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IRREDUCIBLE FILTERS AND SOBER SPACES 

Rudolf - E. Hoffmann 

A filter F on a convergence space is called irreducible, 
iff the set cony F of convergence points of F belongs to 
F. A space is sober, iff for every irreducible filter F 
there is a unique point x with cony F = cony x. The -- 
category Sob-Cony of sober convergence spaces is a full 
productive, but not a reflective subcategory of the cate- 
gory Cony of convergence spaces and continuous maps. For 
a topological space (X,t) the following are equivalent: 
(i) for every irreducible filter F on (X,t) there is a 
point x with F=~ (ii) (X,t) is both sober and T n (iii) 
every subspace of (X,t) is sober (iv) every topological 
space finer than (X,t) is sober (v) whenever (Y,s) is a 
To-Space whose lattice ~(Y,s) of open sets is isomorphic 
to O(X,t), then (Y,s) ~(X,t). The category Sob-TlOf sober 
T1-~paces is the greatest epi-reflective ~s of 
T6p consisting of sober spaces, moreover Sob-T I is a "dis- 
connectedness" in the sense of PreuB- A~hangel'ski~- 
Wiegandt (generated by all irreducible spaces), hence 
Sob-T~ is (extremal epi)-reflective in Top. It is strictly 
~ n  T. and T 2 and different from various sorts of weak 
Hausdorff~ess discussed in the literature. 

Sober topological spaces were introduced by the 

Grothendieck school ([2] IV 4.2.1) and independently by 

T.Blanksma [6]. H.Herrlich has introduced them as the ref- 

lective hull of the Sierpinski space in the category Top 

of topological spaces and continuous maps [13] 1.3.2(e). 

Another approach to sober spaces is due to L.Skula [3 4 who 

introduced them as b-closed subspaces of powers of the 

Sierpinski space. In [13] and [5] Sob serves as a counter- 

example to a conjecture of J.F.Kennison (Sob is reflective 

in Top, but not epi-reflective in Top or ~2 ). 

Later L.D.Nel and R.G.Wilson [31] , L.D.Nel [30], 

S.S.Hong Do], and R.-E.Hoffmann [16] studied sober spaces; 
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2 HOFFMANN 

they identified the above mentioned approaches. Further- 

more, sober spaces are involved in [19,21] and related papers. 

More recent investigations are due to R.-E.Hoffmann [18] 

who establishes a general theory of "topological functors 

admitting (generalized) Cauchy-completions" emphasizing 

the analogy between separated Cauchy-completion of a uni- 

form space (rasp. a quasi-metric space, rasp. a "quasi- 

normed" vector space) and the sobrification of a topolo- 

gical space, in particular with regard to the Wail exten- 

sion theorem. 

H.Herrlich [13] and S.S.Hong ~ gave a description 
of sober spaces in terms of certain open filters, namely 
proper filters F in the lattice O(X) of open subsets of a 
topological space X (ordered by inclusion) enjoying the 
following property: Every element of F contains a limit 

I 

point of F, i.e. F is a union of open neighborhood filters. 
These open filters--are precisely what H.J.Kowalsky [23] has 
called a funnel ("Trichter") in a complete lattice L : 
A proper filter F in L is a funnel, iff for every A C L 
supA E F implies a ~ F for some a E A. A To-space X is--sober, 
iff for every funneY F in O(X) holds NF # ~ ([13]), i.e. 
iff every funnel is an open neighborhood filter ([20]). 
Already in 196o Kowalsky characterizes those complete lat- 
tices L which are isomorphic to lattices O(X) for some 
space X in terms of funnels ("funnels separate elements 
of L"); to such an L he associates a "standard space" SL, 
i.e. the set of all funnels of L with open sets 
O = {F~ SL[a~F} (eEL). Sx:= SO(X) is the reflection 
o~ X into Sob [2 ] .- A characterization of the dual lattices, 
the lattices of closed subsets of a space, in terms of ir- 
reducible (= weakly irreducible) elements and a construction 
of -X (as in [2]) was earlier given by S.Papert [33] in 
1959 and - hidden in a more general framework - by J.R.B~chi 
[8] (prop. 11,13) in 1952. (N.Funayama's paper [11] 195o 
is inaccessible to me.) 

The present paper gives a definition of "sober space" 

in terms of filters (surprising to see that this defini- 

tion is more "natural" than any other topological approach 

to sober spaces). The concept of "irreducible filter" may 

be considered as the fundamental concept of the paper. 

The conditions we investigate concern the elementary be- 

haviour of these filters: 

(II) for every irreducible filter [ on (X,t) there is a 

unique x E X with cony [ =conv x ("sober"); 

(I2) for every irreducible filter [ on (X,t) there is a 

(unique) x & X with [ = x ("sober + T D ); 
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HOFFMANN 3 

(I3) for every irreducible filter on (X,t) there is 
,,) exactly one convergence point ("sober + T I . 

In section I we study (II) for convergence spaces charac- 

terizing in the case of topological spaces the so-called 

sober spaces. As a "natural"stran~hhening of (II) condition 

(I2) for topological spaces is shown to be equivalent to 

"sober + T D . These spaces are shown to be precisely those 

topologies all of whose subspaces are sober, and, rasp., 

all of whose finer topologies are sober. They are those 

To-spaces which are uniquely determined by their lattice of 

open sets as discussed by H.J.Kowalsky [23] 5.1. Topological 

(I3)-spaces, i.e. sober T1-spaces , are the greatest epi- 

reflective subcategory of Top consisting of sober spaces. 

I am indebted to both the referee and O.Wyler (Pitts- 
burgh, Pa.) for valuable comments. 

A convergence space (X,q) [22] is a set X and a map q 

from X into the power set of the set of all proper filters 

on X subject to the following requirements: 

(FI) If F,G are filters on X with [ ~ G, FE q(x) for some 

x&X, then GEq(x). 

(F2) For xs we designate by x the ultrafilter of all sub- 

sets of X containing x: xEq(x) for every rEX. 

(C) If F~q(x), x&X, then [nx Eq(x). *) 

For a filter [ on (X,q) we define cony [: = {x~XlFEq(x)~ . 

Recall that a topological space X is called "sober" 

[2], rasp. a "p(oint) c(losura)-space" [31], rasp. a 

"spectral space" [19] resp. a "primal space"[21] , iff every 

irreducible, closed, non-empty subset A of X has a unique 

generic point x, i.e. A = cl{x}. (Irreducible means that 

whenever O i~ A ~ ~ for open sets Oi, i=I,2, then 

ANO In 02 ~ @; Bourbaki [7] , in addition, assumes that A ~ @.) 

"Sober" is strictly between T o and T2, it does not imply 

nor is it implied by T I. 

*)Condition C is used in the proof that (I2) -----> (II) 
convergence spaces - see 2.2 proof (a) => (b)(ii). 

f t  " If x = convF ~F, then F = x, thus (I3) ----> (I2). 

for 
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4 HOFFMANN 

I. 1 LEMMA 

A subset M of a topological space (X,q) is irreducible 

and non-empty, iff there is a filter F on X with 

ME F and M d cony F. 

Proof: 

Let M~ F (hence M ~ ~) and M _~ cony F, and let Oi~ M ~ 

with O i open in X, i = 1,2, then Oi~ conv F # ~, hence 

0 iE F; in consequence 0 I~ 0 2n M~ F, in particular 0 I~ 0 2nM # 

If M is an irreducible, non-empty subspace, then M 

and the open sets 0 in X with 0 AM % Z generate a filter 

~M on X. Obviously M c_ cony ~. 

1.2 LEMMA: 

Let F be a filter on the topological space (X,q), then 

conv F is closed. 
b 

I. 3 PROPOSITION: 

Let (X,q) be a topological space: 

(i) If cony FE F for some filter F on X, then 

conv F is an irreducible, closed, non-empty subspace of X. 

(ii)If A is an irreducible, closed, nonempty subset of X, 

then cony F A = A (cf 1.1 proof). 

For the sake of convenience we introduce the following 

terminology. 

1.4 DEFINITION: 

A filter F on a convergence space (X,conv) is called 

irreducible, iff cony F E F. 

We observe that, if g: (X,q)-~(Y,v) is continuous and 

if [ is an irreducible filter on (X,q), then g([) is irre- 

ducible on (Y,v). If F is an irreducible filter on (X,q), 

then so is every refinement of F. 

1.5 THEOREM: 

A topological space (X,t) is sober, iff for every ir- 

reducible filter F on (X,t) there is a unique point x f X 

with 
conY F_ =conv x . 

For convergence spaces we use this statement as the 

d e f i n i t i o n of "sober". 
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HOFFMANN 5 

G c O(X) for a topological space X is a funnel, iff 
G consists of the open sets of some ~ with A_cX as ~n 
�9 ,3(ii), i.e~ iff G consists of the open sets of some ir- 
reducible filter ~ on X (O.Wyler). - A filter F on a topo- 
logical space X i~'~eakly irreducible" (2.111Y) iff its 
open sets form a funnel in O(X). 

1.6 PROPOSITION: 

Let (Xi,qi) be sober convergence spaces (i (I), then 

the p~educt space (~X.,~q.) is sober. 
l z I z 

Proof: 

Let F be an irreducible filter on (~Xi,~qi~then__ pi([ ) 

is irreducible, hence cony pi([) = cony xi for a unique 

xis X i. Consequently conv F = cony x with Pi(X) = x i and 

x is uniquely determined. 

1.7LEMMA: 

Let (X,q) be a sober convergence space, and let M d X. 

Let q' denote the induced convergence structure on M: 

If M is closed in (X,q), then (M,q') is sober. 

However, other than for topological spaces, there is 

no universal convergence-sobrification of every convergence 

space, i.e. the full subcategory Sob-Conv of Conv consisting 

of all sober convergence spaces is not reflective in Conv; 

Sob-Cony is not closed under difference kernels in Cony: 

I. 8 EXAMPLE : 

Let S be the set {0,1,2}; the only filters on S are 

b,i,~,~n i, ~n ~,~n~,~n~ n~. 
We put q(O) = {6,~,6n~, q(1) = {6,~, only,q(2) : {6,~,6n~ 
Then (S,q) is a pseudo-topological space which is sober. 

The map c : (S,q)-~(S,q) with c(O) = O, c(I) = I,c(2) = O 

is continuous. The difference kernel of the pair 

id S 

(S,q) )) (S,q) 

c 

is the subset S* = {O, I} of S supplied with the trace 

structure q~ which is the co-discrete (=indiscrete) con- 

vergence structure, hence - because of cony O =conv I - not 

sober. We observe that S * is open in (S,q). 
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6 HOFFMANN 

1.9 REMARK: 
In a topological space (X,t) the filter Fa associated 

with an irreducible nonempty closed set A admits an ultra- 
filter refinement. Obviously, for every ultrafilter re- 
finement U of F. holds convU = A. In consequence, in cha- 
racterizing "soberness" for--topological spaces we can rest- 
rict ourselves to irreducible ultrafilters, thus arriving 
at a concept of "weakly sober" for convergence spaces (X,q): 

(X,q) is "weakly sober", iff for every irreducible 
ultrafilter U on (X,q) there is a unique xEX with conv U = 
cony x. The above results on products, closed subspaces, 
and the counterexample carries over to "weakly sober". A 
topological space is weakly sober, iff it is sober. 

1.10 REMARK: 

The underlying set functor U : Conv~Ens is a topolo- 
gical functor (see [18]). The non-cogenerators in Cony are 
those spaces (X,q) for which every continuous map 
(S*,q*)--~(X,q) is constant - according to [1713.1: In 
consequence, (S,q) is not U-complete according to [18] 
2.5 (1) in connection with [17] 3.8 (last statement). This 
is in contrast to the situation with topological spaces 
where "sober" means "complete" in the sense of ~8] (in 
particular [1813.1) 

In this connection, one is inclined to ask for an 
i n t e r n a 1 description of those spaces (M,t) which 
have a superspace (X,t') admitting a filter F with either 

(a) M = cony F 
or (b) M6F, M = cony F 
From the above we immediately deduce that (b) is equivalent 
to,(M,t) is irreducible and non-empty". Now, it is surprising 
to see that every topological space satisfies (a) 

1.11 THEOREM: 
Let (M,t) be a topological space (w.l.o.g. M~N = 

for the set ~ ~f natural number~. There exists a (distin- 

guished) topology t' on M U ~ such that the following holds: 

(i) the restriction of t' on M is t; 

(ii) there is a filter F on (M u ~,t') with M =conv[; 

(iii) if t satisfies TI, then so does t' 

Proof: 

K C MU~ is declared to be t'-open, iff either 

(a) K ~ S = 

or (b) K ~ M is t-open, and ~-K is finite. 

Let F be the filter generated by those t'-open sets K 

with ~ - K finite. Since M U (~-{n}) ~ [ for every 

nE~, we have {n~ ~ U for every ultrafilter refinement 

of [, hence conv U =conv F = M. 
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HOFFMANN 7 

S 2 

Our description of sober (topological) spaces in terms 

of irreducible filters naturally leads to the question 

which topological spaces are characterized by the following 

requirement: 

(I2) If F is an irreducible filter on the topological space 

X ~) then there is a (unique) point x in X with 

F = 

The answer is that X has to be both sober and T D. A topolo- 

gical space X is called a TD-space, iff every one point 

subset is the intersection of an open and a closed subset. 

TD-spaces were introduced by C.E.Aull and W.J.Thron [4] 

(cf. [15,37]). T D is strictly between T o and T I. 

For the convenience of the reader we review from the 

literature the following characterizations of T D. A point 

x of a topological space X is an accumulation point of a 

subset M of X, iff every neighborhood of x meets M in at 

least one point different from x. The b-topology associated 

with a topo1~glcal space X is the top61ogy on X generated 

by the open sets and the closed sets of X - [38] (see also 

[1o] p.288). 

21P oP0siTio  [4,1s,31J : 
For a topological space X the following are equivalent: 

(i) X is T D. 

(ii) For every subset M of X holds: h(M) (= the set 

of all accumulation points of M) is closed. 

(iii) For every subset M of X and every point x of X 

holds: If x is an accumulation point of the 

closure of M, then x is an accumulation point of M. 
(Note that h o cl = cl o h.) 

~)For notational convenience we designate both the topo- 
logical space (X,t) and its underlying set X by the 
same symbol X. 
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8 HOFFMANN 

(iv) The b-topology on X associated with the space 

X is ~iscrete. 

2.2 THEOREM: 

Let X be a topological space, then the following are 

equivalent: 

(a) For every irreducible filter [ on X, there isa(unique) 

point x in X with F = x. 

(b) X is both sober and T D- 

(c) X is sober and it is not (homeomorphic to) the universal 

sobrification of any subspace Y of X, unless Y is 

homeomorphic to X. 

(d) Every subspace of X is sober. 

(e) Every space finer than X is sober. 

(f) Whenever Y is a To-space with O(Y) = O(X), then Y is 

homeomorphic to X (cf Kowalsky [2315.1, Thron [39]w 

Proof: 

(a) ~ (b):(i) Let ys X. We consider the filter ~A on A:= 

cl[y} constructed in 1.1. Since ~A is irreducible, there 

is an element x in X with FA=X by virtue of our assumption, 

hence there is an open set 0 in X with {x} = O~A6FA. 

Since A = cl{y}, we have ys hence [y~ ONA. In con- 

sequence, y = x and {y~ = OnA, i.e. (X,t) is T D (in 

particular, it is To). 

(ii) Let F be an irreducible filter on X, then F = 
- -  m 

for some x 6 X, hence cony F =conv x. Suppose that 

cony x = cony y, then by axiom (C) x,y6conv (x~y) and 

{x,y}s xNy, i.e. xNY is irreducible. In consequence 

~y = z, hence x = y = z. Now X is sober by 1.5. 

(b) ~ (a) Let G be an irreducible filter on (X,t). Since 
0 

X is sober, there is a point x in X with cony G = cl{x~s G, 

hence every open set 0 with 0 ~cl[x~ # ~, i.e. with x ~ O 

belongs to G. Since X is TD, there is an open neighbor- 

hood U of x with {x} = U~cl{x~6 G, hence G = x. 
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HOFFMANN 9 

(b) ~ (c): If X is (homeomorphic to) the universal sobri- 

fication of its subspace Y with Y~X, then Y is not 

sober. Since every b-closed subspace of a sober space 

is sober ~6], the b-closure of Y in X is sober, hence 

different from Y. In particular, the b-topology on X 

is not discrete. 

(c) ~ (f) : Suppose O(X) ~ O(Y), then Sy s X = X. W.l.o.g. 

Y is a subspace of X, hence Y~X. 

(f) --> (b): Suppose X is not sober, then X ~Sx, but 

O(X) ~ o(Sx). If X is sober, but not TD, then there is a 

proper b-dense subset Y of X not homeomorphic to X (since 

Y is not sober - [16]). By [I 4 3.1.2 X is homeomorphic 

to Sy, hence O(X) ~ O(Y). 

(b) ~ (d): For a subspace of a sober space "b-closed" and 

"sober" are equivalent [16]. 

(b) ~(e): Let Y be finer than X, and let M(My) be an ir- 

reducible, nonempty subspace of Y which is closed in Y. 

The topology which X induces on M(M X) is coarser than My, 

hence irreducible. In consequence, Clx{X } = Clx(M) for 

some x 6X (since Clx(M) is also irreducible in X). Since 

there is an open set U in X with {x} = U~Clx[X}(TD) , we 

have x E M. In consequence Cly{X}C Cly(M~ = M. Suppose 

b~M-cly{X}, then there exists a set 0 open in Y with 

b~O, x~O. In consequence, ~ = ONU~M c O~U~clx{x } and 

b~O~M, x EU~M, i.e. My is not irreducible. Consequently, 

we have S = ely{x}, and Y is sober. 

(e) ~ (b): Suppose {x% is not the intersection of an open 

and a closed set (x s X), and let Y denote the finer space 

on the carrier of X generated by the open sets of X and 

by {x~ . ("cl", "open" always refers to X). S = Clx{X ~ - {x~ 

receives the same topology from Y as from X. S is closed 

in Y. Since ~x~ is not closed in X, S # ~. Suppose S is 

not irreducible: let O, U be open in X with OnS # ~, 

U~S + ~, ONU~S = ~, hence (O~U) ~Clx{X ~ = {x~ in 

contrast to our assumption. Since Y is sober, there is a 

y 6 S with Cly{y~= S, i.e. every neigh~Ehood of 
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10 HOFFMANN 

zs Clx{X } with z % x meets y. Let U be an open neigh- 

borhood of x, then there is a z6 U(~ Clx{x}with z # x, 

hence U meets y. In consequence, Clx{Y ~ = Clx{X}, hence 

x = y(T o) - contradiction. 

NOW we study (I3) for topological spaces (2.3(d)): 

2~ 

For a topological space X the following conditions 

are equivalent: 

(a) X is both sober and T 1 

(b) Every irreducible non-empty subspace of X is of cardi- 

nality I. 

(c) For every irreducible space Y every continuous map 

Y-+X is constant. 

(d) Every irreducible filter on X has exactly one conver- 

gence point. 

By 2.3(c) the category Sob-T I of sober T1-spaces and 

continuous maps is a "disconnectedness" in the sense of 

G.PreuB ~4,36], H.Herrlich [12] w and A.V.Arhangel'ski~ - 

R.Wie~andt [1] which is induced by the class I of irreducible 

spaces. However, I is not a "connectedness", since I is not 

([I] 3.1o(ii) - a counterexample with "second-addltive" 

three points). 

T O + L ~ (W.ThrQn [39] p.675) = sober + T 1, furthermore 

cf G.PreuB ~5] 5.3. 

Recall [12] that a full isomorphism-closed subcate- 
gory X of the category Top is epi-reflective in Top, iff 
(i) --subspaces of members of X belong to X, 
(ii) products of members of X-belong to X; 
X is (extremal epi)-reflective in Top, if~ in addition to 
~i) and (ii), holds 
(iii) every refinement of a member of X belongs to X. 
Every disconnectedness is (extremal epT)-reflective--in 
�9 op [I] 3.7, [12] 14.2.5. 

A product of a family of non-empty topological spaces 

is TD, iff every space of the family is T D and all but finite 

members of the family aTe T1-according to [15,37]. A space is 

T1, iff all of its powers are T D [37]. Thus, a productive 
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HOFFMANN 11 

(rasp. reflective) full subcategory of Top consisting of 

sober TD-spaces consists of T1-spaces. Now we have: 

2.4 THEOREM: 

The category Sob-T I of sober T1-spaces is the 

greatest epi-reflective subcategory of Top which 

consists only of sober spaces. Sob-T I is strictly 

smaller than ~I' strictly greater than ~2" 

(For ~2 �89 S0bqT1 # ~I see the proof of 2.1o below). 

2.5 COROLLARY: 

The intersection of an epi-reflective, resp. an 

(extremal epi)-reflective subcategory Y of Top 

consisting of T1-spaces with Sob is an epi-reflec- 

tive, rasp. an (extremal epi)-reflective subcategory 

of Top. 

2.6 REMARK: 

The Sierpinski space D is both sober and TD, but not 

T I. We observe that Sob is neither stable under re- 

finements nor under subspaces - see [1512 (example). 

2.7 REMARK: 

In [14] the following decreasing chain of classes of 

"weak Hausdorff spaces" between T I and T 2 is discussed: 

semi-T 2 [29,9] (unique sequential limits), t 2 ~7] 

(subspaces which are continuous images of compact 

T2-spaces are closed), T 2' [3,28,32,40] , rasp. LM-T 2 

[24,25] (quasi-compact subspaces are closed, rasp.T2). 

Except for T 2 ' they form (extremal epi)-reflective 

subcategories of Top. 

Adding the soberness requirement to semi-T2,t2,T 2' 

and LM-T2, one obtains a chain of four full subcate- 

gories of Top strictly between Sob-T I and ~2" Examining 

several examples given in the literature ([28], [24] 

3.6, ~6],[9] , especially [14]) one easily proves that 

these new properties are pairwise different and do not 

coincide with one of the before-mentioned "weak Hausdorff 

spaces". (2.8(a) below is a useful criterion.) In this 

connection the question arises whether there is an 
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12 HOFFMANN 

(extremal epi)-reflective subcategory X of Top 

with X ~ Sob=T2 , X ~ T2? 

2.8 LEMMA: 

(a) A T1-space X containing a co-finite T2-subspace M 

is sober. 

(b) A To-space X is sober, iff X contains a co-finite 

open sober subspace M. 

Proof: 

Since every T2-space is sober, (a) is a consequence of 

(b). 

(b): Let A be an irreducible closed non-empty subspace 

of X. Suppose A~M = ~ , then A is a finite T -space, 
o 

hence sober [16] 1.8, hence A = cl{x~ for a unique 

xEA. Suppose now that ANM # ~. Since AnM is open 

in A, A~M is irreducible. Since M is sober, there is 

a unique point x~M with ClM[X ~ = ANM, i.e. M ~cl{x~= 
MNA, hence MNA and A - cl{x} are disjoint open sub- 

sets of A. Since A is irreducible, A - cl{x~ = ~. 

Since x6A, cl[x~ ~ A, hence cl{x~ = A. Since X is To, 

x is the unique generic point of A. 

2.9 PROPOSITION: 

A space X is sober, iff every point p of X has a sober 

neighborhood U 
P 

Proof: 

The interior Mp o f  Up  i s  o p e n ,  h e n c e  b - c l o s e d  i n  U p ,  
hence sober. Let A be an irreducible, closed subset 

of X with pEA. Then pEAQMp and the same considera- 

tions as in the proof of 2.8(b) apply. 

Thron's example [39] p.675/676 suggests the follow- 
ing theorem 2.1o. Recall that a topological space X is 
called minimal with respect to a class of spaces P, 
iff X 6 P and there is no space in P which is coarser 
than X. 

2.1o THEOREM: 

In Sob-T I minimal spaces are finite discrete spaces. 
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Proof: 

If X~aT1-space, p~X, then those open subsets O with 

p ~O and all co-flnite subsets of X determine a coarser 

T1-space X'.{If X-~p} is not discrete , X' is not 

T 2 (X = [o,1] in [39] p.675/676).}Since X is T I, X -~p} 

is open in X and it receives the same topology from 

X and X'. If X is both sober and T I, then X - {p~ is 

also sober, since it is open, hence b-closed. Thus X' 

is also sober, since X - {p} is co-finite in X' (see 

2.8). Thus an open set 0 of a space X which is minimal 

in Sob-T I with p E 0 for some p 6 X must be co-finite. 

Since the co-finlte topology on an infinite set is ir- 

reducible and TI, hence not sober, such a minimal space 

must be finite. 

2.11 ADDENDA: 

I. There is an "ultrafilter version" 2.2(a') of 2.2(a) 
equivalent to 2.2(a): 
X is T and for every irreducible ul~afilter F on X 
there ~s a (unique) x~X with [ = ~. �9 
Similarly in 2.3(d) filters can be replaced by ultra- 
filters. Note that these statements are on the level 
of t o p o 1 o g i c a 1 spaces. 

II. "WEAKLY IRREDUCIBLE FILTERS AND STRONGLY SOBER SPACES": 
A filter F on a convergence space (X,q) is "weakly 

irreducible", ~ff for every M ~F holds M ~conv F % 
(hence cony F # ~)- this is in a sense "dual" to the 
definition o~ open. An ultrafilter is weakly irreducible 
iff it is irreducible. A filter F on a topological space 
is weakly irreducible, iff it admits an irreducible ultra- 
filter refinement U with cony F =conv U (hence conv F 
is irreducible). -- -- -- -- 

A convergence space (X,q) is "strongly sober", iff 
for every weakly irreducible filter F on (X,q) there is a 
unique point xEX with cony F = convx 1.6, 1.7 carry 
over; (S,q) (1.8) is strongly--sober ('6D 
is weakly irreducible with "generic" point 2, but not 
irreducible). 

Replacing "irreducible" in (II), (I2), (I3) by 
"weakly irreducible", we get (J1), (J2), (J3). For 
topological spaces we have: (J1) = "sober", (J2) = 
"discrete", (J3) = "sober+T1" (note that every neighbor- 
hood filter of a point is weakly irreducible). 

�9 ) "T " is not superfluous as every finite space shows o 

377 



14 HOFFMANN 

REFERENCES 

I. ARHANGEL'SKI~, A.V. and R.WIEGANDT: 

Connectednesses and disconnectednesses in topology. 
Gen.Topol.Appl. ~, 9-33(1975) 

2. ARTIN, M., A.GROTHENDIECK, and J.VERDIER: Th~orie 
des topos et cohomologie 4tale des schemas. Lect. 
Notes in Math.269, Berlin-Heidelberg-New York: 
Springer 1972 

3. AULL,C.E.: Separation of bioompact sets. 
Math.Ann. 158, 197-2o2 (1965) 

4. -- and W.J.Thron: Separation axioms between T and T I 
Indag.Math.24, 26-37 (1963). o " 

5. BARON,S.: Reflectors as compositions of epi-reflectors. 
Trans.A.M.S. 136, 499-5o8 (1969). 

6. BLANKSMA,T.: Lattice characterizations and compactifi- 
cations. Doctoral dissertation: Rijksuniversiteit te 
Utrecht 1968; MR 37, 5851. 

BOURBAKI,N.: General Topology. Engl.Transl. 
Paris: Hermann 1966. 

BUCHI,J.R.: Representation of complete lattices by sets. 
Portugaliae Math. t1, 151-167 (1952); MR 14,94o. 

CULLEN,H.F.: Unique sequential limits. Boll.Un.Mat. 
Ital.2__oo, 123-124 (1965). 

DOWKER,C.H. and D.PAPERT: Quotient frames and sub- 
spaces. Proc. London Math.Soc.(3) 16, 275-296 (1966) 

FUNAYAMA,N.: Notes on lattice theory and its applica- 
tion I. The lattice of all closed subsets of a T or 
T -space. Bulletin of Yamagata University ~, 91-1oo 
(7950); MR 17, 286. 

HERRLICH,H.: Topologische Reflexionen und Coreflexio- 
nen. Lect.Notes in Math.78, Berlin-Heidelberg- 
New York:Springer 1968. 

-- : On the concept of reflections in general topolo- 
gy. In: Contributions to Extension Theory of Topolo- 
gical Structures. Proc. of the Symp.held in Berlin 
1967 ed. Flachsmeyer, Poppe, Terpe, pp.lo5-114. VEB 
Deutscher Verl. d. Wissenschaften Berlin 1969. 

HOFFMANN,R.-E.: On weak Hausdorff spaces and quasi- 
compactness (1975), unpublished. 

-- : Bemerkungen ~ber TD-R~ume. Manuscripta Math.12, 
195-196 (1974). 

-- : Charakterisierung n~chterner R~ume. 
Manuscripta math. 15, 185-191 (1975). 

-- : (E,M)-universally topological functors. 
Habilitationsschrift DUsseldorf 1974. 

7. 

8. 

9. 

lo. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

378 



HOFFMANN 
15 

18. --: Topological functors admitting generalized 
Cauchy - completions. In: Categorical Topology. Proc. 
of the Conf. held at Mannheim 1975 ed.Binz and Herrlich, 
pp.286-344. Lect.Notes in Math.54o, Berlin-Heidelberg- 
New York: Springer 1976. 

19. HOFFMANN,K.H. and K.Keimel: A general character theory 
for partially ordered sets and lattices. Mem.A.M.S. 
122 (1972). 

2o. HONG,S.S.: Extensive subcategories of the category of 
To-Spaces. Canad.J.Math. 27, 311-318 (1975). 

21. ISBELL,J.R.: Atomless parts of spaces. Math. Scandinav. 
31, 5-32 (1972) 

22. KENT,D.C.: On convergence groups and convergence uni- 
formities. Fund.Math.6__oo, 213-222 (1967) 

23. KOWALSKY, H.J.: Verbandstheoretische Kennzeichnung 
topologischer R~ume. Math.Nachr. 21, 297-318(196o) 

24. LAWSON,J. and B.MADISON: Quotients of k-semigroups. 
Semigroup Forum 9, 1-8 (1974). 

25. --: Comparisons of notions of weak Hausdorffness. 
Preprint Louisiana State University, Baton Rouge U.S.A. 

26. LEVINE,N.:When are compact and closed equivalent? 
Amer.Math.Monthly 72, 41-44 (1965). 

27. McCORD,M.C.: Classifying spaces and infinite symmetric 
products. Trans.A.M.S. 146, 273-298 (1969). 

28. MUKHERJI,T.K.: On weak Hausdorff spaces. Bull. Calcutta 
Math. Soc. 58, 153-157 (1966). 

29. MURDESHWAR,M.G. and S.A.NAIMPALLY: Semi-Hausdorff 
spaces. Canad.Math.Bull. 9, 353-356 (1966). 

30. NEL,L.D.: Latticesof lower semi-continuous functions 
and associated topological spaces. Pac.J.Math. 40,667-673 
(1972) 

31. -- and R.G.WILSON: Epireflections in the category of 
To-spaces. Fund.Math.75, 69-74 (1972). 

32. NOIRI,T.: Remarks on weak Hausdorff spaces. Bull. 
Calcutta Math.Soc.66, 33-37 (1974). 

33. PAPERT,S.: Which distributive lattices are lattices of 
closed sets? Proc.Cambridge Phil. Soc. 55, 172-176 (1959). 

34. PREUSS,G.: 0bet den E-Zusammenhang und seine Lokalisa- 
tion. Diss.FU Berlin--1967. 

35. --: E-zusammenhMngende R~ume. Manuscripta Math.Z, 
331-342 (197o). 

36. --: a) Trennung und Zusammenhang.Monatsh. Math.74, 7o-87 
(197o). b) Eine Galois-Korrespondenz in der Topo-[ogie. 
ibid.75,447-452 (1971) 

37. ROBINSON,S.M. and Y.C.WU: A note on separation axioms 
weaker than T I. J.Aust.Math.Soc. 9,233-236 (1969). 

38. SKULA,L.: On a reflective subcategory of the category 
of all topological spaces. Trans.A.M.S.142,37-41 (1969). 

379 



16 HOFFMANN 

39. THRON,W.J.: Lattice-equivalence of topological spaces. 
Duke Math.J.29,671-679 (1962). 

4o. WILANSKY,A.: a) Between T I and T 2. Amer.Math.Monthly 74 
267-266(1967). b) Life wis T~. Amer.Math.Monthly-- 
77, 157-161 (197o). Correction, Ibid. 77, 728 (197o). 

R.-E. Hoffmann 
Universit~t Bremen 
Fachsektion Mathematik 
2800 Bremen 
Bundesrepublik Deutschland 

(Received December 8, 1976; 
in revised form July 18, 1977) 

380 


