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THE GREEN FUNCTION FOR UNIFORMLY 

ELLIPTIC EQUATIONS 

Michael GrHter and Kjell-Ove Widman 

The authors discuss a generalization of the usual Green 
function to equations with only measurable and bounded 
coefficients. The existence and uniqueness as well as 
several other important properties are shown. Such a Green 
function proves useful in connection with quasilinear 
elliptic systems of "diagonal type". 

O. Introduction 

In this paper we are concerned with the Green func- 

tion for the following kind of uniformly elliptic operator 

n 
(,) Lu = - Z Dj(ai3Di u) 

i,j=1 

in an open set R c IR n , n ~ 3. Here the a 13 are supposed 

to be bounded measurable functions such that the matrix 

(a ij) is uniformly positive definite in R. This concept of 

a Green function is a straightforward generalization of the 

familiar one in potential theory. 

For two reasons we only consider the case 

n s 3. The first one is that the different behaviour of the 

Green function in dimension two (there does not exist a 

Green function for R =IR 2 ) sometimes requires a different 

method. The second one is the fact that the applications 

mentioned below only treat the case of dimension at least 

three. 

In section one we give a proof of the fundamental 

existence and uniqueness theorem. Furthermore, we derive 

various interesting properties of the Green function as 

well as a series of useful inequalities. 
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2 GRUTER-WIDMAN 

Section two contains an investigation of the regular 

points for an elliptic operator as in (.), and it is shown 

that the concept of "regular point" is the same for all 

such operators. 

In the final chapter we strengthen the hypotheses on 

the regularity of the coefficients a 13, and we are able to 

prove additional estimates for the Green function and its 

derivatives in this case. 

In recent years the Green function has been usedwith 

considerable success in the theory of quasilinear elliptic 

systems of "diagonal type", c.f. [7], [8], [9], [11], 

[12], [3]. Variational inequalities can also be attacked 

by this means as is shown in [IO], [14]. Furthermore, 

these methods proved useful in the theory of harmonic 

mappings between Riemannian manifolds [5], [6]. 

The basic facts about the Green function for symmet- 

ric operators were already proved in [15] by Littman, 

Stampacchia and Weinberger. The case of non-symmetric 

coefficients, however, could not be attacked by their 

methods, while we are able to handle both cases in a uni- 

fied manner. In addition we provide complete proofs of 

various facts about the Green function, which have fre- 

quently been used in the papers cited above. In this way 

our paper may be considered as a reference for the Green 

function and its properties, so that it may become a use- 

ful tool for other authors. 

We would like to point out that most of the material 

presented here is already contained in [18], [19], [20], 

[4]. 

The first named author wants to express his gratitude 

to Link6ping University for the kindness and hospitality 

during his stay there in the spring of 1979. 

I. Existence, uniqueness and basic propertie s of the 

Green function 

In a bounded domain ~ c ~n , n ~ 3, we shall consider ellip- 

tic operators of the following type. 
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GRUTER-WIDMJIN 3 

n 

(1.1) Lu = - Z D.(ai3Diu). 
i,j=1 3 

The coefficients shall satisfy aij 6 L~(R) and there exist 

O< k~ ~ such that 

(1.2) kI~I2~ aiJ(x)~i~ j and aiJ~iD j ~ ~I~I [~I 

holds for all ~, q 6 ~n and almost all x 6 ~. The following 

theorem will be proved. 

(1.1) Theorem. There exists a unique function 

G : ~x R~]RU{~}, G>_O, such that for each y6R and any r>O 

oi 
(1.3) G(.,y) 6 HI(R~Br(Y)) n H I (~) 

and for all ~ 6 ~cc(R) 

(I .4) a(G(',y),9) = ~ (Y)- 

Here and in the sequel we use the abbreviation 

a(u,v) := laiJDiuDjv 

whenever the right hand side is defined. This so called 

Green function enjoys the following properties: 

For each y6 ~ (G(x) :=G(x,y)) 

(1.5) G6 L* n (R) with ;IGIIL, n -< K(n) k-1' 
n-2 n-2 

(I .6) ?G6 L* n (R) with IIgGIJL* n -< K(n,~,X) , 
n-1 

n-1 
~ n 

(1.7) G6 Hs(R) for each s6 [I, n--~1[. 

For all x,y6 ~ we have 

(I .8) G(x,y) -< K I (n,~/k)k -I Ix-yl 2-n; 
and for all x,y6 ~ satisfying Ix-yI_ < 1 dist(y,~) 

(I .9) G(x,y) >_ K2(n,~/k)~-I Ix-yl 2zn 

Remark. A careful inspection of the proof shows that e.g. 

in the case of a symmetric operator one can take 
n-2 

(I .10) K I (n,~/k) = K(n) (~/k) 2 (l+log(~/k)). 

The constant in the estimate from below is worse because we 

use the Harnack inequality in which the best constant is 
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4 GRUTER-WIDMAN 

c(n) l + ( ~ / k ) l / 2  

Let us at first introduce some notation and state a 

well known lemma in the form in which we are going to apply 

it. 

is always a bounded domain in ~n . n~ 3. If A is 

a measurable subset of ~n and u6 LI(A) , 

{ U := ~n (A)-I I u(x) d~n (x); 

A A 

here ~n denotes the n-dimensional Lebesgue measure. Let 

Bp(X) be the ball of radius p centered at x. 

where 

We note 

For p> I we define the Banach space L # (R) by 
P 

L*(~) := {f : ~]RU{~}, 
P 

f measurable and IIfHT,* (S?)< ~ } 
P 

I l f l l L * (a  ) :=sup t[]L n {x6 R:If(x)I>t}] I/p. 
p t>o 

(1 .11 )  I l f l lL* (e  ) 
P 

(I .12) Ilfll L 
p-g 

for 0 < s < p- I. 

-< llfll L (~) and 
P 

I s 

< (~)P-~ [In(~)] P(P-~),,fl, L. (~) 
(~) - p 

The following lemma due to Moser [16] will be used 

frequently. 

1 (1.2) Lemma. Let Us H2(~) be a non-negative subsolution 

of Lu~ O. There exists a constant K(n), such that for s > I 

and B (x)cc2 
P 

(1.13) sup u s - < ~-I K(n) u 

Bp/2 (x) B (x) 
P 

In the case of symmetric coefficients one can replace (~)n 

We are now ready to give the 
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GRUTE R-WI DMAN 5 

Proof of Theorem (1.1) 

Let y6 R be fixed. Due to the ellipticity condition 

(1.2) we may consider a(.,') as a continuous, positive def- 
oi 

inite bilinear form on H�89 x H2(R). For fixed p > O 

(Bp := Bp(y)) 

H~(~) ~ ~, > ~ 
Bp 

Ol 
is a bounded linear functional on H2(~). By the Lax-Mil- 

gram-Theorem there exists a unique function GP6 H~(R), such 
Ol 

that for all ~ s H 2(R) 

(1.14) a(GP,~) = ~ . 

B 
P 

Inserting IGPl 6 H~(R) as a test function in (1.14) we find 

(1.15) a(GP,G p) = ~G p 5 ~ IGPl = a(GP,IGPl). 

B B 
P P 

Accordingly we have for a K a I 

(1.16) a(sP,s p) = a(GP,]GPl/K) = a(]GPl/K,GP). 

We get 

(1.17) a(IGPl/K,IGPl/K) = K-2a(GP,GP)~a(GP,IGPl/K), 

(1.18) a(IGPl/K-GP, IGPl/K-G~) ~ O, 

which implies IGPl =K G p, so that 

(1.19) G p ~ O. 

We shall now give an estimate for IIGPIIL * n (R). 

n-2 

For that purpose we use for t > O as a test function in 

(I .14) ~(x) := [I/t- I/GP(x)]+:= max{O,I/t-I/GP(x)}. With 

the notation ~t := {xs : GP(x)>t} we get 

Gp (GP)-2 I (1.20) aI3DiGPDj = ~ _<~ . 

Rt Bp 

Therefore 
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6 GRUTER-WIDMAN 
% 

r lVGOl2/(GP) 2 t-lk-I (1.21) | <_ 

Rt 
Next we consider v(x) : = [log(G 0(x))- logt] +,v6 ~1(~) and 

in view of Sobolev's inequality and (1.21) we estimate 

2n n-2 
(1.22) [ I (log(GP/t))n-2 ] n < K(n)k-lt -I. 

Rt 

But this implies 

n-2 

(1.23) (log 2) 2 [~.n (R2t)] n < Kx-lt-I 

Setting s= 2t we get from (I .23) for all s>O 

n-2 

(1.24) s [~(~s)] n _< K k-1 

Thus we have shown 

(1.25) IIGPIIL * n (~) < K(n)k-1 

n-2 

To estimate the Dirichlet integral of G p we use G p as a 

test function and Sobolev's inequality 

x I IvGpI2 

(1.26) 

That is 

I aiJDiGPDjG p < = G p <_ 

B p 
2n n-2 

< K(n)p-n ( I (GP)n-2)2n pn(1- ~n2) <_ 

B p 

2-n 
< K(n)p 2 (I 'vGPI2) I/2 

(1.27) IIvGPI2 < K (n) X-2Q 2-n. 

We now give a pointwise estimate for G p 

(1.28) GP(x) _< K(n,b/k)k -I Ix-yl 2-n if !x-y I >- 2p. 

Let R := Ix-yl > 2P. First we consider the case BR/2(x)c~ �9 
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GRUTER-WIDMAN 7 

As G p is a solution of Lu=O in R~Bp, we may use Lemma 

(I .2) to get 

(1.29) (GP(x)) a _< K(a,n) K(b/k) (GP) a 

BR/4 (x) 

where we restrict a to be less than n/(n-2), so that the 

L -norm can be estimated by the L * n - norm. 
a n~- 2 

(1.30) } (Gp)a K (a,n) Ra (2-n) llGp a -< IlL* n 
BR/4 (x) n-2 

Taking into account (1.25) we have proved (I .28). If 

BR/2~ (x)~t ~ we consider a region ~ so large that 

BR/2. (x) c ~. As we may extend the operator L to ~, we 

get a function ~P. Restricting GP to R we see that 

L(GP-G p) = 0 in R. But on a~ o=GP<~ p and the maximum 

principle implies G p -< ~P throughout R. As (I .28) is true 

for ~P with the same constants we have proved it also 

for G p . 

We shall now show 

(1.31) IIvGPlIL, n (~) < K(n,b,k). 

n-1 

We choose a function ~ satisfying 9 _= I outside of 

BR, D -= 0 in BR/2 and IVq[ -~, < K 2 and insert GPq into (1.14). 

If R>4p we get 

(1.32) I IvGP,2<K(~)2 R -2 I (GP)2<K(n,~,k)R 2-n 

~B R BR~BR/2 

where we have used (I .28). If R< 4p we use (1.27) to get 

the same estimate. 
I 

For t> 0 let ~t := {x6 ~ : I VGpl > t} and R= t n-1 We 

n-2 

have t2 ] r ,  n (~2t rl ~ X B R ) E K ( n , ~ , k ) t  n - 1  w h i c h  i s  t h e  s a m e  a s  

n 

(1.33) ]L n (~tn ~\BR) _< [K(n,~,k)t-1] n-1 
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8 GRUTER-WIDMAN 

n 

Trivially ~n (Rtn BR ) S K(n)R n = [K(n)t-1]n-1 

we have proved (1.31). 

. Therefore 

Now (1.31) implies in virtue of (1.12) that we have 

n [ for each s 6 [ I 'n-~l a uniform bound on IJGPll 1 with 

~s(~) 
respect to P- Considering sequences pv-~ O and s/ ~ we 

find by a diagonal process a subsequence {G p~} of {G pv} 

n and a function G6 (R) for all s< n~1, such that 

P~ oi n 
(1.34) G .......... ~ G in Hs(~), s 6 [I, ~_i [ 

We have proved (1.7). TO show (1.4) let ~6 Cc(~). Then 

a(.,#) is a continuous linear functional on ~Is(~) for 
P~ 

n . In particular (1.34) shows a(G ,~)-~a(G,~). As S<n_ 1 

a(GP~,$) = {~-~ $(y) we have 

B 
P~ 

(1.35) I aiJDiG(x'y)Dj~ (x)d~Sn (x) = ~(y). 

As a consequence of (1.25) and (1.31) we now derive (1.5) 

and (1.6). 

The L -norms are weakly lower semicontinuous, so that 
P 

n we get (P:=~-2' O< ~ < p-l,Rt:= {x6~ : G(x) >t } ) 

P-~ GP~HP -~ < 
_< lim inf n L (Rt) - IIGII (~t) ~ P-~ 

p 
6 

(1.36) lim inf (~)(~n (~t))p P~ p-s _< fIG IIL, ~) 
~ ~ ~ P ( 

_< (~)(~u n (~t)) p (K(n)k-1) p-s. 

This implies 
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GRUTER-WIDMAN 9 

1 1 
(1.37) t(~, n (~t))P- < (~)P-& K(n)k -I. 

Letting r we get (1.5). The same argument gives (1.6). 

As consequences of (1.28) and (1.32) we get (1.8) and 

(1.38) I IVGI2-<K(n'~'X)R2-n if BR(Y)CC ~. 

~B R (y) 

P~ 
In fact in view of (1.32) we may also assume G --vG in 

H21 (~BR(Y)) , so that (1.38) follows immediately from the 

weak lower semicontinuity of the Dirichlet integral. With 

the help of Rellich's theorem we may even assume 
P~ 

G (x)-~ G(x) for almost all x6 ~. Now (1.8) is an easy 

consequence of (1.28), because G(.,y) is H61der continuous 

in ~{y}. This follows from the famous de Giorgi-Nash 

regularity theorem, because LG (-,y) = O in R\ BR(Y). 

Apart from the uniqueness and property (I .9) Theorem 

(1.1) is proved. 

We are now going to give the 

Proof of (I .9) 

For that purpose we consider any function G > O satis- 

fying (1.3) and (1.4), because we have not yet proved the 

uniqueness. 

I dist(y,%~) and r= Ix-yl. So let x,y 6 ~, Ix-y] < 

Consider a cut-off function q 6 C ~ c(~) which is one on 

Br(Y)~Br(Y) and zero outside of B3r(Y)~Br(Y) and having the 

properties O-<~-< I and IV~I _< K . Inserting G(.,y)~ as a 
r 

testfunction into (1.4) we get at once 

I I?G(z'Y) 2 d]L n (z)-<K(-~)2-!~ I G(z'y) 2d]Ln (Z) 
r 

~_Iz-yl-<r _<Iz-yl_ < 

(1.39) <K(~) 2 rn-2( sup G(z,y)2). 

r<4_ Iz-Yl<~ 

Choosing a similar cut-off function ~ which is one on 
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10 GRUTER-WIDMAN 

Br(Y) and zero outside of Br(Y) we conclude 

I = I aiJDiG(.,y)Dj~< K I ,VG(-,y) I_ < 

r< r< 2-1z-yt r 2-1z-yt-r 

(1.40) 
r_~_ I I 

< ~ K (K(~) 2 rn-2( sup G(z,y)2)) ~<_ 

r< < 23_~r 4 Iz-yl 

rn-2 <- K(n,g/X) ~ inf G(z,y) -< 
r< 
4 Iz-yl-<-- 

K(n,~/k)~ Ix-yl n-2 G(x,y). 

Here we have used the Harnack inequality. This completes 

the proof of (1.9). 

Now it only remains to show the uniqueness of the 

Green function. 

Proof of Uniqueness 

We already know that there exists one function Gz 0 

having the properties (1.3), (1.4). Let G be another such 

function. Let y s R be fixed. We write G(x) = G(x,y) as well 

as G(x) = G(x,y) and define 

(1.41) m(o) := inf G. 
~B (y) 

P 

We treat two cases seperately. 

I. There exist K,Po>O, such that p<_ Po implies re(p)>_K. 

We define a new function v p by 

inf(G(x),m(p)), if Ix-yl > p 

(1.42) vP(x) := 

m(p) , if 1 x-yl<p. 
n-2 

As the capacity of the ball of radius p is CnP , we get 

I I kcnpn-2 43) .vP>_k IvvPI2> (m(p)) 2 ( I . aiJDivPD ] 

Using (1.4) we see 
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GROTER-WIDMAN 11 

I aiJDiGDj vp I (1.44) m(p) = = ai3DivPDjvP~ kcnpn-2(m(P)) 2 

because VG = Vv p on the set where Vv p % O. 

The Harnack inequality gives for Ix-yl = p 

(1.45) G(x) ~ K(n,~/k)k-11x-y] 2-n 

If therefore c> 0 is small enough we get from (1.9) and the 

maximum principle 

(1.46) G-c G a 0 in ~. 

Let c o := sup {c : G- c G ~ 0 in R}. We have 

u := G-c G ~ O in R; let us show c = I. 
o o 

Looking again at m*(p) := inf u we have to distinguish 
~B (y) 

two cases, p 

(i) There are constants K~,p I > O, such that P~Pl implies 

m~(p) ~ K ~. The arguments used above for G apply again and 

we would have (I-c) >0 and therefore 
o 

u(x) ~K (n,~/k)~-11x-yl 2-n for Ix-yl ~ dist(y,8~). But 

this implies using (1.45) G- (Co+8)G~ 0 in ~ for some posi- 

tive 8. This contradicts the maximality of Co, so we must 

have 

(ii) There exists a sequence pv~O such that lim m*(pv)=O. 
v~ 

As u is a solution of Lu=O in ~{y} we get using the 

Harnack inequality again 

(1.47) I IVul ~ K(n'~/k)pn-lv m~(Pv)" 

~B B2pv Pv 
We now choose a cut-off function ~ equal to zero on B (y) 

P 
and equal to one on ~B~ (y). Inserting u~ as a test v 

zP v 
function we get 

(1.48) I aiJDiuDj uD = - I aiJDiuDj Du' 

B ~B 
~BPv 2Pv Pv 

which implies, again by the Harnack inequality and (1.47), 
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12 GRUTER-WIDMAN 

(1.49) I IVul2<K(n'~/k)pn-2 (m*(Pv))2 
v 

R~B2 Pv 

from which we conclude Vu= 0 in ~. Therefore G= c G from 
o 

which Co=I by (1.4) and G=G. The second case 

II. lim m(pv)=0 for a sequence pv'~ O 

leads immediately to a contradiction in the same way as 

above and the uniqueness of the Green function has been 

proved. 

As a consequence of the next theorem we get for sym- 

metric coefficients (a ij = a ji) the symmetry of the Green 

function G(x,y) = G(y,x). 

n 
(1.3) Theorem. Let L t :=-i,j=IX Dj (a jiD i) be the adjoint 

operator to L and consider the Green functions G and G t 

corresponding to L and L t. 

Then for all points x,ys ~ we have 

(1.50) G(x,y) = Gt(Y,x). 

Proof of Theorem (1.3) 

Let x,y6 R, x% y. We have sequences {Or}, {~ } tending to 

I Pv 
zero (p~,G < ~[x-y I) and corresponding functions G (.,y), 

Gtb(.,x) which converge a.e. to G(-,y) and Gt(-,x) respec- 

tively. 

Inserting them as test functions we get 

(I .51) 

Letting 

on B (x) , 

(I .52) 

Gtb(.,x ) = GPv(-,y) =: a. 

B (y) B (x) P~ ab 
Pv 

tend to zero we have (G (-,y) is continuous 

(y 

Gtb(.,x) , G t(-,x)) 

PW 
Gt(-,x) = G (x,y). 

B (y) 
P 

v 
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GRUTE R-WIDMAN 13 

As Gt(-,x) is continuous on Bpv(y) we conclude 

0v (x,y) . 
(1.53) Gt(Y,X) = lim G 

That is lim lim avb Gt(Y,X). In the same manner we get 

lim lima = G(x,y). To prove (1.50) one only has to ob- 

serve that the double sequence {av~ } converges uniformly 

in ~ with respect to v. This is true, because we can bound 

0 v t h e  H ~ l d e r - n o r m  o f  G ( . , y )  on B (x) i n d e p e n d e n t  o f  v .  

T h i s  c o m p l e t e s  t h e  p r o o f .  U s i n g  (1 . 5 2 )  f o r  0<  d i s t ( y , a a )  

a n d  ( 1 . 5 0 )  we g e t  t h e  f o l l o w i n g  r e p r e s e n t a t i o n  f o r m u l a .  

(1.4) Proposition. For any x,y6 R,p>O such that 

p< dist (y, ~) 

GP(x'Y) = i G(x,z)d~. n (z). (1.54) 

B (y) 
P 

Th~8 implies that there exist K=K(n,~/X)>O such that 

(1.55) GP(x,y) < K k -I p2-n 
-- l 

(1.56) GP(x,y) < K X -I Ix-y] 2-n 

Proof of Proposition (1.4) 

Using (1.54) and (1.8) we conclude 

(x,y) _< K k -I [ I x-zl2-nd]Ln (z) _< pnGP 

B (y) p 

_< K k -I I Ix-zl2-nd]Ln (z) = 

B (x) 
P 

2 =K k - l o  . 

TO prove (1.56) we only have to consider the case 

Ix-yl > 2p 

GP(x,y) <K X -I ~ Ix-zl2-ndILn (z) = 

Bp (y) 
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14 GRUTER-WIDMAN 

= Kk-IIx-Yl 2-n ~ /~x-ylhn-2 \Ix-zl/ d~ n (z) _< 

B (y) 
P 

~ ( ~)n-2 
_< KX-I Ix-yI2-n 1 + d]L n (z) _< 

B (y) 
P 

_< KX -I Ix_y! 2-n 

In view of (I .54), the estimates for G and the maximum 

principle we have the 

(1.5) Corollary 

There exist constants K I (n,~/k),K2(n,~/k)>0 such that 

(1.57) GP(x,y)-<K 1 G(x,y) if Ix-yl <1 dist(y,a~), 

(1.58) G(x,y) < K 2 GP(x,y) if Ix-yl > p and 

p< 1 dist(y,~). 

For the rest of this section we shall assume a certain 

regularity of the boundary a~. 

(1.6) Assumption (Exterior cone condition) 

There are numbers h> O, O< r such that the following is 

true : 

For each z 6 a~ there exists a cone C(z,h,~) with the 

property ~ n C =~, ~nC = {z}. 

Here C(z,h,~) denotes the open cone with cusp z, radius h 

and opening angle ~. 

In the proof of the next theorem we shall use 

(1.7) Lemma. Let R>O and DR:=BR(O)~C(O,R/2,~). Consider 

the weak solution UR6HI(DR ) of Ltu=O in D R satisfying 

the boundary conditions UR- I on aBR(O), 

UR=- O on aC(0,R/2,~). 

Then there are constants K(n,~,k,~)>O,a(n,~,k,~)6 ]0,1[ 

such that for xs D R 

(1.59) UR(X) -<KIxl ~ R -a. 
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GRUTER-WIDMAN 15 

Remark. This lemma is of course very well known, but it 

can easily be derived from Lemma (2.3) in section 2 of our 

paper. The exterior cone condition guarantees that all 

points of %~ are regular. 

We are now prepared to prove the following theorem about 

the boundary regularity of G~ 

(1.8) Theorem. There are constants K(n,~,k,diam ~, 8~) > O 

and a(n,~,k,~), O<a< I, such that for all x,y6 ~ 

(8 (y) := dist(y,~)) 

(1.60) G(x,y) ~K 8a(y) Ix-Yl 2-n-a 

Proof of Theorem (1.8) 

Let h=h(%R) be the height of the cone in Assumption (1.6). 

For fixed x6 ~ we consider the function G(.) := G(x,- which 

is the Green function corresponding to L t. 

We have to distinguish between four cases. 

(i) If 8(y) ~ h we use the boundedness of ~ and the upper 

estimate (1.8) for G to draw the conclusion. 

(ii) If 8(y) a Ix-yl/4 we get by (1.8) the desired in- 

equality. 

(iii) If 8(y) < h and 8(y)< Ix-yl/4< h we fix y~ 6 ~ 

with ly-y~I = 8(y) and set R: = Ix-yl/4. As ~ satis- 

fies the cone condition, we may work with the cone 

C R := C(y~,R/2,~). We apply the preceding Lemma (1.7) 

in the region BR(Y~)~C R. In ~ N (BR(Y~)\C R) we have 

LtG=O and for z 6 8BR(Y~)N ~ G(z) ~ KIx-yl 2-n, while 

GI8 ~ ~ O. As G(-) and Kix-yl2-nuR (-) are solutions 
E 

of Ltu=O in ~N(BR(Y~)~CR) and G~ Kix-yi2-nuR on the 

boundary, we get by the maximum principle and (1.59) 

(remembering the choice of y~ and R) 

G(x,y) ~K Ix-yI2-nuR(Y) ~K 8a(y)Ix-yl 2-n-a 

(iv) if 8(y)< h< 4h~ Ix-yl we fix y~ 6 8~ as before and 

set R =h . We again apply the preceding lemma and the 

same arguments as in (iii) imply 
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G(x,y) _<KIx-yl 2-n uR(Y)<Klx-yl 2-n 6S!y)h -~ 

2-n-a/diem ~>a =KS~(y) x-y ~ 

This finishes the proof of the theorem. In the next theorem 

we give a HSlder estimate, which is valid outside of the 

singularity. 

(1.9) Theorem. There are constants K(n,~,i,diam ~,SR)>0, 

a(n,~,~,~), O< ~< I, such that for all x,y,zs ~ 

(1.61) IG(x,y)-G(z,y) I ~< K I x-z I a ( I x-y 12-n-~+ I z-yl 2-n-a) . 

Proof of Theorem (1.9) 

The proof is rather lengthy because we have to treat sev- 

eral cases separately. Because of the symmetry of (1.61) 

with respect to x and z we may suppose G(x,y)>_ G(z,y). 

Case I. Ix-zl >-Ix-yl/2 

we easily get by (1.8) for each O< a< I: 

IG(x,y)-G(z,y) I = G(x,y)-G(z,y) -<KIx-yl 2-n -< 

< KIx-zl tx-yl 2-n-  < 

_< KIX-Zl a (Ix-yl2-n-a+Iz-yl2-n-a) . 

Case 2. Ix-zl<Ix-yl/2 and 8(x)-< Ix-zl 

using Theorem (1.8) we have 

IG(x,y)-G(z,y)}-<G(x,y) -< K 8S(x) Ix-yl 2-n-a -< 

_< K lx_ zls(Ix_y 12-n-a+Iz_y 12-n-a). 

Case 3. I x-zl < Ix-Y I/2 and 6 (x) > I x-zl 

We set R := rain {5(x), Ix-yl/2}. As LG (-,y)=O in BR(X) we 

derive in a standard fashion, using the Harnack inequality 

(y=y(n,~/k)) for O< o<-r-<R 

(I .62) max G(-,y) - rain G(',y) <- 
B (x) B (x) 
P P 

-< y(~)~ { max G(',y)- rain G(-,y) }, 
Br(X) Br(X) 
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which implies for p := I x-zl and r := R 

(I .63) IG(x,y)-G(z,y) I -< 71x-zlaR -a max G(.,y). 
BR(X) 

If R= Ix-yl/2 we get from (1.63) and (I .7) 

IG(x,y)-G(z,y)l- < KIx-zl a Ix-yl 2-n-a _< 

< K I x-z [a ( I x-y I 2-n-a+ I z-y ] 2-n-a) . 

If R= 5 (x) we use the boundary estimate (I .60) to get for 

z' 6 BR(X) 

S(z',y) -<K 6a(z ') Iz'-yl 2-n-a _ < 

(1.64) _<K(Iz'-xl+6(x)) a (Ix-yI- Ix-z'l) 2-n-a 

_<K 5 (x)a Ix-yI 2-n-a 

Now (1.63) together with (1.64) implies the statement of 

Theorem (1.9) . 

We now use Theorem (1.8) to show how the integrals of G 

respectively VG behave, if we approach the boundary. 

(1.10) Theorem 

n Then we have: For each ~ > 0 there (i) Let I -< p< n-2 " 

exists G' > 0 such that for all y6 ~ with 6 (y)< ~' 

I (x)< s. G(x,y) p d]L n 

n 
(ii) Let I -< p< n---~1" Then we have: 

For each ~>0 there exists e'>O such that for all 

y6 ~ with 6(y)< ~' 

I IVG(x,y)(x) < s. IP d]L n 

Proof of Theorem (1.10) 

(i) We get by (1.60) and (1.8) (d(R):=diam~) 

I G(x,Y)P = ; G(x,y)P + I G(x,y)P -< 

~'~B 5 (y) B 6 (Y) 
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~B 8 (y) B 8 (Y) 

(2-n) p < 

-< K {d(~)(2-n-a)p+n 8ap_6(2-n)p+n} +KS(2-n)p+n 

As (2-n)p+n>O we get the desired conclusion. 

(ii) By (1.6) IVGI EL ~ (~) so that using (1.12) we get n 
n-1 

for any measurable subset R' c 

(I .65) I IVG(''Y) I p 

_< K(p,n) (1[. n (~') 

n 
(~-I- P)/P P 

IIVGN L,n~1(~) 

Letting ~' = RN Br(Y) we may in 

r(G) >0 so small that 

view of (1.66) choose 

( I  .66) I I P <  s/2 I~G(.,y) 
n B r (y) 

The remaining integral is estimated in a standard way. 

I IvG(-,y) IP < 
~B r (y) 

aXB r (y) 

aXBr/2 (Y) 
p 

]< _< Kr G(x,y) ix_yL2-n 2 

Z~Br/2 (Y) 
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D 

--< Kr 2 G(-,y) _< 

if 6(y) is small enough. Here we have used (1.8) 

(1.66) and (1.67) prove the theorem. 

and (i). 

2. Regular points 

In this part of our paper we make the same assumptions 

about the operator L as before, that is (1.1) and (1.2). 

First we want to show how one can compare the Green func- 

tions for different elliptic operators. This is done in 

Theorem (2.1). After that we shall investigate the regular 

points for the elliptic operator L. It turns out that they 

are the same as for the Laplacian A. This problem was 

already investigated in Littman, Stampacchia and Wein- 

berger [15]; but as before their method only works for 

symmetric operators, while we present a proof covering 

both cases. 

Taking the estimates (1.8) and (1.9) into account we 

get the following result. 

(2.1) Theorem Let G and G' be the Green functions corre- 

sponding to the operators L and L' which are both supposed 

to satisfy (1.1) and (1.2) with constants l,V and ~',V' 

respectively. Denote by K1,K2,K~,K ~ the corresponding con- 

stants in (1.8) and (1.9). 
I 

Then we have for any x,y6 ~ satisfying Ix-yl <~dist (y,~) 

(2.1) (K21K~) (X'/~)G' (x,y) ~ G(x,y) ~ (KIlK �89 (~'IX)G' (x,y). 

Now let us turn to the definition of capacity for the oper- 

ator L. The usual definition of variational capacity does 

not apply because L is not supposed to be symmetric. Our 

definition is inspired by the theory of variational ine ~ 

qualities. 

Let E c R be compact and denote by ~E the following closed 
01 

convex subset of H2(~) 
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O l  1 
(2.2) 

~E := 
{v6H~(~) : va I on E in the sense of H~} 

We are looking for a solution of the variational inequality 

(2.3) us ~E ' a(u,v-u) ~ O for all v6 ~E " 

Standard arguments in the theory of variational inequali- 

ties show the following (c.f. Kinderlehrer and Stampacchia 

[13]). There exists a unique solution u 6 ~E of the varia- 

tional inequality (2.3). This function u is called the 

equilibrium potentia ! of E and satisfies um 1 on E in the 

sense of H~. In ~E it equals the unique solution of the 

Dirichlet problem Lu = 0 with boundary values zero on ~ 

and one on DE. 

From (2..3) we get for all ~ s C ~ c(~) with # ~O on E 

(2.4) a(u,~) ~ O . 

By the Riesz representation theorem there exists a non- 

negative measure Z with supp Z c E such that 

(2.5) a(u,9) = [ # dz 

E 

for any % 6C c(~). 

(2.2) Definition The capacity of E with respect to the 

operator L is defined as 

(2.6) FL(E) := ~(E) = a(u,u). 

01 
By continuity (2.5) is true for # 6 H2(s n C~ and we get 

for # =G p(x,-) 

(2.7) ~ u(y)dy = I GP(x'y)d~(Y)" 

B (x) E 
P 

Taking the lim inf on both sides of (2.7) we have 

(2.8) u(x) = [ G(x,y)d~(y). 

E 

The measure Z is called the equilibrium measure of E and 

because of (2.8) the name "equilibrium potential" for u is 
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justified. 
oi 

From (2.5) one has for anv #6H2(R) with #>- I on E in 
I 

the sense of H 2 

(2.9) a(u,#) >- F(E) , 

I 
and the reverse inequality if #-< 1 on E in the sense of H 2. 

This implies that if we consider the equilibrium potential 

u t of E with respect to the adjoint operator L t we get 

(2.10) FLt(E) = a(u,ut) = FL(E ) , 

which any reasonable definition of capacity should of 

course satisfy. 

Let us now show that the above defined capacity F is 

a Choquet-capacity, i.e. it satisfies the following three 

conditions (c.f. [2]): 

( i ) F(~) = O and E IcE 2 implies F(EI)<F(E2). 

(ii) For every antitone sequence {Ej} of compact 

subsets of R we have 

F(j~=~ I Ej) = j-x=lim F(Ej). 

(iii) F(E I UE2)+F(E I n E2) < F(EI)+ F(E2). 

Property (i) is obvious. To prove (ii) we note that 

(E = ~ Ej) 

j=1 F(E) -< lim F(Ej) . 
j~ 

Thus it remains to show the reverse inequality. For that 

purpose denote by u the potential of E with respect to L t 

and by uj the potential of E4 with respect to L. Choose 

~,6>O and ~ 6 Cc(~) , ~ >_ I on E, ~ s.t. II~-UNHI_<~/{(~/~)F(EI)I/2} 
L 

(if F(E 1) =O there is nothing to prove). Setting ~ = (I+8)#, 

(2.9) and (2.10) imply for j >_ jo(~,6) 

F(Ej) < a(uj,~) = (1+5)a(uj,~) = 

= (I+5) {a(uj,~-u)+a(uj,u)} 

-< (I+5){~ + F(E)}. 
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Letting j~, 6~O, ~O, we get (ii). For the proof of (iii) 

consider the potential u of E I U E 2 with respect to L and 

the potentials u 1,u 2 of E 1 , E 2 with respect to L t. From 

(2.9) and (2.10) one concludes 

F(E I U E2) + F(E I N E2) _< 

_< a(u,max(u 1,u2))+ a(u,min(u I,u2)) = 

= a(u,max(u 1,u 2) +min(u I,u2)) = 

= a(u,u1+u2) = a(u,ul) + a(u,u 2) = 

= F(EI)+ F(E 2) , 

where the inequality is due to the fact that 

F(E I N E 2) = Ft(E 1 NE 2) =a(u,v) _<a(u,min(ul,u2)) . 

Here v denotes the potential of E I N E 2 with respect to Lt, 

and we have applied the maximum principle. Therefore F is 

a Choquet-capacity. 

Finally one sees from (2.5) that one can compare the 

capacities with respect to different elliptic operators 

(2.11 XFA(E) -< FL(E) < ~c(L) F~(E) , 

where c(L)= I if L is symmetric and c(L)= b/X if L is not 

symmetric. Here F A is the ordinary capacity. 

Remark. It is easy to see that this capacity is identical 

to the "traditional" capacity 

F(E) = sup{~(E) : supp ~cE, S G(x,y)d~(y)_< I in ~} . 

v 
In fact if ~ is any such measure with potential u and u 

is the equilibrium potential of E with respect to L t and b 

its associated measure, then 

E E E 

[ u(y)dv (y) = v (E) . 

E 

The justification for the equalities is an easy exercise. 
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From now on we assume that the coefficients of L have been 

extended to a large ball B which contains ~ well in its 

interior and consider the Green function G of L on B. Fix 

x o6 a~ (we may assume Xo=O) and set for r> 0 

Cr := (~n s B R. The following lemma is the basic step in 

the proof of Theorem (2.4). 

I 
(2.3) Lemma. Consider the solution u6 H2(~) of Lu = O in 

, 0<- u<- I on a~ and u=O on as N Bp (Bp := Bp(o)). 

I 
There exist constants O< ao(n,~,k)<2 and K(n,~,k)>0 such 

that for all a <_s ~ and r< ap we have 

( 2 . 1 2 )  [ K aS F (Ct) ] sup u < exp ~--~ dt 
~DB log a 

r r 

Proof of Lemma (2.3) 

a< �89 p'-< p and v the equilibrium potential of Cap,. Let 

By (2.8) and (1.8) we get for Ixl = p' 

(2.13) v(x) _< K(n,~,k)p '2-n F(Cap,). 

As v- < I by the maximum principle, (2.13) gives for 

x 6 ~ N aBp, 

(2.14) [1-v(x)]sup u >- [1-Kp ' 2 . n  F(Cap, ) ]  u ( x ) ,  
~ n B  p' 

a n d  ( 2 . 1 4 )  i s  a l s o  t r u e  on  a S ? r l B p , ,  b e c a u s e  u=O t h e r e .  

F r o m  t h e  maximum p r i n c i p l e  we g e t  ( 2 . 1 4 )  on  s2 r/ Bp,  . By 

( 1 . 9 )  we h a v e  f o r  l x l  = 2 a p '  

( 2 . 1 5 )  v ( x )  _ ~ K ' ( a o ' ) 2 - n I ' ( e a p , ) .  

For x6 ~ n aB2ap, 

u (x) _< 

(2.16) 

(2.14) and (2.15) imply 

I-K' (ap)2-nF(Cap , ,) 
sup u 

,2-n S~NBp, 1-K p F (Cap,) 

sup u [1-K*(ap') 2-n F(Cap, 
~nB L p' 

s 
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where the last inequality is true for a ~ ao(n,~,k). 

Using the maximum principle again we get (2.16) on 

n B2ap,. Using the notation M(r) := sup u we have proved 
~nB r for t~ p, a~ a ~ 

(2.1 7) M(at) _< M(t) [I-K ~ (at) 2-n F(Cat)] 

This gives 

(2.18) log M(t) _ io~ M(at) > K ~ 
t t - an-2 ~ tn-1 

Integration from r/a to p yields 

(2.19) M(r) _<M(p) exp io~ a tn_1 dt 

r 

which implies (2.12). 

F (Cat) 

Remark. We want to indicate the proof of Lemma (1.7). 

Choose ~ = D R , p = ~ R and (2.12) gives for r<a R 

(2.20) sup u~. <- exp -K tn_1 dt . 
NB r r 

As C t is a cone of height t and fixed opening angle ~ , we 

have F(C t) ~ K(n,~,k,0)t n-2. Now (2.20) implies 

ap 

(2.21) sup UR~ exp [-~ I ~] = (r~B ~nBr L r \~/ = Kr~ R-8 " 

2 If ]xl aa ] R we use u Rs I to derive (1.60). 

Let us now state the main theorem of this section. 

!2.4) Theore M . A point of a~ is a regular point of the 

Diriehlet problem for Lu=O if and only if it is regular 

for Au = O. 

The next theorem will immediately imply Theorem (2.4). 
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.... !2"5) The~ The point x o6 ~ (we may assume x o=O) is a 

regular point for Lu=O if and only if (Cr:=(~n~R)0B r) 

i F(Cr ) (2.22) n-------~ dr = ~ . 
0 r 

Proof of Theorem (2.5) 

Necessity of (2.22) 

Suppose I F(C r) 
r n- 1 

O 

dr is finite and let ~r be the equilibrium 

measure of Cr, v r the corresponding potential. We set 

(2.23) Ar(O ) := lira r~ ~ G(O,-)d~r 
p~o C Bp 

Using (1.8) we find 

{ F(Cr) i ~r(Ct) } 
(2.24) ~r(O) _< K rn-------2 + tn_1 dt 

0 

and observing ~r (Ct) < ~t (Ct) = F (C t) we get for small r 

A 
(2.25) Vr(O) < I. 

F (C t) 
Here we used the finiteness of tn_----- ~ dt 

O 

As lim GP(O,x) = G(O,x) we get by Lebesgue's theorem that 
p~o 

f I lira GP(O,.)d~r = G (O,-)d~ r. This implies p~o 
C r C r 

A 
(2.26) Vr(O) = Vr(O) < I 

for some small r. Using Vr(O)=~i ~ inf { v r we see 

B 
P 

(2.27) ~ inf Vr(Y) -< Vr(O)< 1. 

NOW V r is a solution of Lu = 0 in ~ with v ra 0 on %~ and 

v r = I on a~ N B r in the sense of H~. 

Consider the solution u of Lu = 0 with continuous boundary 

327 



26 GR~TER-WIDMAN 

values g defined by g(x)=max f ~0,I- Ixl~ ~ for x6 8~. From 
[ r J 

the maximum principle we infer u-< v r in ~ . But the bound- 

ary value one at O is not attained by (2.27) and therefore 

the origin is an irregular point of a~. 

Sufficiency of (2.22) 

It is well known that it is sufficient to show the exist- 

ence of a barrier u satisfying: 

(2.28) u6Hl(~) , Lu = O in ~; 

for any r>O there exists ~> O, such that 
(2.29) 

u > _ ~ on a~B r in the sense of HI; 

(2.30) lira u(y) = O. 
y~o 

Let p+O and consider the equilibrium potential v of Cap 

(s ~ n O). From Lemma (2.3) applied to 1-v we infer for 

x6~nB 2 : 

p [ r(c t)tnl ] (2.31) 1-v(x) _<exp L-K dt 

Ixl 

For I xl = p we get for a small enough observing 

F (Csp) -< K(sp) n-2 

(2.32) v(x) _<K n-2< I/2. 

Now let u be the solution of Lu = O with boundary values 

Ixl. Because of (2.32) we have 

u(x) -< 2 diam ~ (1-v(x)) on ~ N ~B 
P 

(2.33) u(x) -< p on ~ n B 
P 

in the sense of H I . The maximum p r i n c i p l e  and  (2.3~I) y i e l d  

2 

(2 .34 )  u(x)_< p + 2 d i a m S 2 e x p  -K t n _ l  d t  

for x6 ~ n Ba2 p . Now condition (2.22) shows 

(2.35) lira sup u(x) -< p. 
~ 9 x~O 
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As (2.28), (2.29) are naturally true for u and (2.30) fol- 

lows from (2.35) and the arbitrariness of p, we get 

Theorem (2.5). 

We have the following 

(2.5) Corollary. Condition (2.22) of Theorem (2.5) is 

equivalent to 

2v (n-2) (2.36) E F(C ~C CO 

~=I 2 -v 2 -~-1) 

Proof of Corollary (2.5) 

Using the fact that F(Ct)~ Kt n'2 and a subdivision of the 

intervail [O,1] we see that (2.22) implies 

co 

(2.37) E 2~(n-2){F(C ) - F(C 
~=I 2 -~ 2 -~-I ) } = 

Using the subadditivity of F (2.37) gives (2.36). To show 

that (2.36) implies (2.22) we estimate 

2-N 
[ F(Ct) I ~ 2v (n-1)-~F 
j tn_------ ]- at >_ ~ E (c2_v_ I) >_ 

v=N 
0 

K ~ 2 ~(n-2) F(C _v) 
v=N+2 2 

Kv=N+2~ 2 v(n-2) F(C2_ ~C2_v_ 1) 

Remark. In the case of the Laplace operator condition 

(2.36) is the famous Wiener criterion. 

Proof of Theorem (2.4) 

By (2.11) we have k ~ FL/F A S ~(~/k). 

proves Theorem (2.4). 

Theorem (2.5) now 
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3. The case of re@u!ar coefficients 

In this section the assumptions about the operator L will 

be the same as in section I. Moreover we shall assume that 

the coefficients are Dini-continuous which will enable us 

to derive some more pointwise estimates for the Green 

function and its derivative. 

So we shall consider coefficients which satisfy 

(3.1) laiJ(x)-aij(y)I ~ e(Ix-yl) for any x,y E ~. 

Here ~ :~+ ~ ~+ is supposed to be non-decreasing and to 

satisfy 

(3.2) ~(2t) 5K ~(t) for some K>O and all t>O, 

I~ (t) (3.3) ~ dt < 

O 

Remark. In particular H~Ider coefficients, where ~(t)=Kt a, 

O< a< I, are allowed. 

We shall first prove two lemmas. 

(3.1) Lemma. Suppose u is a bounded 8olution of Lu=O in ~. 

There exists K(n,~,k,~,~) >0 8uoh that for any 

x6 R (8(x):=dist(x,~R)) 

(3.4) Ivu(x) I <_ K 8 -l(x)suplu I. 

Proof of Lemma (3.1) 

We note that under the regularity assumptions u E C oc(~). 

By considering a slightly smaller domain we may assume 

sup 8(X)IVU(X) I =: M 1 <~ " Let Mo:=SUp lUl and 
x6~ 

choose x 0 6 R such that 5(x O) IVU(Xo) I > �89 M I. For 

d~ z~8(Xo) we define a cut-off function ~ ~ O on Bd(X O) which 

is one on Bd/2(x O) such that I?ul ~ Kd -1 and IV2ul s Kd -2 . 

Let F be the Green function of the operator with constant 
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coefficients a13o := al3(xo) in Bd(X O) . For ys Bd:=Bd(X O) 
we use ~F(.,y) as a test function to get 

0 = ; aiJDiuDj(NF) = ; aoJ DiuDjF~ + I aoJDiuDjN F + 

B d B d B d 

+ I (aiJ-a~J)Diu(Dj F~ +Dj~ F)= 

B d 

= u(y)~(y)+ I a ij DiuDj~F-; a ij Di~DjFu + 

B d B d 

(3.5) + [ ij ~ij 
(= -=O )DiU(DjFD + DjqF). 

B d 

Differentiating (3.5) with respect to y and setting y=x ~ 
we see 

VU(Xo) = I aoiJDi D VyDjF(.,Xo)U - I aiJDiuDjNVyF(.,Xo) 

B d B d 

(3.6) - I (aiJ-aoJ) Diu (VyDjF ( " ' Xo) ~+DjDVyF ( " 'Xo ))" 

B d 

An integration by parts shows 

f ~ j aoJ DiuDjDVyF(',x o) = 

B d 

(3.7) = I a~Ju(DiDj ~ VYF(''Xo)+Dj~DiVyF(''Xo))" 
B d 

Using known inequalities for F (Widman [13]) we can con- 
clude from (3.6) and (3.7) 

d 
(3.8) IVU(Xo) I < K Mod-1+KM16(Xo )-I I ~(t) - -~---dt. 

O 
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In view of the choice of x O (3.8) in turn gives 

d 
8 (x o) I 

(3.9) M I _ < K M O ~ + K M I e(t)t dt. 

0 
d I~ (t) 

Setting do:=SU p {d I K T dt 5 I/4} = do(n,~,k,~) which 

0 

is possible by (3.3) and choosing d:=inf{~(Xo),d O} , 

(3.9) implies 

8(x o) 
(3.10) M I ~ K MO ---~---- ~ K M o sup{2,diam ~/do}. 

This proves Lemma (3.1). 

(3.2) Lemma. Let u be the solution of the Dirichlet problem 

Lu = 0 in Dr:=B2r~Br (r~ I) with u=O on ~B r and u= I 

on ~B2r. There exists K(n,b,k,~) > 0 such that for any 

x6D 
r 

K 
(3.11) I Vu(x)J S~ 

Proof of Lemma (3.2) 

We shall assume u6 CI(Dr ) , which can be proved directly. 

Furthermore, we only have to consider the case r = 1, 

because the general case is reduced to this by a homothety 

(here one uses the monotonicity of e). 

Let M := sup I? u] and choose x 6 D such that 
D o 

- �89 C ~ IVU(Xo) l > M. Choose a cut-off function ~ 6 c (Bd(Xo)) 

with ~ ~ I ~~ Bd/2(xO), I vgl ~ Kd -1 and I72~I ~ Kd-2" The 

number d ~ will be determined later. 

We may assume u~ = 0 on 8D. In fact this is obvious 

if IXol ~ . If IXol > ~ we consider (l-u) instead of u. 

This is a solution of the same equation but with boundary 

values one on 8B I and zero on %B 2. We again have 

supIV(1-u) I = M and IV(l-u)(Xo)I ~ �89 M. 
D 
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Let F be the Green function in D corresponding to the 

operator with coefficientSaoJ- := a i3" (x o). For y6 D we 

insert ~F(-,y) as a testfunction and get as in the proof 

of Lemma (3.1) 

I " u(y)q(y) = aSH u(DiDj~F(.,y)+DjnDiF(-,y)) 

D 

(3.12) + I a~ F(''y)DiD - 

D 

j .... 
- ( a i 3 - a ~ J ) D i u ( D j F ( ' , y ) ~  + njnF(',y)). 

D 

If we differentiate (3.12) with respect to y, set y=x ~ and 

estimate the remaining terms in the s~e way as in the 

proof of Lemma (3.1) we end up with 

d 

(3.13) ~M ~ IVU(Xo) l ~ Kd-I+KM dt. 

0 
d 
I ~(t) 1 Now choose d=d ~ (n,b,k,~) such that K ~ dt~ ~ . 

0 

Now (3.13) implies the statement of the lemma. 

For the next theorem we assume that the domain R satisfies 

an exterior sphere condition uniformly. 

(3.3) Theorem 

Let ~ be as above and suppose that L satisfies (1.1), 

(7.2), (3.1)-(3.3). Then for the corresponding Green func- 

tion G the following six inequalities are true for any 

x,y 6 ~ (5(y):=dist(y,~)). 

(i) S(x,y) -< Klx-yl 2-n, K=K(n,b,k) 

(ii) G(x,y) _ < K 5 (x) Ix-yl l-n, K : K(n,b,k,e,~) 

(iii) S(x,y) -% K 6 (x)5 (y) Ix-yl-n 

(iv) IVxC(• J < ~Ix-yl 1-n 

(v) IVxG(x,y) I _< KS(y)Ix-yl -n 

(vi) IVxVyG(X,Y) I<KIx-Yl -n 
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Proof of Theorem (3.3) 

(i) was proved in section I. 

(ii) is proved in the same way as Theorem (1.8). One only 

has to use the annuloid domains and Lemma (3.2) in- 

stead of Lemma (1.7). We remark that (3.2) is needed 

to extend L to a neighbourhood of 2. 

(iii) is deduced from (ii) exactly as (ii) from (i). 

(iv) If 8(x) ~ Ix-yl apply Lemma (3.1) to G(.,y) in the 

ball B I (x) and use (ii). If !x-y I < 8(x) apply 
58 (x) 

Lemma (3.1) in B I (x) and use (i). 
~Ix-yl 

(V) The proof is exactly the same as for (iv) the only 

difference being that one uses (iii) instead of (ii) 

and (ii) instead of (i). 

(vi) We first note that for fixed x6 ~ VxG(X,.) is a 

solution of Lu = O in ~ {x}. NOW (vi) follows from 

(iv) and (v) as (iv) was implied by (i) and (ii). 

The theorem is proved. 

We shall now consider the Green function in more special 

situations which are useful for applications. 

(3.4) Theorem 

Let ~ be convex and suppose that L satisfies (1.1), (1.2). 

Denote by G the corresponding Green function. 

( i ) There is a constant K(n,p,k) >O and a number 

O< a(n,~,k)< 1 such that for any Xl,X2,YEs 

2 2-n-a 
(3.14) IG(x],y)-G(x2,Y) I ~ KlXl-X2 la X ~xi-Yl 

i=I 

(ii) If L additionally satisfies (3.])-(3.3) the constants 

in (ii), (iii) of Theorem (3.3) depend only on n,b,k,~, 

while the constants in (iv)-(vi) of Theorem (3.3) also 

depend on diam ~. 

Proof of Theorem (3.4) 

If ~ is convex one may take a cone (a ball) of arbitrary 

height (diameter) and arbitrary opening angle. A careful 
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inspection of the proofs of Theorem (1.8), (1.9) and (3.3) 

then implies the statements of Theorem (3.4). 

In the following theorem we prove H~ider-continuity of the 

gradient of the Green function using a method of 

Campanato [I]. 

(3.5) Theorem 

(i) Let R*>O and DR.(O) := {xE ]Rn : Ixl <R*, xn>o} and 

suppose L satisfies (1.1), (1.2). Assume that the 

coefficients of L are H~lder continuous with exponent 

a 6 (0,1) and denote by [a ij] the HUlder-semi- 
O, a,DR* 

norm. 

If x 1,x 2 6 DR, N BR,_.~, O < �9 _<R*/2 then for all y 6 DR* 

2 1 -n-a 
(3.15) I 7xG(X 1,y)-V xG(x2,Y)l <- K*IXl-X21a Zllxi-Yl.= , 

where K* = K * ( n , ~ , k , a , [ a  13]o,a,~R,,[al3]o,a,~R * R * a , R ~ / ~ ) .  

(ii) If ~ has a C1'a-boundary and L is as in (i) we have 

for any Xl,X2,Y6 ~ the estimate (3.15) with 

K* = K*(n,~,i,a,[a ij] o,a,~, diam s 

Proof of Theorem (3.5) 

We shall only give the proof of (i), because it contains 

the essential arguments needed for the proof of (ii), 

c.f. [1]. 

Assume w.l.o.g. [y-x I I -< ly-x 21 and set 

5R :=min{ly-x21 ,~}, u(z) :=G(z,y) . 

Let us first consider the case IXl-X2J > R. Then (iv) of 

Theorem (3.3) (denote the constant by KI) yields 

[gU(Xl)-Vu(x 2) ] -<K I (]xl-yll-n+lx2-y]l-n) _< 

I x2-Y I a 2 1-n-a -< K I Z ] x i - Y ]  < 
i=1  

2 I - n - a  
< K15a]x1-x2 ]~ Z ]xi-Yl 

i=I 
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if ly-x 2 I < ~. If ~_< ly-x21 we get the estimate 

2 
IVU(Xl)-Vu(x 2) I -<K 1 (2R*-'~) ~ Z Ixi-Yl 1-n-(~ _< 

i=I 
2 I -n-~ 

- KI 5~(2R*--c 1)~IXl-X2 I~ Z Ixi-Y I 
i=I 

Let now be 

nuity of ?u on DR~ n BR(X 2). 
<R 

Consider x o6 DR~ N BR(X 2) and ~_~. 

If BR/2(x o) C DR~ we proceed as follows. 

By (iv) of Theorem (3.3) we get 

IXl-X21 <R. We are going to prove H~ider-conti- 

n/2 
(3.16) llVull 2 -< cK1 ~ sup 

L (B (Xo)) z 6 B (x o) 

< cK I n/2 R1-n , 

1-n 
Iz-yl _< 

>7 
because z 6Bo(x O) implies Iz-yl > 5R-R-o_~ R. 

Here and in the sequel c denotes a constant depending only 

on n,~,X and sometimes on ~. Let v be the solution of the 

Dirichlet problem 

-Dj[aiJ(xo)Div] =O on B (Xo), 

~ (Xo)) - v-u 6 H 2 (B 

Then we have, e.f. [I], for O<t<1 

IVvl 2 ! c t n I 
Bto(x o) Bo(x o) 

Ivvl 

and 

(3.17) 
t 2+1 

<_ c Ilv- (vv)oll 2 
llVV-(VV) tallL2(Bt~(Xo)) (B (Xo)) 

where ( )p denotes the mean value over Bp(X o) R DRY. 

Using the H~ider-continuity of the coefficients 
(A := sup[a ij] ~ i,j o,~,~R~! we get for w :=u-vEH2(B (Xo)) 

(3.18) IIvWIIn2 _< c A o~IIVUI!L2 <- 
(B ~ (Xo)) (B~ (Xo)) 

n+= 

<- c A K I o 7 R 1-n. 
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(3.17) and (3.18) imply for O<t<1 

n 
+I ~+~ 

IlVu- (Vu) tolIL2 < C t llVu- (VU)olIL2 +Bc~ , 
(Bto (Xo)) (B o (Xo)) 

where we have set B := C K I s R 1-n 

n = n pllL 2 Defining ~ =~+ ~, 7 ~+ I and ~(p) := p-~IIvu-(vu) 
(B (Xo)) 

R we have shown for o_<~, O<t<1 

t ~ 9(to) _< Ct79(o) +B . 

An elementary but important lemma, c.f. [1]~then implies 

~(to) -< C~ (o) + ~(C,~)B . 

Setting o=R/2, p := to we get using (3.16) 

_n+~ _ (2+~) 
<- C p2 {R IlVu-(VU)R/211L2 

II vu- (vu) pllL2 (Bp (Xo)) (BR/2 (Xo)) 

+ K I A R l-n} 

2+~ - (2+a) I -n 
(3.19) _< Cp {R CK I R 2+K I AR l-n} 

-< CK I {I +A R a} R 1-n-a P 

If on the other hand p_>R/2 we get again by (3.16) 

llvu-(vu) 

(3.20) 

IIL2 P (B P (Xo)nBR(X2)nDR,) -< II VUrlL2 (BR(X2)) P 

n _ (2+~) 2+ a p7.+ a I -~- 
_< C K I R R = C K I R 1-n-~ P 

Let us now treat the case BR/2 (Xo)4:DR, and introduce 

I n-1,Oi. If o_<o = xn< R/2 we proceed as Xo := (Xo'"" IXo o o 
above and get for p< o 

o 

IS§ 
IlVu-(VU) plIL2 (Bp(Xo)) -< C p {G O IlVu-(VU)ooHL2(B ~ (Xo)) 

(3.21) + KI A R1-n}. o 
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If a ~ ~ o~ R/2 we have Ba(Xo) D DR, cD2a(~o) CDR,. 

As in (3.16) we get for any a ~ R/2 
n 

< CK I (2o) 2 Rl-n 
(3.22) [[ VUlIL2 (D2r (~o)) _ 

because z 6 D2a(~ o) implies Iz-y[ ~ 5R/2. 

�9 ~ 

Let v be the solution of -Dj[ al3(~o)Div] =O onD2a(Xo), 
01 

w :=u-v6 H 2(~a(~). For v we have the estimates, c.f. [I], 

for O<t<1, 

n-1 ~ ID~vI2 ~n + n-1 I IDr vi2 (3.23) x c 2 _< y , 

~=I Dt(2a)(X O) ~=I D2a[~ O) 

(3.24) ; ID Vl 2 -< C t n ~ IDnVl 2 , 
Dt (2a)(~o) n D2a (~o) 

(3.25) (~O) I DnV- (DnV) t (2~) 12"-<c t n+2 ; I DnV- (DnV)2(J 2- 
Dr (2o) D2~ ~o ) 

For w we get as in (3.18) 

(3.26) ; IVwl 2 _< C A 2 K12 (2~)n+2a R2(1-n) 

D2a (Xo) 

Now (3.23) and (3.26) imply for O<t<1 

(3.27) 
n-1 2 C t n+2 l ; I D~vl -< 
~=I Dt (2~) (Xo) 

n-1 
~i ; ID~Ul 2 + B(2a) n+2a , 

e=1 D2(~ O) 

where B C A 2 2 R 2(I-n) = K I 

Because of (3.25) and (3.26) we get for O<t<1 

(3.28) IDnU-(D u)t(2o)l 2 ct n+2 
Dt (2~) Do) 

I DnU-(DnU)2J 2+B 
D2( ~ (Xo) 

where we may take the same B as in (3.27). 
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If ~ :=n+2~, y := n+2, e(p) := p-~ n-Ix L ID~ul 2 and 
Z=I D (Xo) P 

@(P):=P-~ I IDnU- (DnU) I 2 we have shown, O<t<1, a~R/2, 
D (Xo) P 
P 

and 

t ~ ~(t(2o)) _< Ct Y 9(2a) +B 

t ~ ~/(t(2o)) _< Ct Y @(2a) +B . 

From this we conclude as above 

~(t(2a)) 5 C 9(2a) + ~ B 

and an analogous inequality for @. 

Setting a = R/2, 2p := t(2a) we get from this 

i IVu_(VU) 2pl2 < n-1 I _ X ID3ul 

-- ~=I (~o) D2p(X o) D2p 

2 + 

I_ I DnU- (DnU) 2p 
D2p (x o) 

2 
I -< 

(3.29) -< C(2p) n+2~ { R-(n+2~) I_ IVul 

DR(X o ) 

2 +B}_ < 

< CK~p n+2a { R- (n+2~) RnR 2 (l-n) +A2R2(I-n) } = 

= CK~ { I + A2R 2~ } R 2(I-n-~) pn+2a 

If p>_a ~ we have Bp(Xo)NDR, CD2p(Xo ) and (3.29) yields 

(3.30) iiVu_(VU) pllL2 _<CKI{I+AR~}RI-n-~pn/2+a 
(B (Xo)DDR,) P 

Together with (3.21) this implies (3.30) for any O<p~R/2. 

Now (3.19), (3.20) and (3.30) imply, c.f. [I], 

(3.31) [VU]o,~,BR(X2)ADR, -< CK 1 { I +A R ~ }R 1-n-~ 
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Thus we may conclude 

(3.32) 

2 
If 5R=lx2-Yl we g e t  Rl-n-cC_<C E Ixi-YZ 1-n-el 

i=1 
if 5R=~ we get R~=CT ~ , R1-n-a=C~1-n-~ and 

2 
I -n-~ I -n-~ 

I xi-Yl >_ (2R*-~) 
i=I 

Altogether we get (3.15) with 

I Vu (x I ) - ?u (x 2) I -< CK I { I + AR ~ } R I -n-e ix I -x2 I ~ 

, Ra~C(2R*-T)~; 

K* = CK I { I + AR *~ } (2R*/~-I) n-1+~ , 

where K I may be estimated by KI~C(n,b,X,~,A,AR~) 

and C=C(n,b,k,~). 

This finishes the proof. 

References 

[1] S. Campanato: Equazioni ellitiche del II ~ ordine e 

spazi L (2'h) . Ann. di Mat. Pura e Appl. 69, 
321 -381 (1965) 

[2] J. Frehse: Capacity Methods in the Theory of Partial 
Differential Equations. Jber. d. Dt. Math.-Verein 84 
(1982), 1-44 

[3] M. Giaquinta et S. Hildebrandt: Estimation ~ priori 
des solutions faibles de certains syst~mes non 
lin~aires elliptiques. Seminaire Goulaouic-Meyer- 
Schwartz 1980-1981, Expos~ n ~ XVII. Ecole poly- 
technique, Centre de math~matiques, Palaiseau 

[4] M. Grater: Die Greensche FunCtion fur elliptische 
Differentialoperatoren mit L -Koeffizienten. Diplom- 
arbeit, Bonn (1976) 

[5] 

[6] 

[7] 

S. Hildebrandt, J. Jost and K.-O. Widman: Harmonic 
mappings and minimal submanifolds. Inventiones 
math. 62, 269-298 (1980) 

S. Hildebrandt, H. Kaul and K.-O. widman: An exist- 
ence theorem for harmonic mappings of Riemannian 
manifolds. Acta math. 138, 1-16(1977) 

S. Hildebrandt and K.-O. Widman: Some regularity 
results for quasilinear elliptic systems of second 
order, Math. Z. 142, 67-86 (1975) 

340 



[8] 

[9] 

[ lO] 

[11]  

[12]  

[13]  

[14] 

[15] 

[ 16] 

[ 17] 

[18] 

[19] 

GRUTER-WIDMAN 39 

S. Hildebrandt and K.-O. Widman: On the HSlder con- 
tinuity of weak solutions of quasilinear elliptic 
systems of second order. Ann. Scuola Norm. Sup. Pisa 
(IV), 4, 145-178 (1977) 

S. Hildebrandt and K.-O. Widman: S~tze vom Liouville- 
schen Typ f[r quasilineare elliptische Gleichungen 
und Systeme. Nachr. Akad. Wiss. G~ttingen, II. Math.- 
Phys. Klasse, Nr. 4, 41-59 (1979) 

S. Hildebrandt and K.-O. Widman: Variational inequal- 
ities for vector-valued functions. J. reine angew. 
Math. 309, 191-220 (1979) 

P.-A. Ivert: A priori Schranken for die Ableitungen 
der L6sungen gewisser elliptischer Differential- 
gleichungssysteme, man. math. 23, 279-294 (1978) 

P.-A. Ivert: Regularit~tsuntersuchungen yon L~sungen 
elliptischer Systeme yon quasilinearen Differential- 
gleichungen zweiter Ordnung. man. math. 30, 53-88 
(1979) 

D. Kinderlehrer and G. Stampacchia: An Introduction 
to Variational Inequalities and Their Applications. 
New York-London-Toronto-Sydney-San Francisco. 
Academic Press 1980 

H.-Lewy and G. Stampacchia: On the regularity of the 
solution of a variational inequality. Comm. Pure 
Appl. Math. 22, ]53-188 (1969) 

W. Littman, G. Stampacchia and H.F. Weinberger: 
Regular points for elliptic equations with discon- 
tinuous coefficients. Ann. Scuola Norm. Sup. Pisa 
(III), 17, 43-77 (]963) 

J. Moser: On Harnack's theorem for elliptic differ- 
ential equations. Comm. Pure Appl. Math. 14, 577- 
591 (1961) 

K.-O. Widman: On the boundary behaviour of solutions 
to a class of elliptic partial differential equation~ 
Ark. f~r Mat. 6.26, 485-533 (1966) 

K.-O. Widman: The singularity of the Green function 
for non-uniformly elliptic partial differential 
equations with discontinuous coefficients. Uppsala 
University, Department of Mathematics 12 (1970) 

K.-O. Widman: Regular points for a class of degen- 
erating elliptic partial differential equations. 
Uppsala University, Department of Mathematics 29 
(1971) 

341 



40 GRUTER-WIDMAN 

[20] K.-O. Widman: Inequalities for Green functions of 
second order elliptic operators. Link~ping University, 
Department of Mathematics 8 (1972) 

Michael Grater 
Mathematisches Institut 
der Universit~t 
Universit~tsstr. I 
D-4OOO D~sseldorf 

Kjell-Ove Widman 
R~hrliberg 36A 
CH-6330 Cham 

(Received September i0, 1981) 

342 


