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MULTIPLICITY OF POSITIVE SOCLUTIONS OF NONLINEAR ELLIPTIC
EQUATIONS WITH CRITICAL SOBOLEV EXPONENT IN SOME CON-
TRACTIBLE DOMAINS.

Donato Passaseo
In thus paper we prove that, for every positive integer k, there exists a
contractible bounded domain Q in RY with N > 3, where the problem
(*) (see Introduction) has at least k solutions.
Introduction

Let € be a bounded domain in RY with N > 3. In recent years

there has been much interest in nonlinear elliptic equations of the form

Au+u2"1=0 in

(*) u>0 in 0

u=20 on 01},
where 2* = % is the critical exponent for the Sobolev imbedding
Hy2(Q)CLP(Q).
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The problem (%) is a simplified model of some variational prob-
lems in physics and geometry, whose common feature is a lack of
compactness (see for example the Yamabe’s problem in [1], [25]).

Indeed, the solutions of (*) correspond to the critical points v of

the functional

flu) = 1/ |Du|?*dz — —1—/ lu|* dz, with u > 0;
2/q 2* Jq

but this functional does not satisfy the classical Palais-Smale’s condi-
tion, since the imbedding Ha**(Q)CL*" (Q) is not compact; therefore it
is not possible to use the standard variational methods to find critical

points.

A first contribution to problem () is the following negative result

due to Pohozaev.

Theorem (Pohozaev [21]). If the bounded domain Q s star-shaped,

then (%) has no solution.

Nevertheless, more recently Brezis and Nirenberg have pointed
out that lower-order perturbations of the nonlinear term in (%) can
reverse this situation, and the perturbed problem can have solution,

as follows also from general bifurcation theory (see [22], [19]).

Among the other results, Brezis and Nirenberg obtain in [6] the

following theorem.
Theorem (Brezis-Nirenberg [6]). Let QCRY with N > 3 and Ay

denote the first eigenvalue of —A n HS’Z(Q). There ezists A* in
[0, M1, such that, if A €]A*, A{[, then problem
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Av+u?2 " 4+ du=0 i €
u>0 in 0

u=20 on O{1

has at least one solution. Moreover A* = 0, when N > 4.

Note that in this theorem no special assumption is made about
the bounded domain (2.

On the other hand, one can exploit the shape of {) in order to
find solutions of the problem (*): for example, if (2 is an annulus (i.e.
Q= {z € RY : r; < |z]| < ry}), it is easy to verify (see Kazdan-
Warner [15]) that () has a radial solution.

Therefore the existence of solutions of the problem (*) seems to be

connected with the shape of ().

The most remarkable result in this direction is the following theo-

rem of Bahri-Coron.

Theorem (Bahri-Coron [2],[3]). If the domain Q has nontrivial topol-
ogy (see [2], [3]), then the problem (%) has at least one solution.

In [4] H. Brezis has pointed out the question whether it is possible
to replace in Pohozaev’s theorem the assumption “(Q is star-shaped” by
“Q) has trivial topology”; in other words, whether there exist domains

(1 with trivial topology on which (x) has solution.

An existence result for solutions of (%) in some contractible

bounded domains has been obtained by W. Ding (see also remark

(29)):

Theorem (W. Ding [11]). Assume N > 4; let Q = A, \C,, where
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A, ={z € RY : 0 <r < |z| < 1} and C, is the cylinder defined in
notations (4).

There exists rg € (0,1), such that, for r € (0,7¢) there exists e(r) > 0
such that, if r € (0,r9) and € € (0,¢(r)), then (%) has a solution on
Q= 4,\C..

A weaker result is obtained by Ding when N = 3 (see [11]}.

In this paper we obtain existence and multiplicity results for so-
lutions of the problem () in some contractible bounded domains (see
theorem (8)).

The proof uses essentially some results of P.L. Lions and Struwe
(see theorems (11) and (16)), which applie the “concentration-compa-
ctness principle” to analyse the minimizing sequences for the best
Sobolev constant S (see definition (9)), and the Palais-Smale’s se-

quences of the functional f.

At the end, we point out that the solutions of problem (%), which
we find in this paper, correspond to critical values in E—I%,—SN/:‘,
%S’ N/ 2[ of the related functional f, while the critical values obtained
in [6] (and also in [7], [8]) lie in the interval 0, S™/2[.

The author wishes to thank prof. A. Marino and prof. M. Degio-

vanni for the useful discussions.

Let Q be a bounded domain in RY, with N > 3 and 2* = N-
be the critical Sobolev exponent for the imbedding H2?(Q)C L?(0).

We are concerned with the following problem:
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Au+u2-1=90 in 0

(1) u>0 in 0

u=~0 on O}
We shall use the following functionals:

(2) Definition. Let V = {u € Hy*(Q)| [, |u|?" dz = 1}; we define
the functionals f : H}?*(Q) = R; ¢ : V —» R; F: Hy*(RY) - R
and g : Hé’z(ﬂ) — R in the following way:

flu) = }/ | Dul|?dz — ——1—/ [u|? dz Yu € Hy?(Q)
2Ja 2* Ja

o(u) :/ |Dul?dz Vu€eV;
Q

F(u) = l[ | Du|?dz — —1-/ |u|2*d:z: Yu € Hé’z(]RN);
IRN 2* ]RN

g{u) = /ﬂmN[u(a:)[Z*dz Vu € HY?(Q) (where z = (24, ..., zn)).

(3) Remark. It is easy to verify that:

a) a function u in Hé’z(ﬂ), u >0 and v £ 0, solves problem (1) if
and only if u is a critical point for the functional f;
b) a function u in H5’2(Q), u 2 0, 45 a critical point for [ +f and

N-2
Tl @@ critical point for ¢ and u = || D, * @.

only if u=
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Then, problem (1) is equivalent to search nonnegative critical

points of .
We introduce the following notations:

(4) Notations. Let

Ble,r)={zeR" :|jz—c|<r} VceR", r>0;
N—-1
C. = {:1; = (21,...,2n) € RN |2y >0, Z g2 < 62} Ve > 0;
=1
For every k € N, let Ty be the bounded cylinder
N-1
Ty = {x = (ml,...,xN) € RN| 1< zy <k Zl :l:? < 1}.
Let ¢, = (0,...,0,h) € R” for every h = 0,1,....k — 1; given k
real numbers ry, with 0 < r, < % for h = 0,1,.....k — 1, let

k—1
Dk :Tk\ U B(ch,rh).

h=0
It is evident that the bounded domain D \C, is contractible for every

e>0.

(5) Definition. Suppose that the domain € in RY have radial sym-
metry with respect to the axis zp, that is it results 7(Q2) = Q for
every transformation 7' in R” of the type

T(z1,...,zN) = (0(z1, ..., ZN=1),ZN)
(6) {

with 0 orthogonal transformation in R™~!.

We call H,(Q) the space of all the functions of Hy'?(Q) with the same

symmetry, that is:

H,(Q) ={ue H*(Q)|uoT = u V transformation T of type (6)}.
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Note that the domains Dy and Dg\C. (see notations (4)) have evi-
dently radial symmetry with respect to the axis zy.

(7) Remark. Suppose that (2 has radial symmetry with respect to the
axis zy. One can easily verify that A~1(Ju|>" ~2u) lies in H,(Q) (see
definition (5)) for every u in H4(Q1); therefore we have that grad f(u) €
H,(Q) for every u in Hy(Q) and grad ¢(u) € H,(Q) for every u in
H,(Q)NV.

Consequently, every critical point for f [or for ] on H,((2) is a critical
point for f [or for ¢].

The main result in this paper is the following theorem:

(8) Theorem. For every k € N, there exists a contractible bounded
domain Q in RN with N > 3, such that the problem (1) has at least
k solutions.

Precisely, there exists € > 0 such that, if Q@ = Di\C¢ (see notations
(4)) with 0 < € < &, then problem (1) has at least k solutions in Hy(2).
Movreover, if we call uy,...,uy the solutions and set up = HT:ﬁT for

h=1,..k, we have:

/ | Dy, |?dz = min {/ |Du|?dz|u € H,(Q);
Q 2

Jullze = 15 b= 1< g(u) < b}

for every h = 1,..., k (see definition (2)).

The proof, reported at the point (18), is based on the results
which follow.

Let S be the best constant for the Sobolev imbedding
Hy?(Q)CL? (Q), defined as follows:

153



PASSASEO

(9) S = inf {j{] |Du|?dz|u € H;?(Q); j; |ul? dz = 1}.

It is well known that the constant S verifies the following properties
(see [21], [6], [24], [20], [13], [14]);

(10) Proposition. Let S be the best Sobolev constant (see (9)). Then:
a) S 1s indipendent of Q; it depends only on N;
b) S is not achieved in any bounded domain );

c) when Q= RY, then S is achieved by the function

— U 1
U= with Ulz) = ———5— ;
10T = e
moreover, all minimizers for S are of the form
I7 UO’ Zo T — Zg
g,z = : h Ua’ T = U
Voo = gl he7e Vo) =0 )

with o > 0 anda:oE]RN.

d) if w in HY2(RY) 4s a critical point for the functional F (see

definition (2)) and uw > 0, u # 0, then it results Tl = Voo
for suitable 6 > 0 and zo in RY.

We recall the following result of P.L. Lions:

(11) Theorem (P.L. Lions [17]). Let (un)n be a minimizing sequence
for (6), that is:

un € Hy?(R™Y); [ [un|?dz=1 for everyn €N, and

i
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nllrréo fIRN |Duy|?dz = S.

Then there exist two sequences (Yn)n In RY and (0n)n in R with
on > 0, such that the sequence (@y)n tn H3’2(]RN) defined as follows:

_N
’[Ln(:li) _.:o.n'z"'un<$+yn)’

is relatively compact in L2 (RY).
It is evident that (iin)n is also a minimizing sequence and, tf Uy — @

in LT (RY), then
/ |Dit|?dz = S.
RN

We deduce the following proposition:

(12) Proposition. If the minimizing sequence (un)n of theorem (11)
is in Hy%(Q), with Q bounded domain of RY, then the sequence (04)n
(see theorem (11)) satisfies nllrrgo on = +o0.

Consequently, we can find a point Z in 1 and a subsequence (un,)i
such that

(13) lim / oftin, |2 dz = v(7)
1— 00 Q
for every function v which s continuous in 0.

Proof. Suppose, by contradiction, that (o,). (or a subsequence) is
bounded; then (yy,)» (see theorem (11)) is bounded too and therefore
the sequence (iin)y, is in Hy?(B(0,p)) for p sufficiently large; if we
suppose that (i@,)n (or a subsequence) converges to # in L¥ (RM),
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then the infimum in (9) is obtained by the function % in the bounded
domain @ = B(0,p), in contradiction with proposition {10) (point

(b))

Now we observe that

Unp, Lan(m — xn)} where =z, = _?_/_’1;

un(z) =0 p

it follows that, for every € > 0, (un)n (or a subsequence) verifies

lim lun|* de = lim liin |2 dz =
00 J B(zp,€) N0 J B(0,0n¢)

=/ @) dz = 1.
RN

Since [, |un|? dz = 1 for every n € N, (14) implies that the sequence

(14)

(% )n is bounded and, if a subsequence (z,,); converges to %, then %

lies in © and (13) holds.

The functionals f and ¢ defined in (2) verifie the following Palais-

Smale’s condition:

(15) Proposition. Let N > 3 and QCRY. Then we have:
a) every sequence (uy)n n HY?(Q) such that
hm f(u,) € ]&SN2, 28N/

T ([ (un) -2 = 0

is relatively compact in HY?(Q);
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b) every sequence (Tn)n nV (see definition 2)) such that

lim o(u,) € ]8,2% 8]

lim || (@) || -1.2 = 0,

is relatively compact in Hy2(f).

The proof, reported at the point (17), is based on the following
result of Struwe:

(16) Theorem. (Struwe [23]). Let N > 3 and QCRY. Suppose
that the sequence (uy)n in Hy2(Q) satisfies sup f(u,) < 4oo and
nelN

lim ”f’(un) gH—l,z(Q) = O.

Then, there ezist a number k € No, a function uo in HS’Q(Q) critical
point for the functional f, and k functions Ugy e, U IR H}*(RY)
critical points for the functional F' (see definition (2)), such that (up)n

(or a subsequence) verifies:

up — uo  weakly in  Hy*(Q);
k
Jim, 1D = 3 1D

k
lim f(un) = f(uo) + Y _ F(uy).

n—+ 00

(17) Proof of Proposition (15).

a) Let up and & be the function and the number which appear in
theorem (16); it suffices to prove that k = 0.
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First we observe that, if u; has constant sign and u; # 0, then
proposition (10) (point (d)) implies that F(uy) = & SN2

on the contrary, if the sign of u is not constant, we have F(uy) =
F(u}) + F(uj), where v} = max{u;,0} # 0 and u; =
max{—uy,0} # 0; using the properties of the Sobolev constant
S (see proposition (10)) one can easily verifies that F(u}) >
L SN2 and F(u7) 2 % SN/2; therefore it is evident that we
cannot have f(ug) = 0; on the other hand, if up # 0, then
f(uo) > & SN/ and so we obtain that k& = 0.

In our assumptions, there exists a sequence (A), of multipliers
such that

lim @, + )‘nA—l(lUniz*_z—d)HH—l»Z(Q) =03

we can deduce that

lim A\, = lim [ |Du,|%dz€]S, 2¥S].
¢

n-— 00 n-—00

N2 )
Now it is easy to verify that the sequence u, = Ap* W, satisfies

the assumptions of point a) and this implies obviously the thesis.

(18) Proof of theorem (8).

We observe that the domain 2 = Di\Ce (see notations (4})) has

radial symmetry with respect to the axis zy and then (see remark
(7)) we look for solutions u in Hg().

Step I: For every h =0,...,k— 1, let

(19)  Sh=inf { / |Duf?dalu € Hy(De); Jullar = 15 g(u) = b}
Dy
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(see notations in (2), (4), (5), (9)).
We prove that

(20) Sp>S8 forevery h=0,..,k—1.

In fact, suppose by contradiction that there exists a sequence {uy),
in Hg(Q) such that Hun
lim [, |Dun|?dz =

n—ro0
Then, because of pr0p051tion (12) and symmetry of the functions u,,

2« = 1; g(un) = h for every n € IN and

we have that (u,)n (or a subsequence) verifies

lim g(u,) =Zn with 0<rp <|Zy — A

n—oo

and it is impossible, since g(u,) = h for every n € IN.
Thus (20) is proved.

Step II: we prove that there exist & functions vy, ...,7% in Hs(Dg)
such that, for every h = 1, ..., k, it results:

ka ,'l_)—hlz*dz =1, h-1< g(Eh) < h;
(21) ka IDEh|2d93 < min{ShIh =0,..,k—- 1} see(19))
[p, [Dvn[*de < 2% 5. (see(9))

In fact, (20) and the properties of the constant S (see [6], [24]) implie
that for every § > 0 there exists a function v in C§°(B(0,6)), invariant
for orthogonal tranformations of R, such that:

dz =1;

fB(o,&) |D%[?dz < min {Sh]h =0,.., k- 1};

50,5y |DPdz < 2% S.
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Now, since rj < % for every h = 0,...,k — 1, we can evidently choose

6 > 0 in such a way that, if we define 7, as
¥(z—7¢,)  for z & B(es,b)
0 for 2z € Di\B(cy,9),

where ¢, = (0,0, ...,0,h — %) € RY, then the functions 7y, ..., Ty lie in
H,(Dy) and satisfie the conditions (21).

Step III: Let @ = Dy \C¢; we verifie that, for € > 0 sufficiently small,
there exist k functions @y e, ..., Uk, in Hg({2) such that

foltne*dz=1; h-1<g(@ne) <h
(22) Jo | Dune|?dz < min {Splh =0,...,k — 1};

Jo | Din | ?dz < 2% 3.
In fact, let @y, ..., v be the functions in H,(Dy) obtained above, ver-
ifying the conditions (21).

It is easy to find a family of cut-off functions z in C§°(Q2) N Hy(02)
such that, if we set up (2) = z¢(2)vn(z), then up € Hs(2) and

Ydz =1,

z*dz = ka |5h

1in’le—»o*’ fg |U'h,€
(23)
lim,_,o+ fﬂ |Duh,€|2da: = ka EDihlzdax.

Therefore, we deduce easily that the functions %, = ﬁﬁ:ﬁ—; {for
h = 1,...,k) satisfie the conditions (22) when € > 0 is sufficiently

small.
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Step IV: Let (1 = Di\C¢; we prove that for every € > 0 it results:

(24) inf { / | Dul?dzlu € Hy(Q); |Ju
0

2r = 1; g(u) ?_0} > 5.

In fact, if by contradiction there exists a sequence (uy), in H(Q)
such that

lun]l2 =1; g(un) >0 forevery ne€N and

n—r 00

lim / |Dun|?dz = S,
Q

then proposition (12) and the symmetry of the functions u, implie
that (u,)n (or a subsequence) satisfies lim g(u,) = Ty with —1 <
n—r OO

Zy < —rg < 0, while g(u,,) > 0 for every n € IN; thus (24) is proved.

Step V: Let = Dg\C,; we prove that, when ¢ > 0 is sufficiently

small, there exists the following minimum, for every h = 1,..., k:

(25) min{/nlDulzdx}u € Hy(Q); lull2 =1; h—1<g(u) < h}.

In fact, since

Sh ginf{/nxpuﬁdx;ueﬂs(m; lu

2 =1; glu) = b},

(22) and (24) implie that, with the notations of definition (2), we have:

inf {go(u)}u eV; h—1<g(u) < h} <

< inf {(p(u)[u €V; g(uw) =hor g(u) =h— 1};

161



PASSASEO

inf {(p(u)]u eV; h—1<g(u) < h} € ]S,Z"IZVS[‘

Thus, it suffices to use the Palais-Smale’s condition proved in propo-
sition (15) to obtain the existence of the minimum in (25).
Finally we observe that the minimum in (25) is achieved on a function
%, > 0 (otherwise we replace @y by [un|); so, using remarks (3) and
(7), we obtain k solutions uy,...,ux of problem (1) for Q = Dy\C.
with € > 0 sufficiently small, and this completes the proof.

(26) Remark. When Q = Dy \C (see notations (4)) it is very plau-
sible that problem (1) has more than k solutions.

Indeed we can prove (the proof is contained in a paper to appear)
that:

a) if some rj for A = 0,...,k — 1 {see notations (4)) is sufficiently
small, then we can choose € > 0 sufficiently small in such a way
that the problem (1) has at least &k + 1 solutions for ) = D\Ce.

b) it is possible to choose the numbers ry (h =0,..,k—~1) and e > 0
sufficiently small, in such a way that the problem (1) has at least
2k solutions when Q = Di\C, (see notations (4)).

(27) Remark. One can observe that the domain 0 = Dy\Ce (see
notations (4)) does not have regular boundary, but it is evident that,
using the same technique, we can find contractible bounded domains
Q1 in RY, with regular boundary and more general shape (provided
with an axis of radial symmetry), where the existence and multiplicity
result of theorem (8) holds.

(28) Remark. We note that the symmetry of the domain (1 plaies

an important role in the proof of theorem (8); but we can prove an

analogous existence and multiplicity result also in suitable contractible
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bounded domains (@ without any symmetry property (this result is

contained in a paper to appear).

(29) Remark. The existence result of Ding reported in the introduc-
tion can be usefully compared with the following theorem, which can

be proved evidently with the same technique used in theorem (8).

(30) Theorem. Assume N > 3; let Q@ = A, \Cc be defined as in
Ding’s theorem (see introduction).

For every r € (0,1) there exists e(r) > 0 such that, if r € (0,1) and
¢ € (0,¢(r)), then (%) has a solution on ) = A, \C..
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