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Our purpose is to offer a new approach to affine differential geometry based 
on the notion of affine immersion of an affinely connected manifold (M", V) 
into an ambiant manifold (~r m, V). In the present paper we are mostly concerned 
with the case where m = n + 1 and particularly ~r, + 1 is the ordinary affine space 
IR,+ 1 and prove several theorems on affine immersions which are closely related 
to known results on isometric immersions in Riemannian or pseudo-Riemannian 
geometry. 

In Sects. 1 and 2 we define the notion of affine immersion, develop several 
formulas, reformulate some of the basic notions in classical affine differential 
geometry and discuss several examples. In Sect. 3 we study affine immersions 
of IR" into IR "+ 1 and prove Theorem 1 which is an analogue of the cylinder 
theorem for complete flat hypersurfaces in Euclidean and Lorentzian spaces. 
In Sect. 4 we prove Theorem 2 concerning affine immersions of a metric connec- 
tion which gives a precise statement of the result hinted at by Cartan [-1] and 
indicated by Norden in the Appendix of [-6]. We obtain a few corollaries concern- 
ing rigidity of affine immersions. In Sect. 5 we prove Theorem 3 on the non- 
existence of affine immersion into IR" + t of a compact manifold with an equiaffine 
connection with strictly negative-definite Ricci tensor. 

1. Affine Immersions 

Throughout  this paper, we deal with affine connections without torsion so this 
condition will not be mentioned each time. 

Let M be an n-dimensional differentiable manifold with an affine connection 
V, and let M be an (n+ 1)-dimensional differentiable manifold with an affine 
connection V. By an affine immersion f :  (M, V) ~ (~r, ~) we mean an immersion 
M ~ M for which there exists locally (that is, around each point of M) a transver- 
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sal vector field ~ along f which has the following property: if X and Y are 
arbitrary vector fields on M, we have 

Vs,(x)f,(Y)=f,(Vx Y)+h(X, Y)(, 

where the left-hand side denotes the covariant derivative with respect to X 
of the vector field f ,(Y) along f and the first term of the right-hand side is 
the tangential component and the second term is the transversal component. 
It is easy to check that h is a symmetric bilinear form on each tangent space 
T~(M). We may simplify the equation by dropping f ,  and write 

VxY= VxY+h(X, Y)~. (1) 

In particular, if h is 0 at x (that is, Vx Y is tangent to M), then we say 
that f is totally geodesic at x. Obviously, this condition is independent of the 
choice of ~. We have 

Proposition 1. Let f: (M, V)~ (]fl, V) be an affine immersion and 4i and 42 two 
associated transversal fields. Then the directions [~l] and [~2] can differ only 
on the interior of the set where h vanishes (i.e. on totally geodesic pieces). 

Proof Write 
4 2 = z + q , 4 1 ,  (2) 

where Z is a vector field tangent to M and q) is a function on M. We have 
then 

VxY=VxY+h2(X, Y)~E=VxY+h2(X, Y)Z+q)hE(X, Y)41. 

Comparing it with (1), we have 

h2(X, Y ) Z = 0  and (phE(X, Y)=hI(X, Y). 

If f is not totally geodesic at x, then there exists X, YeTx(M ) such that 
hE(X, Y)@O. Then Z = 0  at x. Thus 42 =-- q ) ~ l  . [] 

It also follows that whether h is nondegenerate is independent of the choice 
of ~. We say f is nondegenerate if h is. 

For  an affine immersion f :  (m, V) ~ (M, V) we also write 

Cx ~ = - s (x )  + �9 (x )  ~, (3) 

where -S(X)  denotes the tangential component. It is easily verified that S 
is a tensor field of type (1, 1) and r is a 1-form. We call S the shape operator 
and z the transversal connection form for f 

Following the standard routine for geometry of hypersurfaces, we may now 
compute 

the tangential components tan [R (X, Y)Z] and tan [/~ (X, Y)4] 
and 

the transversal components trans [/~(X, Y)Z] and trans [/~ (X, Y)(] 
in terms of the curvature tensor R of (M, V), h, S, z etc. We obtain 
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Proposition 2. 
I) tan [R (X, Y) Z] = R (X, Y) Z - [h (Y,, Z) SX  - h (X, Z) S Y] 

II) trans [/~ (X, Y) Z] = (Vx h)(Y,, Z) + z (X) h (Y, Z) - (Vr h)(X, Z) - z (Y) h (X, Z) 

III) tan [/~ (X, Y) 4] = - (Vx S) ( Y) + ~ (X) S Y+ (Vr S) (X) - ~ (]I) SX 
IV) trans[/~(X, Y)~] = - h ( X ,  S Y ) - h ( S X ,  Y )+2dr (X ,  Y). 
We now consider certain important special cases. 
For an affine connection V on M, the Ricci tensor Ric is defined by 

Ric (Y,, Z) = trace {X~-~R(X, Y)Z}. (4) 

Ric may not be symmetric. It is known that Ric is symmetric if and only if 
around each point there is a parallel volume element, namely, a nonzero n-form 
o9 such that Vo9=0. If M is simply connected, it follows that Ric is symmetric 
if and only if M admits a volume element o9 parallel relative to V, that is, 
if and only if (M, V) is equiaffine. (M, V, o9) is called an equiaffine structure. 

If (A4, V, 05) is an equiaffine structure and f :  (M, V) ~ (M, V) an affine immer- 
sion and ~ an associated transversal field, then we define a volume element 
o9 on M by 

og(X1, ..., X , )=  05(Xl . . . .  , X,,  4) (5) 

where {X1 . . . .  , X,} is any basis in T~(M). Using (1), (3) and (5) we see that 

Vx o9 = ~ (X) o9. (6) 

It follows that (M, V, co) is an equiaffine structure if and only if z = 0. 
If (m, V, o9) and (/~r, if, 05) are equiaffine structures, f :  (M, V)~ (M, if) an 

affine immersion, then an associated transversal field is called equiaffine if (5) 
holds for any basis {X1 . . . .  , X,} in Tx(M). We have ~=0. Assuming that f 
is totally geodesic nowhere, the associated transversal field ~ is now uniquely 
determined because of (5). 

Remark. The study of affine immersion of an equiaffine connection into flat 
affine space is equivalent to what is called relative geometry, see [6-8]. 

We have 

Proposition 3. I f  (m, V, o9) and (M, V, 05) are equiaffine structures and if f is 
an affine immersion: (M, V)--,(M, V), then an associated transversal vector field 

can be chosen to be equiaffine. 

Proof Simply multiply ~ by ~o =og(X1, ..., X,)/05('X1, ..., X , ,  4). [] 

Recall that two affine connections V and F" (both with zero torsion) on 
a manifold M are projectively related if there is a 1-form p on M such that 

fix Y= Vx Y+ p(X) Y+ p ( Y ) X  (7) 

for all vector fields X and Y See, for example, [5]. 
A change from V to ff is called a projective change. An affine connection 

V is said to be projectively fiat if it can be changed projectively to a flat affine 
connection ff (i.e. zero curvature tensor/~). 
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Suppose an affine connection V on a differentiable manifold M has symmetric 
Ricci tensor (in particular, suppose it is equiaffine). For dim M > 3 ,  V is projec- 
tively flat if and only if the projective curvature tensor 

W(X, Y)Z=R(X,  Y)Z-[7(Y , ,Z )X-7(X ,Z)Y] ,  where 7=Ric/(n--1) (8) 

is identically 0. For dim M = 2, V is projectively flat if and only if ? satisfies 
Codazzi's equation: (Vx 7) (Y, Z) = (Vr 7) (X, Z). If dim M > 3 and if W= 0, then 
7 satisfies Codazzi's equation. On the other hand, if dim M =  2, then W is 
automatically 0. 

If (M, V) is projectively fiat, then 

R(X, Y) Z = 7 (Y,, Z) X -  7(X, Z) Y. (9) 

We now consider the formulas I-IV in certain special cases. 
a) Case where (M, V) is projectively flat: 
/~(X, Y) Z = y(Y, Z) X - y ( X ,  Z)Yis tangential. Thus 

Ia) R(X, Y) Z=~(Y, Z) X -  ~(X, Z) Y+ h(Y, Z) S X - h ( X ,  Z)SY - Gauss - 

From this, we get 

Ric (Y, Z) = (n - 1) ~(Y, Z) + h (Y, Z) tr S - h (S Y, Z). 

In particular, if V is fiat, we have 

R(X, Y)Z=h(Y, Z ) S X - h ( X ,  Z)SY 

Ric(Y, Z)=h(Y, Z) tr S-h(SY, Z). 

IIa) (Vxh)(Y, Z)+ r(X) h(Y, Z)=(Vrh)(X, Z)+ r(Y) h(X, Z) - Codazz i -  

We set 
C(X, Y,, Z)=(Vxh)(Y, Z)+ z(X)h(Y, Z), (10) 

which is symmetric in Y and Z like h, as well as in X and Y by virtue of 
II a, thus symmetric in X, Y,, and Z. We call C the cubic form of the affine 
immersion. This is a generalization of the classical cubic form in affine differential 
geometry. 

b) Case where (M, V, e)), (if/l, V, c5) are equiaffine and the transversal field 
4 is equiaffine: 

Since z = 0, we get 

IIb) (Vxh)(X, Z)=(Vrh)(X, Z) - Codazzi for h 

IIIb) (VyS)(X)-y(Y, 4) X=(VxS)(Y)-Y(X, 4) Y. 
In particular, if ~ is fiat, (VyS)(X)=(VxS)(Y) - Codazzi for S - 

IV b) h (SX, Y) = h (X, S Y) - Ricci - 

2. Examples  

We discuss some examples of affine immersions. 

Example 1. Isometrically immersed hypersurface. Let (M, g) be a Riemannian 
manifold of dimension n with Levi-Civita connection V. Let (~r, ~) be a Rie- 
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mannian manifold of dimension n +  1 with Levi-Civita connection g. If f :  
(M, g) ~ (~r, g) is an isometric immersion, then f :  (M, V) ~ (M, V) is an affine 
immersion with a transversal vector field ~ given locally as a unit normal vector 
field. 

Example 2. Affine cylinder. Roughly speaking, an affine cylinder in N "+1 is a 
hypersurface generated by a parallel family of affine (n-1)-spaces N "+ 1 (t), each 
through a point of a curve ? in N" + 1. We define an affine cylinder immersion 
precisely as follows. 

Let 7(t) be a smooth curve in IR "+1 and ~(t) a vector field along 7(t). Let 
IR"-1 be an affine (n-1)-space  in N~ "+ i and consider all parallel (n-1)-spaces 
and denote by N~"- 1 (p) the one through p. We assume that 

(i) ?'(t), ~ (t) and N"-1(7 (t)) are linearly independent; 

(ii) ?" (t)= p (t) ~ (t), where p = p  (t) is a certain differentiable function. 

Now we define a mapping f :  IR" --, IR" + 1 as follows. Write IR" = N x N."- 1 
so every point of N" is written as (4 Y), telR, y~N"-1 .  Let 

f(t, y) = 7 (t) + y. 

For  this immersion f we take a transversal field 

(t, y) = ~ (t) translated to f(t, y) 

by virtue of condition (i). It is easy to verify that f is an affine immersion 
of N . ~  ]R ~ + 1. For  the curve x (t)= (t, 0) in ]R ", we have 

Vtf(xt)=7"(t)=p(t) ~(t) so h(O/c?t, •/•t)=p(t). 

In the special case where we can take 4=7"  and furthermore 7" and 7"' 
are linearly independent, we call it a proper affine cylinder. In this case, we 
see from Vt~=?"'=f.(S(D/Ot))+~(O/Ot)7" that S never vanishes. We also see 
that h never vanishes. 

Example 3. Graph immersion. Let (M", V) be a manifold with a flat affine connec- 
tion and q~: (M", V)~N." an affine immersion. Thus ~o is an immersion such 
that every point p of M" has a neighborhood U on which ~o is an affine-connec- 
tion preserving diffeomorphism with an open neighborhood V of ~o(p) in IR". 
Consider N." as a hyperplane H in IR "+ 1 and let ~ be a parallel vector field 
transversal to H. For  any differentiable function F: M " ~ N ,  we define 
f: mn--~ ]R "+1 by f(x)=go(x)+ F(x)~, for xaM'.  

We have 
f ,(Y)=q~,(Y)+(dF) (Y) ~ for Y~T~(M") 

so f is an immersion. For  vector fields X and Y on M", we have 

Vxf, (Y) = Vx cp,(Y) + Vx(YF 4) = ~o,(Vx Y)+(XYF)~ 
=f, (V x Y) + (XYF-- (Vx Y) E) 4. 

Thus f is an affine immersion with h(X, Y)=XYF-(Vx Y) F, which coincides 
with the Hessian H of F. Thus f is nondegenerate if the Hessian H is nondegener- 
ate. We have also S--0. 

Conversely, we may prove 
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Proposition 4. Suppose (M n, V) is a fiat connection and f: (M", V) -~ ]R n+ 1 an affine 
immersion such that S= O. Then it is affinely equivalent to the graph immersion 
for a certain function F: M" ~ ]R. 

Proof By assuming a transversal field 4 to be equiaffine, S = 0  implies that 
Vx4 =0, that is, 4 is a constant (parallel) vector field. Let H = R "  be a hyperplane 
in ]R "+1 which is transversal to 4. Let n : R ~ + I ~ I R "  be the projection along 
the direction of ~ so that n of: M" o R "  is an affine immersion with image 
W, an open subset of IR ~. We can find a differentiable function F: M " ~  ]R such 
that f (x) = (n o f )  (x) + F (x) 4. Thus f is a graph immersion. [] 

Example4. Centro-affine hypersurface. Suppose f:  M ~ lR '+*-{o}  is an 
immersed hypersurface such that relative to o in IR "+ ~ the position vector o - ~  
is always transversal to f (M)  at f(x). Take 4 = -  o-f(~ as a transversal vector 
field for f Then Vx4= - X  so that z =0  and S = I  (identity). By writing ffxf,(Y) 
= f ,  (Fx Y)+ h(X, Y)4, we see that V x Y is indeed an affine connection (with zero 
torsion) on M. Thus f :  (M, V ) o N  "+* is an affine immersion. This is called 
a centro-affine hypersurface. From the formula (I) we get 

R(X, Y ) Z = h ( Y , Z ) X - h ( X , Z ) Y ,  7(Y,Z)=h(Y,Z). (11) 

Proposition 5. For a centro-affine hypersurface f: (M, V)~0R"+*-{o},  V) and 
for any function ~: M-~]R +, the mapping x ~2(x ) f ( x )  defines a centro-affine 
hypersurface ~ f: (M, V ' ) ~ ( ~ n + t - { o } ,  V) where V' is projectively related to V 
by 

V'xY=VxY+p(X)Y+p(Y)X,  wherep=dlog2. 

Conversely, any projective change of(M, V) can be locally obtained in this manner. 

The proof is straightforward and omitted. [] 

Corollary. Let (M, V, to) be a differentiable manifold with a projectively fiat equiaf- 
fine connection. Then (M, V) can be locally realized as a centro-affine hypersurface 

Proof If (M, V') is flat, then it can be locally realized as a piece of a hyperplane 
with induced volume element too in N " + 1 -  {o}. Now we can make a projective 
change back to V by modifying this hyperplane by a suitable function 2, namely, 
2=to/too. [] 

Example 5. Conormal Immersion. Let f :  (M, V, to) ~1R "+ * be a nondegenerate 
affine immersion of an equiaffine structure with an equiaffine transversal field 
4. We denote by IR, +, the vector space dual to the vector space ~ "  § 1 underlying 
the affine space 1R "+1. We define v: M--+ ~-,+ 1-{0} as follows. 

For xeM,  Vx is an element of 1R,+ ~ such that 

vx(Y)=0 for Y~Tx(M) and v~(4~)=l, (12) 

where Y and ~x are considered as elements of the vector space ~"+  1 naturally 
identified with T~(IR"+*). Denoting by V the usual flat connection in 1R,+~, 
we have 

(ffyv)(4)=O and (Vyv)( f ,X)=-h(Y,  X) for all X, Y~Tx(M). (13) 



On the Geometry of Affine Immersions 171 

Since h is nondegenerate, we see that if (Vyv)(f,X)=O for all X, then Y=0. 
Since Vyv=v,(Y), it follows that the mapping v is nonsingular. Hence we may 
consider v: M ~ IR, +1-{0} as a centro-affine hypersurface, called the conormal 
immersion for f 

Taking - v  as the transversal vector field as in Example 4 we write 

Vx (v, (Y)) = v, ( ~  Y) - h* (X, r)  v, (14) 

where V* is an affine connection on M and h* the second fundamental form. 
These are related to the a n n e  connection V, the anne  metric h and the affine 
shape operator S for the original hypersurface f :  M--,IR "+1 in the following 
way: 

h*(X, Y)=h(SX, Y) (also equal to ?,(X, Y) as in Example 4) (15) 

Xh(Y, Z)=h(V* Y, Z)+h(Vx Z, Y) (16) 

and 
Vx Y=(Vx Y+ [ 7* Y)/2, (17) 

where P denotes the Levi-Civita connection for the anne  metric h. 
The formulas (15) and (16) are consequences of basic formulas for f and 

(12), (13) and (14). (17) follows from (16). They can be found, in different notations, 
in [6], p. 127-129. It is a classical fact that the cubic form C for f vanishes 
if and only if V = P = V*. 

Example 6. Blaschke Immersion. Suppose f :  (M, V, co) ~ (~t, ~, c5) is an anne  
immersion with equiaNne transversal field. If, furthermore, f is nondegenerate 
and if co coincides with the volume element % of the nondegenerate metric 
h, then we say that f is a Blaschke immersion. For the case where (~t, p, (5) 
is an ordinary anne  space IR" + 1 with the flat a n n e  connection and the standard 
volume element given by the determinant, this is exactly the kind of affine 
immersion which has been the primary object of study in affine differential 
geometry developed by Blaschke and his school in the period 1910-40. The 
first step in the subject is to prove, for the standard equiaffine structure in 
N" + 1, the following basic result. 

Let M be a hypersurface immersed in R "+ 1 For any choice of a transversal 
vector field 4, define an affine connection P and the bilinear form h by Eq. 
(1). Whether h is nondegenerate or not is independent of the choice of 4, and 
we say that M is nondegenerate if h is. Denote by % the volume element 
for h. 

Proposition 6. I f  M is a nondegenerate hypersurface immersed in P,"+ 1, there 
is a unique choice of ~ such that 

i) COh coincides with co defined by co(X 1 . . . .  , X , ) = ~ ( X I ,  ..., X,, 4), 
ii) (M, [7, co) is equiaffine. 

This unique ~ is called the affine normal and the corresponding h the affine 
metric. 

The proof of Proposition 6 can be found in [4]. 
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3. A f f i n e  I m m e r s i o n s  P~" ~ P~" + i 

In this section we are interested in classifying all affine immersions: M=IR"  
IR,+ 1. We always choose an equiaffine transversal field ~ as we may. From 

Section 1 we have the formulas 

h(Y, Z ) S X = h ( X ,  Z ) S Y  - Gauss equation in case R = 0  - 

(Vxh)(Y,, Z)=(Vyh)(X,  Z) - Codazzi equation for h - 

(VxS)(Y)=(VyS)(X) - Codazzi equation for S -  

h(SX, Y) = h(X, SY)  - Ricci equation . 

If h is identically 0, then f is totally geodesic and f (R" )  is an affine hyperplane 
in IR "+ 1. If S is identically 0, then by Proposition 4 f is a graph immersion. 

In the general case, let f2= { x e M ;  Sx~=O, hx=~0}. We prove 

L e m m a  1. For each x~s Ker h = K e r  S and its dimension is n -  1. 

Proof For  each x ~ f2 the equality Ker h = Ker S follows directly from the defini- 
tion and the Gauss equation. If for some xcf2  we had r a n k S > 2 ,  then there 
would be tangent vectors X and Y such that S X  and SYare linearly independent. 
The Gauss equation then would imply X, Y~Ker h = Ker  S, a contradiction. []  

For  x~Q, the subspace N ~ = K e r h ~ = K e r S ~ c T ~ ( M )  is called the relative 
nullity space at x. 

Lemma 2. The distribution N: x~-+ Nx on (2 is involutive and totally geodesic. 

Proof It is sufficient to show that N is totally geodesic, that is, for vector 
fields Y, Z belonging to N, Vr Z eN.  In the equation of Codazzi for h: (Vx h)(Y,, Z) 
=(Vy h) (X, Z) take Y, Z s N .  Then we get 

X h(Y,, Z ) - h ( V x  Y,, Z ) - h ( Y ,  VxZ)= Y h(X, Z ) - h ( V y X ,  Z ) - h ( X ,  VrZ) 

and hence h(X, VrZ)=0. This being valid for all X, we have I7rZ~N. [] 

Now if L is a leaf of the relative nullity foliation N, L is totally geodesic 
in M = ~ " .  Indeed, f (L )  is totally geodesic in R,+a.  Our goal is to show that 
each leaf L is complete. Let x~ be a geodesic starting at x o in the leaf L. To 
show that xt extends for all values of t in L, first extend it as a geodesic in 
M. It is sufficient to show that xt lies in f2, because then it lies in L. So suppose 
there is b>O such that Xb(Sg2 but xt~g2 for all t<b.  

We need 

Lemma 3. Let X be a vector field on some open subset W of f2 containing the 
geodesic x~, O<t<b ,  such that VxX=O, X ~ N ,  and X at xt equals the tangent 
vector 2tfor 0 <= t < b. Let U be a parallel vector field on M =IR" which is transver- 
sal to the hyperplane H = N" - a of M = I(" that contains L. 

(i) Write V v X = # U  + Z  at each point p~Wc~H,  where Zp~Np. Then the func- 
tion # satisfies X l.t= --t  ~2 along xt, O<=t <b. 
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(ii) Write S U = 2 U  + W at each point peWc~H, where WeTv(H ). Then the 
function 2 satisfies X 2  = #2 along x ,  0 < t < b. 

(iii) Let p=h(U, U) on W ~ H .  Then X p= - # p  along xt, O<t <b. 

Proof 

(i) Vx(VvX)= Vx(# U + Z ) = ( X # )  U + #  VxU+ V x Z - ( X # ) U  rood N. Since 
R = 0, we have along xt, 0 < t < b 

vx (vv  x )  = VEx, v~ x = - V ~ x  x = - v . v  + z X 

= --# V u X -  Vz X =  - _#2 U mod N. 

Hence (X#) U - #  2 U mod  N and X # =  _#2.  

(ii) F rom the Codazzi equation for S 

V x ( S U ) -  s ( v x  u )  = v ~ ( s x ) -  s ( v v  x ) ,  

we get along xt, 0 < t < b 

(X2) U+ 2(Vx U)+ Vx W= - # S U =  - # ( 2  Y+ W) 

and (X 2) U = - # 2 U rood N. Thus X 2 = - # 2 along x t. 

(iii) We have along xt, 0 < t < b 

X p = X ( U ,  U)=(Vxh)(U, U)-2h(Vx  U, U)=(Vuh)(X, U) 

=Uh(X,  U) -h (VvX,  U ) - h ( X ,  V v U ) = - # h ( U ,  U ) = - # p .  [] 

Now we can conclude the proof  that xbsf2 as follows. The equations in 
(i), (ii) and (iii) are 

d#/dt= _#2, d 2 / d t = - 2 # ,  d p / d t = - p #  for O<t<b. 

Thus # is identically 0 or # =  1/(t +a) for some a. It follows that 2 = c o n s t a n t  
or 2 =  1/e(t+a) and the same for p. In all cases, neither 2 nor  p approaches 
0 as t--*b. Now at the point p=Xb, this means SU4:0 as well as h(U, U)4~O. 
Thus pel2. 

With completeness of L established, we know xteL for all t. Thus the possi- 
bility of # =  1/ ( t+a)  is excluded. Hence # - 0  and thus 2 and p are equal to 
constants on the leaf L. 

We can now prove 

Proposition 7. Let f: ]R" ~ ~," + 1 be an affine immersion such that S and h vanish 
nowhere. Then f is affine-equivalent to a proper affine cylinder immersion. 

Proof In the foregoing discussions, we now have (2 = ~" .  We have already proved 
that each leaf of the relative nullity foliation is complete. Thus each leaf is 
a hyperplane in JR", and all leaves are parallel hyperplanes because they are 
disjoint from each other. 

We take a vector U transversal to all these hyperplanes and consider a 
line xt in the direction of U. Write IR"-1 (t) for the leaf through the point xt. 
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Since each leaf is mapped totally geodesically, f ( N  n- 1 (t)) is an affine (n - 1)-space 
in ]R n+l. Also, if Yt is a parallel vector field along x~ such that Yte T~(IR"- l(t)), 
then 

I~f,(Yt) = f , ( E  Yt)+h(U, Yt)=O. 

Thus f,(Yt) is parallel in IR "+1. This shows that all subspaces f (~"-~( t ) )  are 
parallel to each other. 

Now it is easy to verify that f is affinely equivalent to a proper affine cylinder 
immersion based on the parallel family f (Nn- l ( t ) )  and the curve 7(t)=f(x~). 
The original transversal field it is in the direction of 7" (t). 

We can now state 

Theorem l. Let f : I R " ~ I R  "+l be an affine immersion. Then f2={xelR";Sx 
=t=0, hx+0}, if not empty, is the union of parallel hyperplanes. Each connected 
component ~2~ of ~2 is a strip consisting of parallel hyperplanes and f:  f2~ ~ N ~+ ~ 
is affinely equivalent to a proper affine cylinder immersion. 

Remark. On each component of I t  n -  U ~ f is a mixture of graph immersions 
and totally geodesic immersions. One can easily construct examples piecing 
together different types of affine immersions, but proving a general description 
is not easy. 

Corollary. An analytic affine immersion f: N n - + ] R  n+l is either totally geodesic 
or affinely equivalent to a graph immersion or affinely equivalent to an affine 
cylinder immersion. 

Proof If h or S is identically 0, we know that f is totally geodesic or a graph 
immersion. Otherwise, the open subset f2 is dense. On each connected component 
~2~, f is a proper affine cyclinder immersion. Since s is dense, all these immersions 
of the components extend to an affine cylinder immersion f [] 

Remark. It is not difficult to construct a C oo affine immersion M 2 --> ] R  3 of the 
affine M6bius band M E =Fx.E/(p, where (p is the affine map: (x, y)=(x + 1, -y ) .  
By the corollary, however, there can be no analytic immersion of this kind. 

4. Affine Immersions of Pseudo-Riemannian Manifolds 

We prove the following theorem which is a precise statement for the result 
of Cartan and Norden mentioned in the introduction. 

Theorem 2. Let (M", g) be a pseudo-Riemannian manifold, V its Levi-Civita connec- 
tion and f: (M", V )~ IR  "+1 an affine immersion with a transversal field 4. I f  f 
is nondegenerate, we have either 

(i) V is f iat and f is a graph immersion; 

o r  

(ii) g is not fiat and Nn+ ~ admits a parallel pseudo-Riemannian metric relative 
to which f is an isometric immersion and ~ is perpendicular to f (Mn). 

Proof We first establish 
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Lemma. Let (M, h) be a pseudo-Riemannian manifold and let V and V* be two 
affine connections with zero torsion on M which are conjugate relative to h, that 
is, 

X h(Y,, Z)=h(V x Y, Z)+ h(Y, V* Z) 

for all vector fields X, Y and Z. Let B be a nonsingular (1, 1) tensor field which 
is symmetric relative to h and define pseudo-Riemannian metrics g and g* by 

g(X, Y)=h(BX, Y) and g*(X, Y)=h(B-1X,  Y). 

Then (Vxg)(Y,, Z ) + ( ~  g*)(BY, BZ)=O for all vector fields X, Yand Z. In particu- 
lar, V is the Levi-Civita connection for g if and only if V* is the Levi-Civita 
connection for g*. 

Proof We have 

(v* g*)(r, z ) = x  g*(r,  z ) - g * ( v *  Y, Z)-g*(r, v* z) 
=Xh(B -1 Y,Z)-h(V~: Y,,B l Z ) - h ( B - 1  Y,, V 'Z)  

= Xh(B -1 Y,, Z)-{Xh(Y,,  B - 1  Z)-h(Y,, Vx B -I  Z)} 

- { X h ( Z , B  -1 Y) -h (Z ,  Vx B-1X)}  

=h(Z, Vx B -1 Y)+h(Y,, Vx B-1 Z)-Xh(Y, ,  B -1 Z). 

Replacing Y, Z by B Y, BZ we get 

(Vy; g*)(BY, BZ)= h(BZ, Vx Y) + h(B Y, Vx Z ) -  X h(B Y,, Z) 

=g(Z, V x Y)+g(Y, VxZ) -Xg(Y ,  Z)= -(Vxg)(Y, Z). [] 

To prove the theorem, we may assume that ~ is equiaffine and we consider 
the conormal immersion v: (M", V*) --* P,, + 1. We recall that the affine connection 
V* is conjugate to V relative to the form h for f; cf. Eq. (16). 

Since h is nondegenerate, we may write g(X, Y)=h(BX, Y), where B is a 
certain nonsingular (1, 1) tensor symmetric relative to h. We define a pseudo- 
Riemannian metric g* by g*(X, Y)=h(B -1 X, Y). By the lemma, we see that 
V* is the Levi-Civita connection for g*. 

Now the conormal immersion being a centro-affine immersion, we know 
that V* is projectively fiat. Since V* is the Levi-Civita connection for g*, it 
follows by a theorem of Dini-Beltrami that g* has constant sectional curvature, 
say, c. The form h* for the conormal immersion is, by Eq. (11), equal to the 
normalized Ricci tensor 7*, which is in this case equal to cg*. Thus h*=cg*, 
in particular, V* h*= 0. 

Case (i): c=0.  Then V* is flat. Since h*=0, by (15) the shape operator S 
for f is 0 and by the Gauss equation V is flat. By Proposition 4 we conclude 
that f is a graph immersion. 

Case (ii): c4=0. We shall show that IR,+ 1 admits a parallel pseudo-Rieman- 
nian metric ( , ) *  such that 

(v,(X), v,(Y)>*=g*(X, Y) for X, YeT~(M) 

(v, v .(X))*=O for XeT~(M) 

(v, v)* = - 1/c. 
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For this purpose, we define ( ,  }* in each Tv(x)(~,+l) using exactly the above 
three equations and show that this metric tensor field along v is parallel in 
]R, +:. Thus we wish to verify 

x (u, v>*=<r u, v>* +(u,  ~x v>* (,) 

for all vector fields U and V along v and a vector field X on M. 
If U and V are of the form v,(Y) and v,(Z), where Y and Z are vector 

fields on M, the equation (,) reduces to (V~ g*)(Y, Z)=0.  
If U=v,(Y) and V=v, then X(v,(Y),  v>* = 0  and 

(r U, V}*=(r ), v}*=(v,(V x Y), v}* + (h*(X, Y)v, v}* 

= h*(X, Y)<v, v>*= -h* (X, Y)/c 

as well as <U, Vx V)=<v,(X), v,(Y)}=g*(X, Y). Thus (,) is satisfied. Finally, 
if U = V= v, (,) is obvious. 

Now it remains to show that P,"+ 1 admits a parallel pseudo-Riemannian 
metric ( ,  > such that 

(f ,(X),f ,(Y))=g(X, Y), (f,(X), 47=0,  (4, {}=  -1/c 

for all vector fields X and Y on M. Indeed, using the nondegenerate form ( ,  }* 
in ~ . + : ,  we identify IR,+~ with IR "+* (both as vector spaces) by 
uElR,+:~---~O(u)eN "+1 with w(O(u))=(u, w}* for all weiR,+ 1. We then define 
( ,  } in R" + : as the dual inner product, namely, 

(X, Y}=(O-I(X), 0-:(Y)}* for X, YGR "+~ 

In order to show that this inner product ( ,  } is the desired one, we first remark 
the following fact. Let u=v , (X)  for XeTx(M). Then for any Y~Tx(M) we have 
v,(Y)(O(u))=(v,(Y), v,(X)}*=g*(X, Y). On the other hand, v(O(u))=O. It fol- 
lows that 0(u)= - f , (B-1 X), where B is a certain nonsingular (1, 1) tensor. We 
have 

g*(X, Y)=v,(Y) 0(u)= - - v , ( Y ) ( f , ( B  -1 X))=h(B -1 X, Y), 

where we use the relation (13). Now for X, Y we have 

f , ( B -  : X)=  --O(v,(X)), f , (B- '  Y)= --O(v,(Y)) 

and 

( f , (B-:  X),f,(B -1 Y)}=(v,(X), v,(Y)}*=g*(X, Y). 

Replacing X, Y by BX, BY in this equation we obtain 

(f ,(X),f ,(Y)} = g*(BX, BY)=h(S - ~ BX, BY)=h(X, BY). 

But as in the lemma, h(X, BY)=g(X, Y). Hence 

g(X, Y)= (f,(X),f,(Y)}. 
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The other identities are obvious from 0(v)=~. The proof of the theorem is 
now complete. []  

We state a few corollaries. 

Corollary 1. Let (M ~, g) be a pseudo-Riemannian manifold, V its Levi-Civita con- 
nection, and f:  (M", V)~IR "+1 an affine immersion. I f  the Ricci tensor of g is 
nondegenerate, then IR ~ + 1 admits a parallel pseudo-Riemannian metric such that 
f is an isometric immersion and the transversalfield is perpendicular to f (M").  

Proof From Ric (Y, Z) = h (Y, Z) tr S - h (S Y, Z), it follows that h is nondegenerate 
if the Ricci tensor is nondegenerate. 

Corollary 2. Let g be a Riemannian metric on S 2 with Gaussian curvature K > 0  
and Levi-Civita connection V. Then there exists an affine immersion f:  (S 2, V) ~ ]R 3 
which is unique up to an affine transformation of  N 3. 

Proof By the solution to Weyl's problem (see, for example, [-9], p. 226) (S 2, g) 
has an isometric imbedding f into Euclidean space IR 3 with standard metric 
and it is rigid. So f :  (S 2, V) --. N 3 is an affine imbedding. Suppose f l  : ( $2, V) ~ N 3 
is another affine immersion. Theorem 2 implies that it is isometric relative to 
a certain parallel pseudo-Riemannian metric ( , )  in 1R 3. This metric must be 
Euclidean to accommodate a compact surface with positive definite metric in- 
duced on it. Since one can find an affine transformation A of ]R 3 which trans- 
forms the metric ( , )  into the standard metric, it follows that A .f~ is an isometric 
immersion into •3 with standard Euclidean metric, and as such, congruent 
to f This means that f l  differs from f by an affine transformation. []  

Corollary 3. Let g be the standard Riemannian metric on S" with constant sectional 
curvature 1. For every affine immersion f:  (S", V) ~ N "+ ~, the image f (S") is an 
ellipsoid. 

Corollary 4. Let (H", g) be the hyperbolic space with standard Riemannian metric 
of  constant sectional - 1 .  Then every affine immersion f :  (H", V ) ~  IR "+ 1 is an 
isometric immersion of (H ~, g) into N" + 1 with f lat  Lorentz metric. I f  n >_ 3, f (M ~) 
is affinely congruent to one component of  the two-sheeted hyperboloid - x ~  + x~ 

2 1, x0>0.  + . . .  + x ,  ~ -- 

Remark 2. In the proof of Theorem 2, the sign of c generally depends on the 
affine immersion f 

5. Equiaffine Immersions of Compact Manifolds 

It is a standard theorem in Euclidean differential geometry that a compact 
Riemannian manifold (M", g) with negative-definite Ricci tensor cannot be iso- 
metrically immersed in a Euclidean space IN "+ 1 : any compact immersed hyper- 
surface has to be locally strictly convex somewhere and the Ricci tensor is 
positive-definite at convex points. For  affine immersions this argument does 
not apply, because convexity does not imply positivity of the Ricci tensor. For  
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example, the hyperbolic space H" can be affinely imbedded as one component 
of a two-sheeted hyperboloid. 

We can still prove 

Theorem 3. Let (M", V, co) be a compact equiaffine manifold with negative-definite 
Rieci tensor (or more generally, with nondegenerate, but not positive-definite, Ricci 
tensor). Then (M", V) does not admit an affine immersion into ]R "+ 1. 

Proof Let f :  (M", V)~IR "+1 be an affine immersion. We choose a transversal 
field to be equiaffine. As in Corollary 1 in Sect. 4, h is nondegenerate with the 
Ricci tensor. Thus viewing M" as a hypersurface in Euclidean space IR "+ 1, the 
usual second fundamental form is proportional to h and thus nondegenerate. 
It follows that M" is diffeomorphic to S", h is definite, and f (M")  is a strictly 
convex hypersurface (for example, see [-2], p. 41). By diagonalizing S relative 
to h, we see that Ric for V is positive-definite at a point where the bilinear 
form B(Y, Z)=h(SY,, Z) is positive-definite. We shall show that there is such 
a point, contradicting the assumption on Ric and thus concluding the proof 
of Theorem 3. 

From Example 5 recall that ( n - 1 ) B  is equal to the Ricci tensor of the 
conormal connection V* on M, which is equiaffine and projectively flat. Thus 
our assertion will follow from the next lemma. 

Lemma. Let V be a projectively fiat equiaffine connection on S" with volume 
element (3. Then there are points on S" where the Ricci tensor of V is positive- 
definite. 

Proof Recall that (S", [Y) is projectively equivalent to (S", V0), where V o is the 
standard affine connection (Levi-Civita connection) on S" (see, for example [3]). 
Consider S" as a unit sphere in IR "+ 1. We may obtain a centro-affine immersion 
~p: S" ~ IR" + 1 so that the induced volume element coincides with (5. The induced 
connection V* is projectively flat and coincides with g, since they have the 
same volume element. See, for example, [5], Proposition 2. 

Thus we may consider ~p: S"--->IR "+1, where the image cp(S") is star-shaped 
with respect to the origin. Let p be a point where a nondegenerate height function 
has a maximum. Then ~o(S") is strictly convex towards the origin at p, and 
thus by (11) Ric is positive-definite at p. [] 
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