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Summary. An extension of the single reference coupled cluster method truncated 
to 1- and 2-body cluster components (CCSD) to quasidegenerate systems, where 3- 
and 4-body connected cluster components play an important role, is proposed. The 
basic idea is to extract the information concerning the 3- and 4-body clusters from 
some independent source, similarly as was implicitly done in the so-called ACPQ 
or ACC(S)D methods, and correct accordingly the absolute term in the CCSD 
equations. As a source of these approximate 3- and 4-body clusters, simple valence 
bond (VB) type wave functions are employed, since they are capable of describing 
electronic structure of various molecular systems for a wide range of nuclear 
conformations including their dissociation. The cluster analysis of these VB wave 
functions, that provides the desired information concerning the connected 3- and 
4-body cluster components, is outlined and the explicit form of required correction 
terms to the CCSD equations is given. 

Key words: Coupled cluster method - CCSD - Quasidegeneracy effects - Valence 
bond (VB) wave functions - VB corrected CCSD method - 3- and 4-body con- 
nected cluster amplitudes 

1 Introduction 

Various single reference (SR) coupled cluster (CC) approaches to the many-electron 
correlation problem [-1-5] are nowadays routinely employed in investigating the 
electronic structure of small and medium size molecular systems. The principal 
advantages of these approaches - stemming from the CC exponential Ansatz 
for the wave function - are (i) their size extensivity and (ii) the fact that higher 
than triexcited effects arise primarily from disconnected clusters that manifest 
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themselves through appropriate non-linear terms in CC equations rather than 
through higher dimensionality. Thus, in standard CCSD approaches that explicitly 
consider connected one- and two-body cluster components, the dimensionality of 
the resulting problem is the same as in the corresponding configuration interaction 
(CI) method limited to singly- and doubly-excited configurations (CISD), even 
though the CCSD approach accounts also for the bulk of quadruple excitation 
effects (through the non-linear terms arising from the interaction of pair clusters) 
and is thus approximately equivalent to the CISDQ approximation (CISD includ- 
ing quadruples) rather than to the CISD method [2]. 

In their study of the performance of various SR CC methods, Kucharski et al. 
[6] distinguish between standard and nonstandard CC methods. The former ones 
result from truncation of the full SR CC chain of equations at the appropriate level, 
namely by restricting the connected cluster components to pair clusters (CCD), 
one- and two-body clusters (CCSD), up to and including three- and four-body 
clusters (CCSDT and CCSDTQ, respectively), etc. Methods which neglect terms 
that are a priori known to be negligible under given circumstances (e.g., cubic and 
quartic one-body terms when the Hartree-Fock (HF) wave function represents 
a good approximation, non-linear terms involving 3-body clusters [2], etc.) may 
also be regarded as standard or quasi-standard. On the other hand, methods using 
perturbative estimates for certain cluster contributions, including certain terms in 
a non-iterative fashion or using approximate estimates or cancellations of various 
terms are referred to as nonstandard CC approaches. 

By now it has been well established [3-5] that for most non-degenerate 
closed-shell ground states, the standard (either full or quadratic) CCSD method 
yields very accurate results, since in these cases the contribution from connected 
4-body clusters is negligible. Usually small 3-body cluster effects (that arise pri- 
marily from connected 3-body components in contrast to 4-body effects) can be, in 
most cases, well accounted for perturbatively, using one of the following approx- 
imation schemes (cf. [7]): CCSD+T(CCSD) [8], CCD+ST(CCD) [9] or 
CCSDT-1 [-8, 10a]. Unfortunately, the significance of connected 3- and 4-body 
clusters dramatically increases once the ground state becomes quasidegenerate 
with other low lying states. This is almost invariably the case when considering 
molecules (even closed shell ones) away from their equilibrium geometries, or when 
applying the SRCC approaches to open-shell systems (as long as nondynamical 
correlation effects do not arise and a SR zero-order description is at all possible). Of 
course, the multi-reference (MR) generalization of CC theory appears to be the 
most natural answer in such cases. We must keep in mind, however, that both 
theoretical and computational problems brought about by such generalizations are 
formidable [4, 11]. Even though the conceptual problems associated with MR CC 
approaches were, to a large extent, resolved during the past decade (see, for 
example, [-12]) and two viable formalisms, referred to as Fock and Hilbert space (or 
valence and state universal, respectively) open shell CC methods, are available, 
their practical implementation is rather demanding and often leads to serious 
problems (intruder state problems, incomplete model space problem, spin-adapta- 
tion problems, multiplicity of solutions problem, etc.) that have not yet been fully 
resolved in spite of a very remarkable progress that is being made in this direction 
(see, for example, [4b, c; 11-18]). 

A brute force account of 3- and 4-body connected clusters within the frame- 
work of standard SR CC approaches, represented by the full CCSDT and 
CCSDTQ methods, can provide very useful and highly accurate results, but is 
limited to small systems and small basis sets. It can thus hardly be considered as the 
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answer to the above outlined problems in general. Not only does the dimensionality 
of the problem drastically increase with the electron number and basis set size, so 
that the above-mentioned advantage of CCSD vs CISDQ is lost, but the CC 
equations must again be similarly truncated as in the CCSD case, only at a higher 
excitation level. In highly degenerate situations, however, when 4-body compo- 
nents become as significant as 2-body components, there is no a priori  guarantee of 
the validity of such a truncation. These limitations seem to be avoided in the 
recently introduced state-specific or state-selective M RCC approaches [ 18], which 
basically represent a suitably truncated SR-CCSDTQ method, and which can very 
effectively limit the number of higher order than pair clusters that must be 
considered. 

An interesting attempt to approximately account for the connected 4-body 
clusters in the SR CCSD method resulted in the so-called ACPQ (approximate 
coupled-pairs with quadruples) [ 19] or closely related ACC(S)D (also referred to as 
ACP or ACP-D45) method [20, 21] (see also [7]). The essence of this approach is 
to estimate the unknown connected 4-body (i.e. T4) components from some inde- 
pendent source and to use this information in CCSD equations. Since the direct 
perturbation theoretical estimate of these components is computationally demand- 
ing 1 [-19a], our attention was turned to the broken symmetry wave functions of the 
unrestricted Hartree-Fock (UHF) type or, rather, to their spin projected variants 
such as the projected HF (PHF), extended HF (EHF) or alternant molecular 
orbital (AMO) methods. 

We wish to emphasize, at this point, that the ACPQ or ACCD approaches are 
very different from the often exploited CCSD method employing a UHF wave 
function as reference. Although the latter approach can provide very useful results 
for many open-shell systems with relatively little effort (in fact, most generally 
available ab initio program packages employ the same spin orbital based code even 
for the RHF reference, thus unnecessarily more than doubling the number of pair 
amplitudes), it has severe inherent limitations and shortcomings. It is well known 
that the UHF reduces to the standard RHF whenever the latter is triplet (doublet, 
etc.) stable [22]. This transition usually occurs somewhere between the equilibrium 
geometry and stretched geometry, whose energy is close to that of the dissociated 
system. It is known [22, 23] that at this triplet instability point, the resulting 
potential energy surface (or curve) will show non-analytic behavior (although the 
energy as a function of geometry parameters will be continuous, the derivatives will 
show discontinuity). Moreover, in both open and closed shell situations, the UHF 
based wave function is no longer an eigenfunction of the total spin operator ~2 and 
thus cannot be used for the description of different multiplets characterized by the 
same orbital occupancies. 

In contrast to the UHF based CCSD methods, the approximate CC ap- 
proaches leading to the ACPQ-type methods use the UHF or one of its projected 
versions to provide an estimate of the connected 4-body clusters that are then 
employed to achieve a more precise decoupling of the CCSD equations from the 
general CC chain. In fact, it turns out that by assuming the UHF wave function to 
provide the exact T 4 clusters, their account leads to a cancellation of certain ~T 21  2 
contributions (namely those arising from the first two Hugenholtz diagrams, 

1 In fact, even the CC based perturbative estimates of 7"4 clusters, such as the CCSDTQ-1 [10b], 
CCSD+TQ*(CCSD)  [-10c] or CCSDT+Q(CCSDT)  [10b] methods, are computationally very de- 
manding. 
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see e.g. Fig. 5 of [19a]) and to a modification of a spin-adaptation factor associated 
with pair cluster interaction terms that result by projection onto biexcited config- 
urations with triplet intermediate coupling of hole and particle pairs [19a]. The 
latter factor is not modified in the original ACP or ACCD approach [20, 21]. 

The ACPQ approach performs remarkably well in highly quasidegenerate 
situations, such as those encountered when handling correlation effects in quasi- 
one-dimensional systems. Considering, for example, the PPP model of cyclic 
polyenes CNHN with nondegenerate ground state (N=4v+2;  v= 1, 2 , . . .  ), one 
finds [19b] that already for N =  14 the CCD (equivalent in this case to CCSD) 
method breaks down altogether when we approach the highly correlated limit 
(namely, when the resonance integral en _- ~,critaccD -- - 1.75 eV). For larger cyclic poly- 
enes, this breakdown already occurs in the physical region of the coupling constant 
(e.g., for N = 26, r- cr,tt~cc'° -- -2.55 eV) [18b]. This breakdown is linked with an increas- 

RCCD ing role of T 4 clusters as N increases (or ]fl] decreases), and for [ill < eCrit no real 
solution of CCD equations exists. Remarkably enough, the ACPQ solution exists 
in the whole range of the coupling constant providing an excellent approximation 
to the energy. For intermediate values of the coupling constant, the performance of 
this approach can be further enhanced by simultaneously considering the effect of 
T3 clusters (ACPTQ method) [7b]. Another type of the perturbative estimate of T3 
contributions within the ACPQ scheme, referred to as the ACPQ + ST(ACPQ) 
method, improves the ACPQ results in the entire region of the coupling constant 
[7c]. 

Although in all known cases the ACPQ energies are closer to the exact ones 
than the CCSD energies, the simultaneous account of T3 clusters may lead to an 
overestimate of the exact energies (and to a larger absolute error than that obtained 
with the ACPQ method), or even to a breakdown of the ACPTQ method, as the 
examples of cyclic polyenes in a strongly correlated limit [7b] and the I4~ model [6] 
indicate. Moreover, the UHF type wave-functions only contain even-number- 
of-times-excited cluster components, since all odd-number-of-times-excited contri- 
butions are annihilated when projecting out a singlet component. Consequently, 
a similar procedure cannot be used to obtain estimates of 3-body cluster (even 
though in deriving the ACPQ equations we only exploit "effective" UHF 7"4 
clusters and never actually evaluate them). 

In this series of papers we explore another possibility of obtaining approximate 
connected 3- and 4-body clusters by exploiting valence bond (VB) wave functions 
involving a small number of covalent (and ionic, if necessary) structures that are 
capable of describing the desired dissociation process. In fact, this is the first time 
that the 3- and 4-body cluster components are first determined using an indepen- 
dent, non-CC and non-perturbative procedure and subsequently used to improve 
the decoupling of the CCSD equations. In the following we develop these basic 
ideas and derive the required formalism, which is tested in subsequent papers using 
simple semiempirieal PPP model systems. The advantages of employing simple 
model Hamiltonians for such a study are not only the simplicity, easier insight and 
the facility with which the exact solutions may be obtained [using the existing full 
CI (FCI) or full VB (FVB) programs], but also the possibility of examining the 
performance of the proposed proCedure for a whole range of coupling constants 
and varying degrees of reference state quasidegeneracy, as well as the ease in 
obtaining VB solutions at various levels of accuracy using our recently developed 
CAUGA based PPP-VB formalism [24]. In the future, we hope to test this 
procedure at the ab initio level using both generalized valence bond (GVB) [25] 
and spin-coupled VB [26] wave functions. 
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2 Basic assumptions and notation 

In order to introduce the necessary notation and concepts that will enable us to 
formulate basic ideas of our approach and to derive the required formulas, we first 
briefly outline the CC(S)D formalism. 

We consider the closed shell ground state of an N = 2n electron system that is 
described by a spin-independent Hamiltonian involving at most 2-body scalar 
potentials. Employing the second quantization formalism based on a given inde- 
pendent particle model (IPM) reference state I q~o> (in all applications we shall in 
fact employ the R H F  wave function as a reference), regarded as a Fermi vacuum, 
we can express our Hamiltonian in the following normal product form [4, 27] 

H~-H-(~o[H[~o)=FN+ V~, (1) 

FN=~ <ilflk> ~, n[X},rXk,r], (2) 
i , k  a 

VN=½ ~ (ijlOlkl) ~, n[X~aX]~XI,Xka], (3) 
i , j , k , l  a , z  

where 

<ilf lk)  = <il~[k> + ~ (2 <ial ~lka) - <ial Blak> ). (4) 
a 

Clearly, X~(Xit~) designates the annihilation (creation) operator associated with 
the IPM spin orbital l i ) l a > - [ I ) ,  while <i[~lk) and (ij[~lkl> designate one- and 
two-electron integrals in the IPM orbital basis. The generic, occupied (hole) and 
unoccupied (particle) orbitals are labeled by the lower case letters from the middle 
(i,j, k, l .... ), beginning (a, b, c, d,... ) and the end (r, s, t, u ... .  ) of the Latin alphabet, 
respectively, while the spin orbitals are labeled by corresponding capitals or by 
a pair consisting of an orbital and a spin label, the latter designated by a Greek 
lower case letter. 

Using the standard SR CC Ansatz, we express the exact wave function I~> in 
the form 

I 7J> = exp(T) I ~o>, (5) 

where the cluster operator T is given as a sum of i ts / -body components Ti, 
N 

T= 2 T,. (6) 
i = 1  

The /-body (or /-times excited) cluster operator is then expressed as a linear 
combination of a suitable set of excitation operators GJl ) producing a complete and 
normalized (but not necessarily orthogonal) N-electron basis (configurations) for 
the/-times excited component of the N-electron Hilbert space (given by the Nth 
rank tensor power of the IMP spin-orbital space employed). Thus, we can write 
generally, 

Ti = E tJl ) G)I )' (7) 
J, 

with GJl ) representing the /-body excitation operator and t)i ) designating the 
corresponding cluster amplitude. Using the simplest spin-orbital (i.e., spin non- 
adapted) formalism, the excitation operators producing/-times excited configura- 
tions have the form 

6 <'~+, = x*i,~ x*,,~ • .. x*~,xA,  . . .  x . , ~ x . , ~ ,  (8) 
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so that 
RtR2 " ' "  R i \ _ _ ~ ( i ) t , .  ~ \ 

I~Ji)) = A1A2 A i / - u J ,  I"o/ ,  (9) 

Ji designating here the set of hole and particle spin-orbital labels, 
J i - { A 1 ,  A2, . . . ,  Ai; R1, R2 . . . . .  Ri}. In this case, the cluster amplitudes are also 
designated explicitly as 

t J l ) = ( R I R 2 . . . R ~ I ~ I A , A 2 . . . A i ) ~ =  ~. ( - 1 ) ' ( R x  ...R~I~dA,~ . . .Ap,) ,  (10) 
P ~ S  i 

the subscript d indicating the antisymmetry property of these quantities, P~Si 
designating a general permutation P : j  ~ p~(j = 1 . . . . .  i) of the symmetric group S~ 
and ( -  1) p the parity of P. We thus have that 

Til ~o)  = ~, ( e l  ""Rilt i lA1 ""Ai)~¢ ""Ai  
R I < R 2 <  . . .  < R  i 
A 1 < A 2 <  . . .  < a i  

=(i!) -2 ~ (R1 "'" Ri[ti[A, * * ^ . . . A i > d X R 1 . . . X R i X a i . . . X a l l t ] ) O > ,  

R1 ,R2 ,  ... , Ri 
A I ~ A 2 ,  . . .  , Ai 

(11) 

the first sum extending over ordered configurations only. 
When considering a spin independent Hamiltonian, Eq. (1), it is often conve- 

nient to employ spin-adapted [1, 4, 27], or even orthogonally spin-adapted [28, 29] 
CC formalism. In the latter case, it is best to choose the particle-particle-hole-hole 
(pp-hh) coupling scheme. Clearly, in spin-adapted cases, the subscript Ji in Eq. (7) 
designates both orbital and intermediate spin-coupling labels. Let us illustrate this 
on the most important biexcited case. To simplify our notation we indicate the 
down spin by an overbar. Using this notation, the two singlet pp-hh orthogonally 
spin-adapted configurations take the form [28, 30, 31] 

[ ( 2 )  1 4~(,s,,b; o, o)) = 7 N(G3 + G 4 - -  G 5  - G6), (12a) 

(2) 1 
[ (~(rs,ab; 1,1)) = ~  (2G1 + 2G2 + G3 + G4 + G5 + G6), (12b) 

2x/~ 

where 

GI= db ' G2= ab ' 

(13) 

G4 = rg G5= ~s rg 
• a ' a b  ' G 6 =  d ' 

and the normalization factor N is given by 

N =  [(1 + (r ls))(1 + ( a ]b ) ) ]  - 1/2 (14) 

Thus, when r = s and/or a = b, the triplet-triplet coupled second configuration (12b) 
vanishes. Writing 

rs \ _ ~(2) ,, (15) 
t l  - -  I (rs, ab;St S i ) / ,  

a o / s i  



General formalism I 19 

we find the following simple symmetry properties of pp-hh coupled spin-adapted 
configurations 

r s \  ( 1)s r s \  s r \  (16) 
ab/s, = - b a / s = l b a / s (  

The corresponding spin-adapted cluster amplitudes (rs ]~2[ab)s,, that are asso- 
ciated with configurations (I5) or (16), are given by the same transformation 

<rslt2lab)o=~ g (  <rslt2lab )sc+ <rslt2lab >sj-<fslf2lab >d-<rg[t2[ab >d) 
(17a) 

= N( (rsl~zlab > + (rsl~2[ba) ), 

and 

(rs[ t2 [ab>l = v/3((rs ] t2 lab> - <rs] t2[ba> ), (17b) 

where we used the fact that 

(RSI?zIAB>d = (RSJ?2IAB>-- (RSIf2IBA> (10') 
and 

(RS[ t2 lAB> - (rpsa[ t2 [atlbz> = <rsl f2 lab> (plrl> (al z>. (18) 

Again, these amplitudes possess the same symmetry properties as the correspond- 
ing configurations (or excitation operators), namely 

(rslf2 iab >s, = ( -  1) s' (rs[t2 I ba>sl = (srlt2Iba>s,, (19) 

so that again the triplet-coupled (Si = 1) component vanishes unless r # s and a # b. 
The spin-adaptation of one-body clusters is, of course, straightforward, since 
(RJtl[A)s4---(R[tI[A). In order to distinguish spin-adapted and spin-orbital 
components, we attach the subscript 0 to the former ones, i.e. 

( r l f l l a )o=(1 / x /~ ) [ ( f [ f l l~ )+( r l f l l a ) ]=x /~ ( r [ f l [a ) .  (20) 

As is well known (see, e.g. [1, 2, 4, 28, 29]) the energy is completely determined 
by one- and two-body cluster components, namely 

AE=E-<~olHlOo>=E--Eo= ~ <AIflR> <RI~'xlA> 
R,A 

-t-~R,S~,A,B<AB[u [ RS>~c( <R[ t l [A  > <S]tl[B > +-12 <RS]t2[AB>~¢ ) 

^ 1 
=x/2 ~ <alfalr><rlq[a>o+N ~. <ablfilrs>(2<rtf~la>o<Sl~xlb>o 

r, a ~ r,s,a,b 

- <r[fl Ib>0 <sit1 Ja>0 + N -~ <rslf21ab>o +v/3(rslf21ab)~), 
with N defined by Eq. (14). In turn, the cluster amplitudes are found by solving the 
appropriate energy independent CC equations. In the standard CCSD approach, 
only T1 and T2 cluster components are retained. Since the CCSD equations are well 
known (see, e.g., [1, 2, 4, 28, 29]), we only briefly indicate their general form and 
their origin in the full CC chain. Thus, substituting the cluster Ansatz (5) into the 
time-independent Schr6dinger equation, premultiplying with the inverse of the 
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wave operator W=exp (T) and projecting onto the appropriate set of excited 
configurations we obtain, generally, 

(qO~)lexp(--z)nNexp(T)[~o)=O, ( k = l ,  2 . . . . .  N). (22) 

Considering the first two classes of CC equations in the full CC chain of equations 
(22), namely those associated with singly and doubly excited configurations (k = 1 
and 2, respectively), we have that 

(q)}~)IHN+HN(T~+T2+T3)+½HN(T2+2T~T2)+{HNT31#o)c=O, (23a) 

(#}2] I HN + HN (T1 + Tz + T3 + 7"4) + ½ HN(T 2 + T 2 + 2T1 I"2 + 2T1T3) 
(23b) 

1 3 +-~ HN(T , + 3T ~T2) + ~ HNT~ I 4)o)c = O, 

where the subscript C indicates the connected component. In order to decouple 
these equations from the rest of the CC chain (22), one normally neglects all higher 
than biexcited cluster components 

T3 =/ '4 = 0, (24) 

obtaining the well known CCSD equations (for spin orbital form, see e.g. [4b, 32], 
for spin-adapted form, see e.g. [1, 2], and for orthogonally spin-adapted form, see 
e.g. [29]). 

From the non-truncated form of the CCSD equations (23a, b) we see immedi- 
ately that having available T3 and 7"4 amplitudes from an independent source, we 
could evaluate the appropriate terms and include them in the absolute term of the 
CCSD equations. Clearly, using exact T3 and 7"4 amplitudes, the exact T1 and T2 
amplitudes would result and thus the exact energy. Of course, we do not have the 
exact T3 and 1"4 amplitudes to our disposal, unless we possess the exact (i.e. FCI or 
FVB) solution, but we can obtain their approximate estimate using some approxi- 
mate wave function. Obviously, we wish to use for this purpose a wave function 
that accounts for the possible quasidegeneracy of our reference state. In the 
ACPQ-type approaches discussed earlier, this was the projected U H F  wave func- 
tion that served us as a guideline, although no explicit estimates of the 7"4 clusters 
were actually computed in this case. If we also wish to account for 3-body 
components, an approximate VB wave function seems to be an excellent candidate, 
since it can easily describe the breaking or forming of various bonds, while 
employing only a few VB structures. Of course, any appropriate yet simple 
MC-type wave function can be used for this purpose. 

For this reason we first rewrite Eqs. (23) in the form 

i + 2  i 

A~k)(Ji)+ ~ 61~k)(J/)=O, i=1 ,2 ,  (25) 
/ = 0  k = l  

where 
A(O)(ji) =/a~(i) ,,~'j, IHNI~o>, i=1,2 ,  (26a) 

A(1)(Ji) = ( ~  IHN(Tt + r2) l#o),  i=  1, 2, (26b) 

A(z)(JI)=½(*~j)IHN(T2+2TtT2+bizT~)Icrpo)c, i=  1,2, (26c) 

A(3)(J,) =~ (#~IHN(T~ + 36,2T~T2)l#o)c, i=  1, 2, (26d) 

A (*)(J2) = ~, ( *~ )  I HN T ~* IOo )c, (26e) 
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and 

Om(Ji) = (~J~IHN(T3 + 6izT~)l~o), i= 1, 2, (27a) 

(2) 0~2)(J2) = ( ~1~ [HNT1T3 I~o)c. (27b) 

Thus, A-terms involve only T1 and T2 clusters while the O-terms involve also T3 
and T4 clusters. Clearly, the order of each term is indicated by the superscript (k), 
and 6ij designates the Kronecker symbol. Neglecting T 3 and 7"4 clusters by setting 
O~k)(J~) = 0 we recover the standard CCSD equations 

i+2  
A(k)(Ji)=O , i=1,2.  (28) 

k=0 

Assuming, next, that we have available T3 and T4 cluster components, we evaluate 
O-terms (27) and correct the absolute term A(°)(J~) in CCSD equations (28). We 
thus define 

/~(°)(J i )  = A(° ) ( J i )  q- O(1) ( J i )  q- 612 O(2)(Ji) , i = 1, 2, (29a) 

. d ( k ) ( J i ) = A ( k ) ( J i )  , k~O, i= 1,2, (29b) 

and consider the corrected CCSD equations 

i+2  
fl(k)(Ji)=O, i= 1,2, (30) 

k=0 

which we designate as CCSD(Ta), CCSD(T4), CCSD(T3+T4), CCSD(T1T3) or 
CCSD(F) when we include as correcting terms those arising from T3, 7"4, Ta and T4, 
TxT3 or all the terms in (29a), respectively. In the following sections we first discuss 
the cluster analysis of VB-type wave functions that will provide us with approxi- 
mate (or exact if FVB is used) T3 and T4 components, while in the last section we 
give explicit expressions for O correction terms (27). 

3 Cluster analysis of VB wave functions 

Although we could attempt a direct determination of the required corrections using 
a given VB-type wave function, we prefer to carry out first its cluster analysis and 
compare the resulting cluster structure with that obtained by cluster analysis of the 
FCI or FVB wave functions, at least for small model systems. In this way we shall 
be able to gain an insight into the cluster structure of the VB-type wave functions 
and thus assess, at least qualitatively, the ability of approximate VB wave functions 
to provide higher excited cluster components. 

We first recall the well known relationship between the CC and CI expansions. 
A general CI-type wave function has the form 

where 

I~ )  =CI ~0), (31) 

N 

c=  Z c,, (32) 
i=0  
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with C~ representing the operator of the/-fold excitation, analogously as Ti (cf. Eq. 
(7)), so that 

Ci = 2 c(i)G(1) j, j , ,  i=  l, 2, ... , N, (33) 
1, 

with Co being a scalar operator Co = cL Assuming the intermediate normalization, 
we thus have that Co = i (the identity operator), while the genuine excitation 
operators are related with corresponding cluster operators as follows [4, 33] 

with 

C,=~+Q,, (34) 

i - 1  

1T'J (35) Qi=~ "~, I~ (rfl)- - j ,  
~i j=O 

representing the disconnected ith order cluster component of Ci, so that 
i - 1  

jrj=i, O<<.rj<~i; T°=l. (36) 
j=l 

This relationship may be easily inverted so that for the first four connected cluster 
components we find 

T1 = C1, (37a) 

T2--- C2-~C1,1 2 (37b) 

T 3 = C 3 _ C 1 C 2  1 3 + ~ C 1, (37c) 

- ~ - C 1 C 2 - - ~ , ~ 2 - - 4 , ~  1. I"4= C4- C1C3 2 1 f ' 2  1/'-'4 (37d) 

Considering now the VB-type wave function, we assume that it is expressed as 
a linear combination of various valence bond structures I~a) (or bonded tableaux), 
namely 

I~vB) ----~AISA). (38) 
A 

Each VB structure l e a )  involves nb bonds between AO's 2i and #i, i=  1, . . . ,  nb and 
np isolated electron pairs (or lone pairs) (~q~i) in addition to nu = 2S unpaired AOs 
Vk when total spin quantum number S # 0, and may be uniquely characterized by 
a two-column bonded tableau [34-] or a corresponding Young diagram [2alb-], 
a =/~p + r/b, b=nu,  

2j 
I~A)= " , ( i=1 . . . .  ,np;j=l,...,nb, k=l,...,nu). (39) 

Vk 

To simplify conceptually our task, we first expand each bonded tableau in terms of 
CAUGA symmetrized states [35], or Waller-Hartree functions [36-], or Slater 
determinants. For example, considering a simple closed shell case when rip=0, 
nb = 2 and S = 0, we have symbolically 

1 2 1 2 
~{1234}=[3 4 =c° ( l  3 , 4  t+1 23, 14t)' (40a) 
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where on the right-hand side appear symmetrized CAUGA tableaux (indicated by 
a comma separating both columns) [35, 37], which we could also label by the 
CAUGA two-box tableaux, and co designates an appropriate normalization factor. 
Equivalently, each symmetrized CAUGA state can be represented by a pair of 
Waller-Hartree two-determinantal functions, i.e. 

~{,z34}-1131 @1241+1241 ® 1131+1231 ® 1141+1141 ® 1231, (40b) 

where we ignored the normalization factor co for simplicity. Likewise, we can 
represent ~{1234} in terms of Slater determinants, obtaining 

~i'1234} = 112341 +112341-112341-112341. (40c) 

Clearly, in the S = 0 case, only half of the terms need be explicitly considered [38]. 
The AOs involved are, of course, the so-called overlap enhanced AOs (OEAOs) 

[39] that are essential for a successful application of VB theory [24, 26, 39, 40]. For 
the PPP-type Hamiltonians, it is often sufficient to employ a single parameter 
OEAOs of the form [24] 

j(~i) 

where the sum extends over the nearest neighbors i of j (designated as j~-.i). 
Moreover, when considering standard n-electron systems in their equilibrium 
geometries, we can choose e=0.31 [24a] assuming that flo = -2 .4  eV. 

In order to obtain MO based cluster components, we first rewrite our VB wave 
function, Eq. (38), in terms of configurations (represented as Stater determinants, 
Waller-Hartree functions, etc.) built from a chosen set of orthonormal molecular 
(spin) orbitals {q~k}, i.e. 

I ~evB) = F, cxl~x), (42) 
K 

with K designating the spin orbital set involved. Thus, the general structure of the 
expansion (42) is the same as for a CI wave function, except that the coefficients CK 
corresponds to a given VB wave function (38). In other words, Eq. (42) represents 
a CI expansion for a VB wave function (38) with the coefficients cx given by the 
overlaps 

cK = (7JvB I~g) = ~ ~a (~A I ~ ) .  (43) 
A 

Recalling that ]~A) are expressible in terms of CAUGA (or Waller-Hartree) states, 

]34) = ~ 2~i, jilZi,  Zi~ "" l® IZj, Zj~ "'" 1, (44) 
{i,j} 

with 2 a designating corresponding normalization factors, we get finally that {i,j} 

cK=Y'.~A ~ ~.~.j}<{2,,2,~ ' "  } l {4 'k , ' ;bk= ' " }><{2 j ,2 j~ ' " } l {d~, ,~ t2" " }> ,  (45) 
A {~,J} 

where we expressed I~K) as follows 

I ~g> =1 {@,,,@.,~ ' }> ® I {q~,, q~,2 .-. }>,  
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the braces indicating the antisymmetry property [4b]. Thus, finally 

CK---- ~ ~a ~ 2~.j~ ID {i, k}l" ID {j, l} l, (46) 
A {i,j} 

where D are the overlap matrices between the OEAOs and MOs with entries given 
by (~zl~bk) and (~[~bl), respectively. 

Once we possess the CI-type coefficients clc, associated with a chosen MO-type 
basis set, we can carry out a standard cluster analysis, obtaining the desired 
connected cluster amplitudes. For this purpose it is convenient to relabel the 
coefficients CK, Eqs. (42) and (46), with molecular spin-orbital labels relative to 
a chosen IPM reference configuration I ~o)- We thus obtain monoexcited (c~, c s, 
etc.), biexcited Rs TV (CAB, CCO, etc.), triexcited t~ABct~RST, etc.), etc., coefficients characterizing 
the CI expansion of a given VB function (38). We then simply rely on Eqs. (37) to 
obtain the desired cluster components. Thus, for example, 

gRS __ ~RS  1 f r 2 " t R S  (47a) 
A B - - t ~ A B - -  2 "l,.,.~l f AB,  

t R S T  ~ R S T  f f ~  /'~ ] R S T A 1  f [ - , 3 ) R S T  aBC--~aBC--  ~.~I'--2SaBC-r 3 t'~lyABC, etc., (47b) 

where 
2 RS I R S  R S  { C 1 } AB = 2. (CACB --  CB CA), (48a) 

l "  I ~ ) R S T  ~ R ~ S T  ± ~ R ~ S T  ± ~ R ~ S T  
"- ' I" - '2SABC - -  ~"At~BC T t~Bt, CA T L, Ct, AB 

+~s ~Tg. ~S~TR. ~S~TR (48b) 
CAt~BC T t.Bt, CA "t" t .C t .AB  

T RS ~ T ~ R S ~ _ T _ R S  
-~- CACBC "-[- t~ B t.CA ~ C C CAB,  

f f ' 3 " I R S T _ _  | R S T 3 . ( C A C B C c +  R S T R S T CB CcC A --~ C C C AC B ~ ' . - ' l JABC - -  

R S  T R S T  R S  T 
- -  C B C AC C - -  C C CBC A - -  C A C c C  B ) ,  (48c) 

and similarly for the four-body clusters. 
In closing this section, we note that for simplicity's sake no spin adaptation was 

assumed at the MO level. Moreover, the 3- and 4-body cluster components need 
not be stored (unless we wish to use them for other purposes) but can be immediate- 
ly used to compute corresponding corrections to the CCSD equations using the 
expressions given in the next section. 

4 VB corrections to CCSD equations 

Having determined 3- and 4-body cluster components, issuing from a chosen VB 
wave function, we now proceed to the determination of corresponding corrections, 
as outlined in Section 2. We again employ the simple spin orbital form and give the 
explicit expressions for the correcting terms o(k)(J i ) ,  Eqs. (27). Even when we 
employ the orthogonally spin-adapted CCSD formalism, the resulting spin-orbital 
corrections are easily transformed to their spin-adapted form relying on Eqs. (17) 
and (20). Clearly, only the required spin-orbital cluster components need be 
evaluated, since there will be a considerable repetition of equivalent terms differing 
only by their spin components. It should also be noted that the expressions given 
below are formally identical with those generated by the corresponding terms in 
the CCSDT and/or CCSDTQ equations. In the present case, however, these terms 
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are evaluated only once, using the 3- and 4-body cluster components derived from 
a chosen VB function, and are then employed to correct the absolute term in the 
CCSD equations as explained in Sect. 2. We now present explicit form for these 
corrections employing standard diagrammatic formalism [4b]. 

4.1 T 3 corrections 

4.1.1 Mono-excited subset. There is only one Hugenholtz skeleton (Fig. la) that 
contributes to 69°)(J1) term, Eq. (27a). Its topological weight factor is w =¼, so that 
using a Brandow diagram of Fig. l(b), we find immediately that the correction 

O~ =- (rl O]3) la) =- O~)( {ra; aa} )= 0(t3)'~] = :0A R (49) 

is given by the expression 

ORA = ~ ~ (BC[~[ST)d(RSTI~alABC)~. (50) 
S < T  B < C  

Corresponding spin adapted correction is then 

(r] O<3)[a)o = x//2 0~. (51) 

4.1.2. Biexcited subset. In this case, both one- and two-body parts of the Hamil- 
tonian (1) may contribute. The contribution involving one-electron component 
(assuming that other than RHF reference is employed) is characterized by the 
Hugenholtz skeleton shown in Fig. 2(a) with weight w = 1. Employing the corres- 
ponding Brandow diagram shown in Fig. 2(b) we get immediately the following 
contribution 

- vl ~3,~o,,)(b~) ~ 01 (t3)a. = Z Z ( c  Ill T > (ABCIt3 I RST)d .  
C T 

(52) 

The 2-electron contribution to O(1)(Jz) is given by (~2)]VNTaI~o)-- 

( R S  vNT3 ) AB ~o , and is characterized by two Hugenholtz skeletons shown in 

Figs. 3(a) and (b). Drawing corresponding Brandow diagrams (Figs. 3(c) and (d)) 
and realizing that for both diagrams the weight factor equals to 1, we find 

1 

io 
a b 

Fig. 1. The Hugenholtz skeleton (a) and the 
corresponding Brandow diagram (b) for the ira 
correction to the monoexcited CCSD subset of 
equations, represented by the term 
< 4~y$lH, zTal4~o>=< ~(j$lVNr314~o> 
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S 

b 

Fig. 2. Same as Fig. 1 for the biexcited subset and 
the one-particle component of the Hamiltonian, i.e. 
for the term (q~(2)lF~Td ~o3 

SRs B 

S = 

~ J  

SAB 
R 

S 

e d 

Fig. 3. The Hugenholtz sketetons (a, b) and the corresponding Brandow diagrams (c, d) for the T3 
correction to the biexcited CCSD subset of equations and the two-particle component of the Hamil- 
tonian, represented by the term (~]2) I VNT3 t C~o ) .  The operator Sxj implies the symmetrization in I and 
J labels 

immediately that 

= ~  E ((SCI~[TU)d(RTUIt%]ABC)~ 
C T<U 

-- (RC[~[ TU )d (STU [tS[ABC)d) 

+ ~  ~ (-(CD[~[BT)d(RST[~3[ACD}d 
T C<D 

+ (CDI~IAT ~¢(RSTI~3IBCD}~¢). (53) 

The corresponding orthogonalty spin,adapted components are then given by 

(rslO(23)lab }o = N(O'a~ + 0[,~.) (54a) 

(rs ]O~23)]ab)l = x~(0~  - 0~,%), (54b) 
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with N defined as in Section 2 and 

rs  rs  
O ab = 01 (ta)ab + 0 2  ( t 3 ) r a ~ .  

27 

(55) 

4.2 T4 corrections 

Four-body clusters can only contribute to the biexcited subset of CCSD equations 
as implied by Eq. (27a). Their contribution is characterized by a single Hugenholtz 
diagram shown in Fig. 4(a). Its weight being 1/4, we find immediately from one of 
the corresponding Brandow diagrams (Fig. 4(b)) that 

0 2 ( t 4 ) r a s b _ ~ ( r s l t ~ ( 4 ) t _ L \  n , .  , ( r a ) ( s r )  R S  t,, tUO/"= Utt4)(aa) (br) = : O(t4)AB 

= Z Z (CDI~ITU)~,(ABCDI~41RSTU)d. (56) 
C<D T<U 

4.3 T1T3 corrections 

Again, this correction only contributes to the biexcited subset of CCSD equations, 
Eq. (27b). The relevant Hugenholtz and Brandow diagrams are shown in Figs. 
5(a)-(c) and 5(d)-(f), respectively, yielding immediately 

rs __ (ra) (st) .q R S  __ 1 O(tlt3)ab=O(tlt3)ta~)~) =: vA~--2 ~ ~ (CDIfITU)d(2(T[?~[C)(RSUIf3IABD)~ 
C,D T,U 

+ (TI~llA ) ( RSUI~31BCD )d--(TI?I IB) (RSUI~31ACD )~ 

+(R[~IlC)(STUIfaIABD)d-(SIflIC)(RTU[falABD),~). (57) 

The corresponding orthogonally spin adapted components are again given by 
Eqs. (54). 

Obviously, in this last case, it would also be possible to consider t3-corrections 
to the linear terms, involving the tl-cluster components that arise in the biexcited 
subset of the CCSD equations, rather than correcting the absolute term in this 
same subset using Eq. (57). This would, in fact, be more appropriate, since we 
consider the t 1-clusters as unknowns in the CCSD or VB-corrected CCSD method. 
However, since we expect the effect of these terms to be very small, being quadratic 
in the 1- and 3-body cluster components (particularly when using RHF orbitals), 
and since we have to determine approximate q-clusters anyway when cluster 

a b 
Fig. 4. Same as Fig. 1 for the T4 correcting 
term ( ~ f ~ l n N z 4 1 ~ o ) = ( , l ~ f ) 2 1 V x T 4 1 ~ o )  
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a b e 

d • f 

Fig. 5. The Hugenholtz skeletons (a-c) and the corresponding Brandow diagrams (d-f) for the T1T3 
correcting t e r m  O ( 2 ) ( J 2 )  = (~)21HNT1T31~o) = (4~)21VNT1TaI~O). The operator S~s implies the sym- 
metrization in I and J labels 

analyzing our VB wave functions, we have decided, at least at this stage, to treat 
these terms in the same way as those arising solely from the connected 3- and 
4-body clusters. The required linear term corrections when treating the T1T3 
contribution as a quasi-linear rather than an absolute term follow easily from Eq. 
(57). However, while the last two terms (corresponding to diagrams (b), (c) or (e), (f) 
of Fig. 5) will be represented as effective two-body operators, the first term 
(corresponding to Fig. 5(a) or 5(d)) gives rise to an effective three-body potential. 
Nonetheless, the latter term can be effectively handled by precalculating an effec- 
tive p-h one-body potential d, 

I AI ~ - \  ( r~ )  (s~) ^ cjgl~/ (aa)(b~ ) ~. (cl~lt)~ s= ~', (CDIOITU)d(RSUIt3IABD)d, (58) 
D, U 

for each equation in the biexcited subset labeled by (rs', ab). 

5 Conclusions 

This paper continues an attempt to obtain an independent yet reliable source of 
higher order connected cluster components that become important when a single 
reference coupled cluster Ansatz is employed in quasidegenerate situations and 
thus to achieve a physically meaningful decoupling of the CC chain of equations at 
the pair-cluster level. In this way the SR CCSD approach, which provides excellent 
results for nondegenerate ground states, could be extended to degenerate or 
quasidegenerate situations that generally arise when other than equilibrium 
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geometries are considered or, in other words, when chemical bonds are being 
formed or broken. Since these situations can be well characterized by the VB 
approach, often involving only a few covalent-type structures, it is worth inves- 
tigating if a suitable approximate VB wave function could provide the missing 
information concerning the 3- and 4-body connected clusters, thus making the SR 
CCSD approach operative even in situations where the standard CCSD approach 
is either very inaccurate or even breaks down. 

We would like to emphasize that the proposed approach is not intended to 
replace in any way MR CC methods, which obviously represent the most appropri- 
ate avenue to the open shell or quasidegenerate closed shell problems. However, in 
view of the complexity and high computational demands presented by the MR 
approaches, or in fact SR CCSDT and CCSDTQ approaches, it is of interest to 
search for a workable extension of the well established and affordable CCSD 
method or its variants (e.g., so-called quadratic CISD method [41, 42]) that are 
capable of providing reasonably accurate and reliable correlated wave functions 
and energies over a wide range of nuclear framework geometries, including situ- 
ations where the standard CCSD approach must be abandoned. Of course, the 
same procedure can be employed with the 4- and/or 3-body connected cluster 
components resulting from whichever source is available or appropriate (e.g., UHF 
wave functions for the 4-body components as discussed earlier [19-21]) 2. In this 
series of papers we shall employ simple VB-type wave functions for this purpose, 
testing the method using simple semiempirical PPP-type Hamiltonians. 
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