(n)=  0 ;  

we can deduce that  

lim ,~n= lim s 2~S[. 
n-- '+  ~ n---+ ~ 

N - - 2  

Now it is easy to verify that  the sequence un = An 4 un satisfies 

the assumptions of point a) and this implies obviously the thesis. 

(18) Proof of theorem (8). 

We observe that  the domain a = Dk\C~ (see notations (4)) has 

radial symmetry  with respect to the axis xN and then (see remark 

(7)) we look for solutions u in Hs (a ) .  

S t e p  I: For every h = 0, ..., k - 1, let 

(19) S h ~-~ inf { / D  IDu[2dx[uE Hs(Dk);  i[u[12* = 1; g(u)= h} 
k 
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(see notat ions in (2), (4), (5), (9)). 

We prove tha t  

(20) S h > S for every h = 0,..., k - 1. 

In fact, suppose by contradiction that  there exists a sequence (un),~ 
in Hs(gt) such tha t  IlUr~ll2. = 1; g(u,~) = h for every n e IN and 

l i m  fDk IDu'~! 2dx = S. 
Then, because of proposition (12) and symmet ry  of the functions u,~, 

we have tha t  (u~)~ (or a subsequence) verifies 

lim g(u,~) = -XN w i t h  0 < rh _< 1Sly -- hi 
~ - - +  OO 

and it is impossible, since g(u,~) = h for every n E IN. 

Thus (20) is proved. 

S t e p  II :  we prove that  there exist k functions Vl, "',Vk in Hs(Dk) 
such that ,  for every h = 1, ..., k, it results: 

[ f ~  I~hl 2.~x = 1; h -  1 < g (~)  < h; 

(21) fD~ ID~hl =dx < min {Sh]h = O, . . . , k  - 1} (see(19)); 

ID~ ID~I =~x < 2~S. (see(9)) 

In fact, (20) and the properties of the constant S (see [6], [24]) implie 

tha t  for every 5 > 0 there exists a function ~ in C~ ~ (B(0, 5)), invariant 

for orthogonal t ranformations of R Iv, such that :  

{ f B ( O , ~ )  i~1 =*d~ = 1; 

fB(o,a) IDOl =dx < min {Sh]h = 0 , . . . , k -  1}; 

fB(o,a) ID$[ =d* < 2-~ S. 
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Now, since r h < 1 for every h = 0, ..., k - 1, we can evidently choose 

6 > 0 in such a way that,  if we define Vh as 

~h(X) = ! ~(x -- -dh) for x e B(-dh,a) 

( 0 for x E Dk\B(-dh,5), 

where 2h = (0,0, ...,0, h -  �89 E ~ N ,  then the functions ~x, ...,~k lie in 

H~(Dk) and satisfie the conditions (21). 

S t e p  III:  Let ~ = Dk\C,; we verifie that,  for c > 0 sufficiently small, 

there exist k functions u1,r ..-,uk,~ in H~(f~) such that  

(22) { f a  l~h,,i r d =  = 1; h -  1 < ~(~h,,) < h; 

falD~h,~J2dx < m i n { S h l h = O , . . . , k -  1}; 

In fact, let V l ,  "" ,  V-k be the functions in Hs(Dk) obtained above, ver- 

ifying the conditions (21). 

It is easy to find a family of cut-off functions zE in C ~  (~) n Hs(fl) 

such that,  if we set Uh,~(x) = ze(x)~h(X), then Uh,, e Hs(~) and 

(23) 

2*  - -  2*  lim,_.o+ fa lab,,[ dx--  fD, Ira] dx = 1; 

lim,_~o+ f~ [Duh,,l=ax = fD, IDvh] =dx" 

Therefore, we deduce easily that  the functions Uh,~ ---- ~INh.,lt=. (for 

h = 1,. . . ,k) satisfie the conditions (22) when e > 0 is sufficiently 

small. 

I60 



P A S S A S E O  

S t e p  IV:  Let ~ = Dk\Ce; we prove that  for every e > 0 it results: 

(24) 'nf { rj~ IDuI2dxl uE H~(~); IluI[2, : 1; g(u)>_ o}> s. 

In fact, if by contradiction there exists a sequence (un)n in H , (~ )  

such that  

Ilu,~l]2. = 1; g(u~) > o for every n e IN and 

lim f~ IDu~12dx = S, 
n - - - +  ~ 

then proposition (12) and the symmetry  of the functions un implie 

that  (u~),~ (or a subsequence) satisfies lim g(u~) = 2N with - 1  < 

gN < --ro < 0, while g(un) >_ 0 for every n E N; thus (24) is proved. 

S t e p  V: Let fl = Dk\C,; we prove that,  when e > 0 is sufficiently 

small, there exists the following minimum, for every h = 1, ..., k: 

(25) min~rJ[]~lDul2dxl uEHS("); IJu]12, =1; h - l<g (u )<h } .  

In fact, since 

Sh <_ inf { fn ]Dul2dxlu E Hs(~);  jiull2. = 1; g(u) = h}, 

(22) and (24) implie that,  with the notations of definition (2), we have: 

inf{p(u)luEV; h - l  <g(u)<h} < 

< inf {~(u) lu  E V; g(u): h or g(u): h -  1}; 
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inf e V; h -  1 < g(,,) < h} e ]S, 2 S[. 

Thus, it suffices to use the Palais-Smale's condition proved in propo- 

sition (15) to obtain the existence of the minimum in (25). 

Finally we observe that  the minimum in (25) is achieved on a function 

~h >_ 0 (otherwise we replace Uh by I~hl); so, using remarks (3) and 

(7), we obtain k solutions ul,...,uk of problem (1) for f~ = Dk\C~ 
with e > 0 sufficiently small, and this completes the proof. 

(26) R e m a r k .  When ~ = Dk\C~ (see notations (4)) it is very plau- 

sible that  problem (1) has more than k solutions. 

Indeed we can prove (the proof is contained in a paper to appear) 

that: 

a) if some rh for h --- 0 , . . . , k -  1 (see notations (4)) is sufficiently 

small, then we can choose e > 0 sufficiently small in such a way 

that  the problem (1) has at least k + 1 solutions for ~ = Dk\C~. 

b) it is possible to choose the numbers r h ( h  " -  0,  . . . ,  k - 1) and c > 0 

sufficiently small, in such a way that  the problem (1) has at least 

2k solutions when a = Dk\C~ (see notations (4)). 

(27) R e m a r k .  One can observe that  the domain ~t -- Dk\C~ (see 

notations (4)) does not have regular boundary, but it is evident that,  

using the same technique, we can find contractible bounded domains 

in p N, with regular boundary and more general shape (provided 

with an axis of radial symmetry),  where the existence and multiplicity 

result of theorem (8) holds. 

(28) R e m a r k .  We note that  the symmetry of the domain fl plaies 

an important  role in the proof of theorem (8); but we can prove an 

analogous existence and multiplicity result also in suitable contractible 
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bounded domains ~ without any symmetry property (this result is 

contained in a paper to appear). 

(29) R e m a r k .  The existence result of Ding reported in the introduc- 

tion can be usefully compared with the following theorem, which can 

be proved evidently with the same technique used in theorem (8). 

(30) T h e o r e m .  Assume N >_ 3; let ~ = A~\Cc be defined as in 

Dinq~s theorem (see introduction). 

For every r E (0,1) there exists c(r) > 0 such that, if r @ (0,1) and 

c e (0, e(r)), then (*) ha8 a 8olution on ~t = A~\CE. 
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