manuscripta math. 44, 71 - 93 (1983)

HOMOLOGICAL AND TOPOLOGICAL PROPERTIES OF LOCALLY INDICABLE GROUPS

James Howie and Hans Rudolf Schneebeli

The classes of locally indicable groups, conservative groups and D-groups have each been defined in a different context, and have been studied for various reasons. These three classes are shown to coincide. The corresponding mod p versions of the classes are also shown to coincide, for any prime p. Applications to topology are given. In particular, new light is shed on work of Adams on a problem of Whitehead concerning asphericity in 2-complexes.

i. Introduction

The object of this paper is to show that three group-theoretic notions, which have arisen independently in different contexts, are in fact equivalent. This equivalence sheds new light on the work of Adams $\begin{bmatrix} 1 \end{bmatrix}$ on Whitehead's problem about aspherical 2-complexes, and on other related topics.

The first notion under consideration is that of a (locally) indicable group, which was introduced by Higman in his work $[8]$ on the zero-divisor and unit problems for group rings. Let R be Z or \mathbb{F}_{x} . P We then call a group G R-indicable if R is a homomorphic image of G. A group is locally R-indicable if every nontrivial finitely generated subgroup is R-indicable. Let LI(R) denote the class of locally R-indicable groups. We also refer to (locally) Z -indicable groups as (locally) indicable, and write LI for LI(2).

The second notion is that of a group conservative over an abelian group A, defined by Adams $\begin{bmatrix} 1 \end{bmatrix}$ as follows. A G-covering is a regular covering of 2-complexes whose group of covering transformations is isomorphic to G. A group G is conservative over A if $H_2(K,A) = 0$

71

whenever $\tilde{K} \rightarrow K$ is a G-covering such that $H_o(K,A) = 0$. A group is conservative if it is conservative over every abelian group A. Let C and C(A) denote the classes of conservative groups and groups conservative over A, respectively.

The third notion is that of a $D(R)$ -group, where R is a commutative ring with 1. In $[17]$, Strebel defines a group G to be in the class $\underline{D}(R)$ if the functor R \otimes_{RG} - detects injective homomorphisms between projective RG-modules. That is, whenever $\phi : M \rightarrow N$ is an RG-homomorphism between RG-projectives, such that (1 θ ϕ) : R θ_{RG} $M \rightarrow R$ θ_{RG} N is injective, then ϕ itself is injective. As Strebel points out, it is sufficient that the above property hold when M and N are free of finite rank. If $G \in D(R)$ for all R, then we say $G \in D$ or G is a D -group.

Locally indlcable groups have recently been shown to be of interest in connection with equations over groups and 1-relator products $\begin{bmatrix} 5, 7, 11, 12, 14 \end{bmatrix}$. Conservative groups have been studied in $[6]$, under a slightly different, but equivalent definition. The properties of D-groups have been applied to various problems in $[4]$ and [17].

The equivalence between $D(R)$ and $LI(R)$ has been discovered independently by Gersten [7]. His methods rely on tower constructions [ii] and cyclic covers.

Our results are as follows.

1.1. Comparison and reduction

THEOREM 1 The classes $LI(R)$, $C(R)$ and $D(R)$ coincide for $R = \mathbb{Z}$ $or R: F_p.$

With the help of this theorem we show how to relate the classes $C(A)$ and $D(R)$ for any abelian group A and commutative ring R with 1, to the classes $\underline{L}\underline{I}$ and $\underline{L}\underline{I}(\mathbb{F}_{n})$.

THEOREM 2 (i) If $A = 0$, then $C(A)$ is the class of all groups.

(ii) If A is a torsion group, the orders of whose elements involve only finitely many primes p_1, \ldots, p_n , then $C(A) = \int_{A}^{B}$ (iii) Otherwise C(A) = LI $i=1$ -1

THEOREM 3 (i) If R has characteristic 0 , then $D(R) = LI$.

(ii) If R has characteristic $n > 0$, then

$$
\underline{\mathbf{D}}(\mathbf{R}) = \bigcap_{\substack{\mathbf{p} \text{ prime} \\ \mathbf{p} \mid \mathbf{n}}} \underline{\mathbf{L}}(\mathbf{F}_{\mathbf{p}}).
$$

REMARKS 1 If R_1 and R_2 are rings whose additive group structures are isomorphic, then $D(R_1) = D(R_2)$.

2. Clearly LI \subset LI(IF_p) for all p. It follows that LI = C = D.

1.2. Applications

For any group G let $r(G)$ denote the union of all the finitely generated, nonindicahle subgroups of G. Then r(G) is a fully invariant subgroup of G, which we call the locally indicable residual of G. An equivalent definition of r(G) is that it is the smallest normal subgroup N of G such that G/N is locally indicable.

A 2-complex X is called almost acyclic if $H_2(X, \mathbb{F}_p) = 0$ for every prime p, or equivalently if $H_2(X) = 0$ and $H_1(X)$ is torsionfree [9]. The class of almost acyclic 2-complexes is denoted P in [6].

PROPOSITION 3.1. Let $\tilde{X} \rightarrow X$ be a regular covering of 2-complexes such that \tilde{X} is almost acyclic. Then cd $(\pi_1(X) / r(\pi_1(\tilde{X}))) \leq 2$.

COROLLARY 3.2. Let A be any finitely generated central subgroup of $\pi_1(X)$. Then there exists a finitely generated perfect subgroup P of Γ_1 (X) such that A/ (A \cap P) is free abelian of rank $\rho \le 2$. The group P can be chosen so that $\rho = 0$ unless $[\pi_1(X), \pi_1(X)]$ / $r(\pi_1(\tilde{X}))$ is free, and so that $\rho \leq 1$ unless $\pi(0)$ / $r(\pi(0)) \geq 2 \times 2$ and $\pi(0)$ / $\pi(0)$ is infinite.

These results apply in particular in the case where X is a subcomplex of an aspherical 2-complex Y. Then $\pi_1(\tilde{X})$ can be taken to be the kernel of $\pi_1 X + \pi_1 Y$, and it is conjectured that $r(\pi_1 X) = 1$. These results should be compared with $[4]$, Theorem 3.6. and Corollary 3.7.

An RG-module M is perfect if R \mathcal{B}_{RG} M = 0. In general it is not known whether nonzero finitely generated perfect projective 2G-modules exist. Note that no finitely generated perfect projective 2G-module is stably free.

In contrast, for any group G containing a nontrivial, finitely generated, perfect subgroup, methods of $\lceil 21 \rceil$ can be used to construct a nonzero, countably generated, perfect projective ZG-module.

COROLLARY 3.4. (a) If every nontrivial, finitely generated subgroup of G has a proper subgroup of finite index, then there are no nonzero, finitely generated, perfect projective ZG-modules.

(b) If G has a transfinite subnormal series

 $G = G_p \triangleright G_1 \triangleright ... \triangleright G_q \triangleright G_{r+1} \triangleright ...$ such that $\bigcap G_q = \{1\}$ and each quotient $G_{\alpha+1}$ is locally p_{α} -indicable for some prime p_{α} , then there are no non-zero perfect ZG-projectives.

REMARK The best-known example of a group which does not satisfy the hypotheses of Corollary 3.4. (a) is Higman's group

G = $\langle a, b, c, d \rangle$ $a^2 = a^b, b^2 = b^c, c^2 = c^d, d^2 = d^d$. However, results of Waldhausen [19] show that finitely generated 2G-projectiyes are stably free, so in particular there are no nonzero, finitely generated perfect ZG-projectives.

These results are related to $[4]$ via the notion of a Cockroftproperty for n-complexes. We say that a connected n-complex X is Cockroft if $\pi_1(X) = 0$ for $2 \le i \le n$ and the Hurewicz map $\pi_n(X) \rightarrow H_n(X)$ vanishes. For n = 2, this notion was introduced in [3].

THEOREM 3.5. Let X be a Cockroft n-complex such that $cd(\pi_{\mathcal{N}}(X)) \leq n$. Then $\pi_n(X)$ is a perfect projective $2\pi_1(X)$ -module. If in addition π ₁(X) has a subnormal series as in Corollary 3.4. (b) above, then X is aspherical.

We are grateful to K.A. Brown, P. Linnell and R. Strebel for various comments and suggestions which have enabled us to make several improvements to the paper, and to eliminate a number of errors.

2. Proofs

Subsection 2.1. is devoted to proving $D(R) = LI(R)$ and 2.2. to proving $\underline{D}(R) = \underline{C}(R)$, where R is either \underline{x} or \mathbb{F}_p for some prime p. The proof of Theorem 1 is presented here as a chain of Lemmas. In 2.3. below we prove Theorem 2 and in 2,4. we prove Theorem 3.

2.1. Equivalence of $D(R)$ and $LI(R)$.

For the case R = \mathbb{Z} , Strebel proved in $[17]$ that $D(R) \subset LI(R)$. His arguments remain valid also for the case R = $\mathbb{F}_{\text{p}}^{\text{}}$ and we shall not repeat them here.

LEMMA 2.1. $LI(R) \subset D(R)$

Comment on the proof: our proof is indirect and uses induction on a certain measure of complexity. Suppose G is a locally R-indicable group outside $D(R)$. The key idea is to reduce the problem to a situation where a finitely generated subgroup $H \subset G$ may be considered. If H is locally R-indicable, then either H = 1 or H has a normal subgroup K with H/K isomorphic to the additive group C of R. The fact $[17]$ that $C \in D(R)$ can now be used to pass from H to K with a resulting reduction in complexity.

Proof of Lemma 2.1. Suppose G is an LI(R)-group not belonging to D(R). Then there exist free RG-modules M and N and a non-injective RG-homomorphism $\phi : M \rightarrow N$ such that 1 $\theta \phi : R \otimes_{\mathbb{R}^n} M \rightarrow R \otimes_{\mathbb{R}^n} N$ is injective. Let m denote a nonzero element in the kernel of ϕ , and let X be an RG-hasis for M. We now define the complexity of the data (m, X, G) to be the set S = S(m, X, G) of elements of G appearing in the unique R-linear expression

$$
m = \sum_{i,j} \lambda_{ij} g_{ij} x_j, \lambda_{ij} \in \mathbb{R} \setminus \{0\}, g_{ij} \in G, x_i \in X.
$$

This set is always finite and it is nonempty unless $m = 0$. The size of the complexity is the number of its elements.

Let H be any subgroup of G. Then we denote by M_H the free RH-module with basis X and by ϕ_H the restriction of ϕ to M_H .

The commutative diagram

shows that $v o(1 \theta_H \phi_H)$, and hence $1 \theta_H \phi_H$ itself, is injective.

If in addition $S(m,X,G) \subset H$ holds, then m lies in the kernel of ϕ_H and S(m,X,H) = S(m,X,G). Furthermore, H \neq 1, otherwise 1 ϕ_H ϕ_H would equal ϕ_H and hence would be both injective and non-injective.

Now if H is finitely generated in this situation, then by assumption on G, there exists a normal subgroup $K \lhd H$ with $C = H/K$ isomorphic to the additive group of R.

We now observe that the functor (R $\mathbf{\mathbf{\mathbb{F}}}_{\text{RH}}$ -) factorises as

 $(R \otimes_{\text{RF}} -) = (R \otimes_{\text{RF}} -)$ o $(R \otimes_{\text{RF}} -)$.

The modules R \mathcal{B}_{RK} M_H and R \mathcal{B}_{RK} N are RC-free, and so 1 $\mathbf{\Theta}_K \phi_H : \mathbb{R} \mathbf{\Theta}_{RK} M_H \to \mathbb{R} \mathbf{\Theta}_{RK} N$ is injective, since $C \in \underline{D}(R)$, $[17]$.

We finally are ready for the inductive argument: so suppose that we have chosen the data (m, X, G) such that the size of $S(m, X, G)$ is as small as possible. Suppose also that $1 \in S(m,X,G)$. (If necessary, we can satisfy this assumption by replacing X by gX for some $g \in S$, for $S(m,gX,G) = g^{-1} S(m,X,G)$, and so in particular $|S(m,gX,G)| = |S(m,X,G)|$.

Let H c G be the subgroup generated by $S(m,X,G)$. Then H \neq 1 and H is finitely generated. If T is any transversal for the normal subgroup K in H, then $Y_T = \{tx ; t \in T, x \in X\}$ is an RK-basis for M_H ,

and $S = S(m, X, H)$ is a disjoint union of subsets $S \cap Kt$, $t \in T$. Since $1 \in S \cap K$, we have $S \cap K \neq \emptyset$, and since S generates H $\neq K$, we have $S \nsubseteq K$. So S \cap Kt $\neq \emptyset$ for at least one other coset Kt disjoint from K. We may thus choose our transversal T such that $S \cap T$ contains at least two elements, say 1 and u. We now consider the set $S(m, Y_{T}, K)$. It may be expressed as

$$
S(m,Y_T,K) = \bigcup_{t \in T} (S \cap Kt) t^{-1}.
$$

But $1 \in (S \cap K) \cap (S \cap Ku) u^{-1}$, so the above union is not disjoint. Thus

$$
|S(m,Y_T,K)| < \sum_{t \in T} |(S \cap Kt) t^{-1}|
$$

\n
$$
= \sum_{t \in T} |(S \cap Kt)|
$$

\n
$$
= |S(m,X,H)|
$$

\n
$$
= |S(m,X,G)|.
$$

This contradicts our assumption of a choice of (m, X, G) realising minimum complexity.

REMARK This proof also shows that LI \subset D(S) for any ring S, using the fact [17], Prop. 1.3. that the infinite cyclic group belongs to $D(S)$. It follows that LI ϵ D.

2.2. Equivalence of D(R) and C(R)

In this subsection we will prove that $D(R) = C(R)$ when R is either \mathbb{Z} or \mathbf{F}_{p} . The proof of the inclusion $\underline{D}(R) \subset \underline{C}(R)$ is elementary, and applies to an arbitrary ring R.

LEMMA 2.2. Let R be a commutative ring with 1. Then
$$
D(R) \subset C(R)
$$
.

Proof Suppose G \in D(R), and let \tilde{K} \rightarrow K be a G-covering of 2-complexes,

such that $H_2(K;R) = 0$. Then the cellular R-chain complex $C_{\frac{1}{2}}(\tilde{K})$ of \tilde{K} consists of free RG-modules and RG-homomorphisms, while that of K is obtained by applying the functor R \mathcal{R}_{RG} - to $C_{\mathbf{x}}(\tilde{K})$:

$$
C_{\frac{1}{2k}}(K) \cong R \otimes_{DC} C_{\frac{1}{2k}}(\tilde{K}).
$$

Furthermore, since $C_q(K) = 0 = H_q(K;R)$, the boundary homomorphism $C_2(K) \rightarrow C_1(K)$ is injective. Since $G \in D(R)$ it follows that C₂(K) \rightarrow C₂(K) is also injective, that is H₂(K;R) = 0.

Hence $G \in C(R)$, as required.

LEMMA 2.3. Let R denote either Z or \mathbb{F}_p for some prime p, and suppose ϕ : M \rightarrow N is an RG-homomorphism between free RG-modules of finite rank.

(a) There exist a free RG-module F, a G-covering $K' + K$ of 2-complexes, and a commutative diagram

of RG-modules.

(b) Furthermore, in the case $R = \mathbb{F}_p$, we may choose the 2-complex K to be almost acyclic.

COROLLARY 2.4. Let R be either Z or \mathbb{F}_p for some prime p. Then $C(R) \subset D(R)$.

Proof of 2.4. If in Lemma 2.3., $1 \otimes \phi$ is injective, then so is 1 θ d₂ : R θ_{RG} C₂(K') \rightarrow R θ_{RG} C₁(K'). But R θ_{RG} C₂(K') \leq C₂(K), so

 $H_2(K,R) = \ker(1 \otimes d_2) = 0.$

If, in addition, $G \in C(R)$, then ker $d_2 = H_2(K^t, R) = 0$, so d_2 is injective and hence so is ϕ . It follows that $G \in D(R)$, as desired.

Proof of 2.3. Consider first the case $R = Z$. Choose ZG -bases X, Y for M, N respectively and a set Z of generators for G. Let F denote the free Z G-module with basis Z, and write $\phi(x)$ in the form

$$
\phi(x) = \sum_{i=1}^{n(x)} \lambda(x,i) g(x,i) y(x,i)
$$

for each $x \in X$ with $\lambda(x,i) \in \mathbb{Z}$, $g(x,i) \in \mathbb{G}$, $y(x,i) \in Y$.

For each pair (x,i) choose a word $h(x,i)$ over the generating set Z of G representing the element $g(x,i)$ of G and define $W(x)$ to be the word $n(x)$

$$
W(x) = \prod_{i=1}^{n(x)} h(x,i) y(x,i)^{\lambda(x,i)} h(x,i)^{-1}
$$

over the disjoint union $Y \cup Z$.

Let K be the geometric realisation of the presentation

$$
\left\langle Y \cup Z \mid W(x), x \in X \right\rangle \tag{1}
$$

and let $\Gamma = \pi_1 K$ be the group presented by it.

The map $Z \rightarrow G$ extends to a map $\Theta : Y \cup Z \rightarrow G$ with $\Theta(Y) = \{1\}$ and so to an epimorphism Θ : $\Gamma \longrightarrow \to$ G (since each relator W(x) is a product of conjugates of elements of Y.)

Then the covering K' \rightarrow K corresponding to ker θ is a G-covering, and the second boundary homomorphism of the cellular Z-chain complex of K' is given by the matrix of Fox derivatives of the presentation (1), reduced to ZG via the canonical map $2\Gamma \rightarrow ZG$. It is easy to check that this matrix determines the composite $M \rightarrow N \rightarrow N \oplus F$ with respect to the bases X, Y, Z for M, N, F respectively.

Now consider the case $R = I\!I\!I_n$. By Lemma 2.5. below we may choose P a \mathbb{Z} G-homomorphism ϕ_{α} : M \rightarrow N between free \mathbb{Z} G-modules and \mathbb{F}_{α} Gisomorphisms

 μ : \mathbb{F}_p $\otimes_{\mathbb{Z}} M_0 \rightarrow M$, ν : \mathbb{F}_p $\otimes_{\mathbb{Z}} N_0 \rightarrow N$

such that v^{-1} o ϕ o $\mu = 1$ θ ϕ : \mathbb{F}_p θ \mathbb{Z} M_0 \rightarrow \mathbb{F}_p θ \mathbb{Z} N_0 , and such that $1 \otimes \phi_0$: $2 \otimes_{\mathbb{Z} G} M_0 \rightarrow 2 \otimes_{\mathbb{Z} G} N_0$ is split injective. Applying the above argument to ϕ_0 gives a G-covering K' \rightarrow K such that the cellular \mathbb{F}_{p} -chain complex of K' has the desired form, which proves (a). It P also follows from the fact that (1 θ ϕ) : α θ_{α} , θ_{α} γ α θ_{α} η_{α} is split injective, that K is almost acyclie, which proves (b).

LEMMA 2.5. Let ϕ : M \rightarrow N be an \mathbf{F}_p G-homomorphism between free \mathbf{F}_p Gmodules of finite ranks m and n respectively, such that $\overline{\phi} = 1$ \circ ϕ : \mathbf{F}_p $\mathbf{Q}_{\mathbf{F}_p}$ G $M \rightarrow \mathbf{F}_p$ $\mathbf{Q}_{\mathbf{F}_p}$ G N is injective. Then there exists a 2G-homomorphism $\phi_0 : M_0 \rightarrow N_0$ between free 2G-modules, and isomorphisms $\mu : \mathbb{F}_p \otimes_{\mathbb{Z}} M_0 \to M$, $\nu : \mathbb{F}_p \otimes_{\mathbb{Z}} N_0 \to N$, such that the square

commutes, and such that $\overline{\phi}_0 = 1$ 0 ϕ_0 : **Z** $\theta_{\overline{2}G}$ M₀ \rightarrow Z $\theta_{\overline{2}G}$ N₀ is split injective.

Proof Choose an \mathbb{F}_p G-basis X of M, and let X = ϵ (X) be the induced basis of $M = \mathbb{F}_p$ \mathbb{E}_p G M , where ε : \mathbb{F}_p $G \rightarrow \mathbb{F}_p$ is the augmentation map. Since ϕ is an injective map between \mathbb{F} -vector spaces, the set $\phi(X)$ extends to a basis \overline{Y} of $\overline{N} = \mathbb{F}_{p} \otimes_{\mathbb{F}_{p}G} N$; and the matrix of $\overline{\phi}$ with respect to the bases \overline{X} and \overline{Y} has the form

$$
\begin{pmatrix}I_m\\0\end{pmatrix},
$$

where $\texttt{I}_{\texttt{m}}$ denotes the identity $\texttt{m} \times \texttt{m}$ matrix.

The basis \overline{Y} may be lifted to a basis Y, say, of N, such that $\varepsilon(Y) = \overline{Y}$. Let $(f_{\cdot,i})$ denote the matrix of ϕ with respect to the bases X and Y. Then

$$
\epsilon(f_{ij}) = \begin{pmatrix} I_m \\ 0 \end{pmatrix}
$$

Since the canonical map π : $\mathcal{Z}G \rightarrow \mathcal{Z}G/p\mathcal{Z}G \cong \mathbb{F}_pG$ is surjective, we may choose $F_{i,j} \in \mathbb{Z}$ for all (ij), such that $\pi(F_{i,j}) = f_{i,j}$. Let ϕ_1 : (ZG)^m \rightarrow (ZG)ⁿ denote the **ZG-homomorphism defined by the matrix** $(\mathbf{F}_{\mathbf{i}\mathbf{j}})$, and let $\mu : \mathbb{F}_{\mathbf{p}} \otimes_{\mathbb{Z}} (\mathbb{Z} \mathbb{G})^{\mathbb{m}} \cong (\mathbb{F}_{\mathbf{p}} \mathbb{G})^{\mathbb{m}} \to \mathbb{M}$,

 $v : \mathbb{F}_p$ $\otimes_{\mathbb{Z}}$ $(\mathbb{Z}G)^n \cong (\mathbb{F}_pG)^n \to \mathbb{N}$ be the isomorphisms obtained by sending the canonical bases onto X, Y respectively. Then clearly the square

commutes.

The map $\overline{\phi}_1 = 1$ & ϕ_1 : 2 $\Theta_{\overline{a}C}$ (2G)^m $+$ 2 $\Theta_{\overline{a}C}$ (2G)ⁿ need not in general be split injective. Define an integer matrix (b..) by

$$
(b_{ij}) = \begin{pmatrix} I_m \\ 0 \end{pmatrix} - \varepsilon(F_{ij}).
$$

Then each b_i is a multiple of p, since

$$
\epsilon(F_{ij}) = \begin{pmatrix} I_m \\ 0 \end{pmatrix} \mod p.
$$

Now let ϕ_{α} : (ZG) \rightarrow (ZG)" be given by the matrix (F_{ij} + b_{ij}). Then ϕ_{0} : $\mathbb{Z}^{m} \rightarrow \mathbb{Z}^{n}$ is given by the \mathbb{Z} -matrix

so is split injective, while (1 0 ϕ) = (1 0 ϕ) : (\mathbb{F}_p G)^m + (\mathbb{F}_p G)ⁿ. This completes the proof.

2.3. Proof of Theorem 2

Assertion (i) of the theorem is immediate, and requires no further comment. We will first prove the theorem in the case where A is finitely generated. This follows from some easy remarks.

(a)
$$
\underline{C}(A_1 \oplus A_2) = \underline{C}(A_1) \cap \underline{C}(A_2)
$$
,
because $H_2(X; A_1 \oplus A_2) = H_2(X; A_1) \oplus H_2(X; A_2)$ for any
2-complex X.

(b) $C (Z/p^n Z) = C (F_p)$ for any $n \ge 1$, because H $_2$ (X ; $\mathbb{Z}/p^{\mu}\mathbb{Z}$) = 0 if and only if H $_2$ (X ; If $_2$) = 0, for any 2-complex X. This is seen by an easy inductive argument, using the long exact sequences.

$$
0 \rightarrow H_2
$$
 (X ; $\mathbb{Z}/p^{n-1}\mathbb{Z}$) $\rightarrow H_2$ (X ; $\mathbb{Z}/p^{n}\mathbb{Z}$) $\rightarrow H_2$ (X ; \mathbb{F}_p) $\rightarrow \cdots$

(c) $C(Z) \subset C(F_n)$ for every prime p; by Theorem I, because any indicahle group is p-indicahle for every prime p.

Now (a) and (b) together show that $C(A) = C \times_{D} D$ whenever A is a (non zero) finite abelian p-group. Then (a) and Theorem 1 show that the theorem holds for any finite A. If A is finitely generated but infinite, then

$$
A \cong \mathbf{Z} \oplus \ldots \oplus \mathbf{Z} \oplus A, \ldots \oplus A_n,
$$

where each A_i is a finite abelian p_i -group for a (possible empty) set of primes $\{p_1, \ldots, p_n\}$. Hence

$$
\underline{C}(A) = \underline{C}(Z) \cap \dots \cap \underline{C}(Z) \cap \underline{C}(\mathbb{F}_p) \cap \dots \cap \underline{C}(\mathbb{F}_p)
$$
 by (a)
= C(Z) by (c)

A direct limit argument extends the result to the case of infinitely generated A: we have H_2 (X ; A) = 0 if and only if H_2 (X ; B) = 0 for every finitely generated subgroup B of A, for any 2-complex X. Hence C (A) is the intersection of all the classes C (B), where B varies over all finitely generated subgroups of A. In particular, if A contains elements of prime order for an infinite set π of primes, then

> $C(A)$ c $C \nightharpoonup_{C} C(F)$ $= \bigcap_{p \in \pi} L I(p)$ by Theorem 1 = LI **= C** (~) c \bigcap C (B) by (c) **= C (A).**

REMARK It follows immediately from Theorem 2 that a group G is conservative if and only if $G \in C$ (F_p) for every prime p. By Lemma 2.3. (b) this holds if and only if every G-covering of an almostacyclic 2-complex is almost-acyclic, so our definition of conservative agrees with that in $[6]$.

2.4. Proof of Theorem 3.

(i)
$$
\underline{D}(R)
$$
 $\underline{C}(R)$ by Lemma 2.2.
\n $\underline{C}(Z)$ by Theorem 2
\n $\underline{C}(Z)$ by Theorem 2
\n \underline{LI} by Theorem 1
\n $\underline{C}(R)$ by the remark in 2.1.

(ii) Let R_p denote the p-primary component of R. Then R is isomorphic to a finite product of rings $R_p(p|n)$, and it follows that D (R) = $I + D$ (R_p). We are thus reduced to the case where R = R for p some prime p, so R has characteristic p^k for some k $\geqslant 1$. Since we already know, from Lemmas 2.2. and 2.3. and Theorem 2, that \underline{D} (R) \subset \underline{C} (R) = \underline{C} (F_p) = D (F_p), we argue by induction on k to show that $\underline{D} (\mathbf{F}_p) \subset \underline{D} (\mathbb{R}).$

If $k = 1$, then every projective RG-module is a projective G-module and every RG-homomorphism is an r G-homomorphism. More-P P over, the natural \mathbb{I}_{L} -isomorphism ($\mathbb{I}_{\mathsf{L}}^{\mathsf{L}}$ eq. -) E (R $\mathsf{w}_{\mathsf{p}_\mathsf{C}}$ -) implies that P $\underline{D} (\mathbb{F}_p) \subseteq \underline{D} (R).$

Now suppose $k \geqslant 2$ and \underline{D} $(\mathbb{F}_{p}) \subseteq \underline{D}$ (S) for any ring S of characteristic p^{k-1} . Let I denote the annihilator of p in R so that the ring S = R/I is isomorphic (as an R-module) to the ideal pR of R. We assume that the group G belongs to \underline{D} (IF_n) and we consider an RG-homomorphism $\phi : M \rightarrow N$ between free RG-modules such that 1 $\theta \phi$: R θ_{RG} M \rightarrow R θ_{RG} N is injective.

The exact sequence $0 \div I \div R \div R/I \div 0$ together with the map $\phi : M \rightarrow N$ gives rise to a commutative diagram

$$
0 \rightarrow \begin{array}{ccc} M \rightarrow M \rightarrow M \rightarrow M/M \rightarrow 0 \\ \downarrow \phi_{\text{I}} & \downarrow \phi & \downarrow \phi_{\text{S}} \\ 0 \rightarrow \begin{array}{ccc} N \rightarrow N \rightarrow N \rightarrow N/M \rightarrow 0 \end{array} \end{array}
$$

Its rows stay exact.

First note that ϕ_{τ} is a map between free \mathbb{F}_{p} G-modules and 1 $\theta \phi$ _T: R θ_{RC} IM \rightarrow R θ_{RC} IN is injective being a restriction of 18~.

Using again the natural isomorphism (F_, Q_m \sim) = (R $\Omega_{\rm pG}$ -) it P follows from G \in \underline{D} (\mathbb{F}_p) that ϕ_{τ} is injective.

Secondly, the map $\phi_{\mathcal{S}}$ is an SG-module homomorphism between free SG-modules. Now there is a commutative square of additive group homomorphisms

S ~SG M/IM IS **~ r > S** ~SG N/IN pR ~RG M ~ ~ pR ~RG N

where $\overline{\phi}$ is a restriction of 1 8 ϕ . Hence 1_S 8 ϕ_S is injective. Also S has characteristic p^{k-1} , so \underline{D} (\mathbb{F}_p) $\subset \underline{D}$ (S) by inductive hypothesis. Thus $\phi_{\rm S}$ is injective and so is ϕ by the Five - Lemma.

This shows that \underline{D} (\mathbf{F}_p) \subseteq \underline{D} (R) and the proof is complete.

3. Applications

3.1. Whitehead's question

Let L be an aspherical 2-complex and K a subcomplex of L. An open question of J.H.C. Whitehead [20] asks whether K is necessarily itself aspherical. Let G denote the kernel of the inclusion-induced map i : $\pi_1 K \rightarrow \pi_1 L$. Then a theorem of Adams [1] says that, if K is not aspherical, then G has a non-trivial perfect subgroup. Indeed, Adams' construction determines a normal subgroup $P_A(G)$ for any group G, namely the smallest normal subgroup $N \lhd G$ such that G/N is conservative. The subgroup $P_A(G)$ is not in general perfect, but it is perfect in the case G = Ker i above.

Now Theorem 1 gives a purely group-theoretical interpretation of $P_A(G)$: it is precisely the locally indicable residual $r(G)$. Note that r(G) is not in general equal to the maximal perfect subgroup $P₁(G)$, even in the situation of Whitehead's question. Indeed, Adams [1] gives an example of a pair $K \subseteq L$ with L (and also K) aspherical, and P₁(G) = $[G,G] = \{1\}$. But in this example G is a torsion-free 1-relator group, so by a theorem of Brodskil $[5]$ is locally indicable, in other words $r(G) = \{1\}$.

Now it is unknown whether G = Ker i is always locally indicable in the situation of Whitehead's question, so Adams' result may turn out to be stronger than has been generally realised.

If $K \subset L$ and G are as above, then the regular covering K_G of K corresponding to $G \lhd \pi, K$ is isomorphic to a subcomplex of the universal cover L of L, which is contractible. In particular, K_G is almost-acyclic. Thus the following results generalise [4], Theorem 3.6. and Corollary 3.7.

PROPOSITION 3.1. Let X be a 2-complex and G a normal subgroup of π_1 X such that the corresponding regular covering \tilde{x} of X is almost-acyclic. Then (π, X) / r(G) has cohomological dimension at most 2.

Proof Let X' denote the covering of \tilde{X} corresponding to the subgroup $r(G)$ of $G = \pi_1(\tilde{X})$. Then $H_2(X^+) = 0$ because $H_2(\tilde{X}) = 0$ and $G/r(G) \in \mathcal{C}$. Also $H_1(X') = H_1(r(G)) = 0$, since r(G) is perfect [10]. In other words, X' is acyclic, so the cellular chain complex of X' is a free $\mathbb{Z}(\pi, X / \mathbf{r}(G))$ -resolution of \mathbb{Z} , of length 2.

COROLLARY 3.2. Let X and G be as in the Proposition, and let A be a finitely generated central subgroup of $\pi_1 X$. Then there exists a finitely generated perfect subgroup P of G such that $A/(\Lambda \cap P)$ is free abelian of rank $d \leq 2$. Furthermore, we may assume $d \leq 1$ unless $\pi_1(X)$ / $r(G) \cong \mathbb{Z} \times \mathbb{Z}$ and G has infinite index; and we may assume $d = 0$ unless $[\pi_1 X, \pi_1 X] / r(G)$ is free.

Proof By $[2]$ and the Proposition, the centre of $\Gamma = \pi_1(X) / r(G)$ is either:

- a) Γ if Γ is abelian,
- b) trivial; or
- c) $\mathbb Z$, only if $\lceil \cdot, \cdot \rceil$ is free.

Let B be the kernel of $A \rightarrow \pi, X \rightarrow \Gamma$. Then B is a finitely generated subgroup of r(G), so is contained in a finitely generated, non-lndicable subgroup Q of G, which is in turn contained in a finitely generated perfect subgroup P of G $[10]$. Since P \subseteq r(G), we have $A/(A \cap P) \cong A/B$, which is a finitely generated central subgroup of Γ . The conclusions of the corollary are immediate in cases b) and c) above, but some further comment is necessary in case a), when Γ is abelian. Since cd(Γ) \leq 2, either Γ has rank 1, so A/B has rank ≤ 1 , or $\Gamma \cong \mathbb{Z} \times \mathbb{Z}$. In the latter case we must also prove that G has infinite index in $\pi_1 X$. But if $|\pi_1 X : G|$ is finite, then $G/[G,G] = G/r(G) \leq Z \times Z$. Also $H_2(G) = 0$, so it follows $[15, 16]$ that G has the same lower central factors as the free group of rank 2. But this contradicts $G/[G, [G,G]] = G/r(G) \cong \mathbb{Z} \times \mathbb{Z}$ (since r(G) is perfect $[10, 17]$.

3.2. Perfect projective modules

If $G \in D(R)$ and M is a perfect projective ZG-module, then consideration of the map R \mathcal{B}_{γ} M \rightarrow 0 shows that R \mathcal{B}_{γ} M = 0, and so M = 0. In this section we use this remark and the results of section 2 to show that no nonzero perfect projective ZG-module exists for a large class of groups G, and apply the result to a question in topology.

PROPOSITION 3.3 . Let P be a perfect projective ZG -module. Then

(i) There exists a subgroup H of G minimal with respect to the property that P is perfect as a 2H-module.

- (ii) The group H is trivial if and only if the module P is zero.
- (iii) No nontrivial homomorphic image of H is locally p-indicable for any prime p.
- (iv) The group H is perfect.
- (v) If P is finitely generated as a ZG-module, then H is finitely generated as a group and has no proper subgroup of finite index.

Proof (i) We consider an idempotent endomorphism $\phi : F \rightarrow F$ of some free ZG-module F, factorising as $F \longrightarrow p \longrightarrow F$. Fix a ZG -basis X of F. For any x ϵ X define the set $\Lambda(x,X)$ to consist of all the elements $\lambda_{\mathbf{1}} \neq 0$ in ZG which occur in the representation

$$
\phi(x) = \sum_{i=1}^{m(x)} \lambda_i x_i.
$$

For any subgroup $H \subseteq G$ let I $H \subseteq \mathbb{Z}$ H denote the augmentation ideal and let JH = $ZG \otimes_{ZH}$ IH denote the left ideal of ZG generated by IH. Then $\mathbb{Z}(\mathbb{G}/\mathbb{H}) = \mathbb{Z}\mathbb{G} \otimes_{\mathbb{Z} H} \mathbb{Z} = \mathbb{Z}\mathbb{G}/\mathbb{J}\mathbb{H}$ and so P is perfect as a $\mathbb{Z}\mathbb{H}$ -module if and only if the set $\Lambda(X) = \bigcup_{x \in X} \Lambda(x,X)$ is contained in JH.

If $H_n \ge H_1 \ge ...$ is a descending chain of subgroups of G, with intersection $H_{\infty} = \bigcap_{i=1}^{\infty} H_i$, then $JH_0 \gg JH_1 \gg \ldots$ is a descending chain of left ideals of ZG, and it is easy to check that its intersection is JH. Assertion (i) is now an immediate consequence of Zorn's lemma.

(ii) Clearly J{1} = {0}, so H = {1} if and only if Λ = \emptyset , in other words, if and only if $P = \{0\}$.

(iii) This follows from the remark at the beginning of the section, for if K \lhd H with H/K locally p-indicable, then H/K $\in \underline{D}(\mathbb{F}_p)$ by P Theorem 1 and P = \mathbb{Z} \mathbb{R}_{max} P = \mathbb{Z} (H/K) \mathbb{R}_{max} P is a perfect projective $\mathbb{Z}(H/K)$ -module. Hence $\overline{P} = 0$, so P is a perfect $\mathbb{Z}K$ -module, and so K = H by minimality of H.

(iv) If H is not perfect, then there exists a nonzero homomorphism $H + C_{\text{new}}$ for some prime p, contradicting (iii).

(v) Since $\Lambda(X) \subset \text{JH}$, each $\phi(x)$ may be expressed as a finite sum

$$
\phi(x) = \sum_{\alpha=1}^{r(x)} g_{\alpha}(x) (1 - h_{\alpha}(x))
$$

 $(g(x) \in G, h(x) \in H)$. Since P is finitely generated, the basis X may be chosen to be finite, so the set $\Lambda(X)$ is finite, and there are only finitely many elements $h(x)$ of H involved in the above representations. Let $K \subset H$ be the subgroup generated by the elements h (x) . Then $\Lambda(X) \subseteq JK$, so P is a perfect \mathbb{Z} K-module, and so K = H by minimality.

Finally, suppose N is a normal subgroup of finite index in H. It follows from $\begin{bmatrix} 18 \end{bmatrix}$, Theorem 3 that there are no nonzero, finitely generated, perfect 2(H/N)-projectives, and the argument used in (iii) above shows that $N = H$.

COROLLARY 3.4. (a) If every nontrivial, finitely generated subgroup of G has a proper subgroup of finite index, then there are no nonzero, finitely generated, perfect projective ZG-modules.

(b) If G has a transfinite subnormal series $G = G_p > G_p$... such 0 1 that $\left\{ \begin{array}{cc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \right.$ and each G /G \ldots is locally p -indicable for some prime p_{α} , then there are no nonzero perfect projective $2G$ -modules.

Suppose X, Y are Cockroft 2-complexes with isomorphic fundamental groups, such that Y is aspherical. It is an open question [4], Question 2, whether X is necessarily also aspherical. The answer is known to be in the affirmative if both X and Y are finite $[3]$, or if $G = \pi X$ has no perfect subgroups $[4]$. We generalise the latter result as follows.

THEOREM 3.5. Let X be a Cockroft n-complex $(n \geq 2)$ such that $cd(\pi, X) \leq n$. Then $\pi_n(X)$ is a perfect projective $\mathcal{U}(\pi, X)$ -module.

Proof Let X denote the universal cover of X. Then $H_X \cong \pi_X X \cong \pi_X X$ by the Hurewicz theorem, and $H_1 \times = 0$ for $1 \le i \le n - 1$. Hence the cellular chain complex $C_{\alpha}X$ yields an exact sequence

 $0 \to \pi_X^X \to C_X^X \to \ldots \to C_0^X \to \mathbb{Z} \to 0.$

Since cd(π_1 X) \leqslant n and each \mathbb{C}^\star_1 X is a free $\mathbb{Z}(\pi_1X)$ -module, it follows that $\pi_n X$ is projective as a $2(\pi_1 X)$ -module. (Actually, this part of the proof requires only $cd(\pi_{1}X) \leq n + 1$.

Now add cells in dimensions $(n + 1)$ and above to X to obtain an aspherical complex Y. From the commutative diagram

$$
\begin{array}{ccc}\nC_{n+2} & \tilde{Y} & \xrightarrow{d} & C_{n+1} & \tilde{Y} & \xrightarrow{\cdots} & \pi_{n}X & \xrightarrow{\cdots} & C_{n}X \\
\downarrow & & & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
C_{n+2} & Y & \xrightarrow{\cdots} & C_{n+1} & Y & \xrightarrow{\cdots} & H_{n}X & \xrightarrow{\cdots} & C_{n}X \\
\downarrow & & & & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\downarrow & & & & & \downarrow & & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\end{array}
$$

we deduce that the map $C_{n+1}Y + C_nY = C_nX$ is the zero map and hence

$$
Z \otimes_{Z(\pi_1 X)} (\pi_n X) = Z \otimes_{Z(\pi_1 X)} (\text{coker d})
$$

\n= coker d (by right exactness)
\n
$$
= H_{n+1} Y
$$

\n
$$
= H_{n+1}(\pi_1 X)
$$

\n
$$
= 0 (\text{since } \text{cd}(\pi_1 X) \leq n).
$$

COROLLARY 3.6. If, in addition to the hypotheses of the theorem, the group $G = \pi_1 X$ has a subnormal series as in Corollary 3.4. (b), then X is aspherical.

4. Examples

4.1.

Every finite p-group is locally p-indicable $[17]$, whereas the class LI contains only torsion-free groups, as does the class $\underline{\text{I\hspace{-.1em}I\hspace{-.1em}I}}(\mathbb{F}_{p})\,\cap\,\underline{\text{I\hspace{-.1em}I\hspace{-.1em}I}}(\mathbb{F}_{q})$ where p and q are distinct primes. It is not a priori clear that the class $\underline{\text{LI}}(\mathbb{F}_{p})$ contains torsion-free groups which are not in LI, or even that the class $LI(F_p) \cap IL(F_q)$ strictly contains LI, but we will give examples in this section to demonstrate that both inclusions are strict. More generally, for any nonempty set π of primes, let $LI(\pi)$ denote the intersection $\bigcap_{p\in\pi} LI(\pi_p)$, and TF the class of torsion-free groups. Then we will show that the classes $LI(\mathbb{I}) \cap TF$, for finite \mathbb{I} , are all distinct and properly contain <u>LI</u>. (For infinite $\bar{\pi}$ it is clear that <u>LI</u>($\bar{\pi}$) n <u>TF</u> = <u>LI</u>($\bar{\pi}$) = <u>LI</u>).

Let $n \geq 1$ be an integer, and let G_n denote the fundamental group

$$
\langle a, b, c | an = bn = cn = abc \rangle
$$

of the Brieskorn 3-manifold [13]

$$
M = M(n,n,n) = \left\{ (z_1, z_2, z_3) \in \mathbb{C}^3 \; ; \; z_1^n + z_2^n + z_3^n = 0, |z_1|^2 + |z_2|^2 + |z_3|^2 = 1 \right\}.
$$

LEMMA 4.1. If n is divisible by the integer $m \geq 3$, then G_n has a locally indicable normal subgroup of index m.

Proof. The 3-manifold M is a nilmanifold if $n = 3$, or hyperbolic if n > 3 [13]. In either case it is aspherical and hence so is any covering manifold. Now suppose K is an indicable subgroup of G_n . Then the corresponding covering M_K of M is aspherical and $H^1(M_K)$ = $H^1(K) \neq 0$. It follows $[12]$, Theorem 6.1. that $K = \pi_1 M_K$ is <u>locally</u> indicable. Thus it is sufficient to find an indicable normal subgroup of index m.

Let $\alpha = e^{2\pi i/m}$ be a primitive m'th root of unity, and define a (right) affine action of G_n on the complex plane $\mathfrak c$ by

$$
Z^{a} = Z\alpha
$$

\n
$$
Z^{b} = Z\alpha + 1
$$

\n
$$
Z^{c} = Z\alpha^{-2} + \alpha^{-2}.
$$

Provided $m > 3$, these three transformations satisfy the defining relations of G_n , and so do indeed define an action of G_n . The image of G_n in Aff($\mathbb C$) is a Bieberbach group whose translation subgroup T is nontrivial and of index m. Thus the inverse image of T in $\frac{C}{n}$ is an indicable normal subgroup of index m.

COROLLARY 4.2. The group G_n is locally p-indicable for any odd prime factor p of n. If $4 \mid n$ then G_n is locally 2-indicable. If $n \neq 3$ then G_n is not locally indicable.

Proof. The first two assertions are immediate from Lemma 4.1., since the classes $LI(F_p)$ are extension-closed. For the third assertion, a direct computation shows that

$$
G_n^{ab} \cong (Z/nZ)^2 \times Z/(n-3)Z,
$$

which is finite of order $n^2|n - 3|$, provided n $\neq 3$.

LEMMA 4.3. If $n > 3$ and $p \neq 3$ is a prime divisor of $n - 3$, then G_n is not locally p-indicable.

Proof. Write $n - 3 = m.q$, where q is a power of 3, and $3 \nmid m$. Then let K be the kernel of the map ϕ : G_n \longrightarrow >> $\mathbb{Z}/m\mathbb{Z}$ given by $\phi(a) = \phi(b) = \phi(c) = 1 + m\mathbb{Z}$. Note that K has a transversal in G consisting of the central elements a^{in} (0 \leq i \leq m - 1), since m and n are coprime. It follows that $[K,K] = [K,G]$, so from the exact sequence [15, 16]

$$
0 = H_2(\mathbb{Z}/m\mathbb{Z}) \rightarrow \frac{K}{[K,G]} \rightarrow \frac{G}{[G,G]} \rightarrow \mathbb{Z}/m\mathbb{Z} \rightarrow 0
$$

of abelian groups, we can deduce that $|K^{ab}| = |K|$: $[K, G]| = |G^{ab}| / m = n^2 q$, which is comprime to m. Hence G is not locally p-indicahle for any prime factor p of m, that is for n any prime factor $p \neq 3$ of $n - 3$.

COROLLARY 4.4. Let $\mathbb I$ be a nonempty finite set of primes. Then there exists a torsion-free group G such that H is precisely the set of primes p for which G is locally p-indicable.

Proof. Let n be the square of the product of all the primes in Π , and take G = G . Then G ϵ LI(H) by Corollary 4.2., and is torsion-free since M is an aspherical 3-manifold. Conversely, suppose p is a prime such that $G_n \in \text{LI}(F_p)$. Then certainly p $|G_n^{ab}| = n^2(n - 3)$. If p | $(n - 3)$ then we must have p = 3 by Lemma 4.3., so in any case p | n, that is $p \in \mathbb{R}$.

4.2.

Higman's group $H = \langle a,b,c,d \mid a^2 = a^b, b^2 = b^c, c^2 = c^d, d^2 = d^d \rangle$ is not locally indicable (indeed not locally p-indicable for any prime p) so H is not conservative, by Theorem 1. In particular, by the Remark in 2.3., there exists an H-covering $\tilde{K} \rightarrow K$ of 2-complexes with K almost-acyclic and K not almost-acyclic. Indeed, the arguments of [17], Proposition 1.9. and of *2.2.* enable us to construct an explicit example of such a covering.

Let K he a 2-complex with a single 0-cell; 8 1-cells s, t, u, v, w, x, y, z ; and 4 2-cells $\alpha, \beta, \gamma, \delta$, with attaching maps given

90

by the words

$$
\alpha : \text{wsws}^{-1} \text{tw}^{-1} \text{t}^{-1} \text{z}^{-1} \text{v}^2 \text{zv}^{-2}
$$
\n
$$
\beta : \text{xtxt}^{-1} \text{ux}^{-1} \text{u}^{-1} \text{w}^{-1} \text{s}^2 \text{ws}^{-2}
$$
\n
$$
\gamma : \text{y} \text{uyu}^{-1} \text{vy}^{-1} \text{v}^{-1} \text{x}^{-1} \text{t}^2 \text{xt}^{-2}
$$
\n
$$
\delta : \text{zvzv}^{-1} \text{sz}^{-1} \text{s}^{-1} \text{y}^{-1} \text{u}^2 \text{yu}^{-2}
$$

respectively.

Let $K \rightarrow K$ be the H-covering defined by the epimorphism π , $K \longrightarrow$ > H which maps s, t, u, v to a, b, c, d respectively, and each of w, x, y, z to i.

Then K has O-cells p_h (h ϵ H) ; 1-cells s_h , t_h , u_h , v_h , w_h , x_h , y_h , z_h (h ϵ H) ; and 2-cells α_h , β_h , γ_h , δ_h (h ϵ H). The 1-cells S_h , t_h , u_h , v_h join p_h to p_{ha} , p_{hb} , p_{hc} , p_{hd} respectively, while W_h , X_h , Y_h , Z_h are loops based at P_h . The 2-cells are attached along paths lifted from the attaching maps of α , β , γ , δ . For example

> I-I ~h : WhShWhaShlthWh~thlZhlVhVhdZhd2VhdVh

The action of H on K is by left translation of the indices, thus: $g(p_h) = p_{gh}$ etc. The 2-complex K is clearly almost-acyclic, but $H_o(K) \cong 2H$, generated by the 2-cycle $\alpha_1 + \beta_1 + \gamma_1 + \delta_1 - \alpha_2 - \beta_2 - \gamma_2 - \delta_3$

REFERENCES

- i. ADAMS, J.F.: A new proof of a theorem of Cockcroft. J. London Math. Soc. 49, 482-488 (1955).
- 2. BIERI, R.: Normal subgroups in duality groups and in groups of cohomological dimension 2. J.Pure Appl. Alg. 7. 35-51 (1976).
- 3. BRANDENBURG, J., DYER, M.: On J.H.C. Whitehead's aspherical problem I. Comment. Math. Helv. 56, 431-446 (1981).
- 4. BRANDENBURG, J., DYER, M., STREBEL, R.: On J.H.C. Whitehead's aspherical problem II. To appear in Proc. Symposia Pure Math. (Amer. Math. Soc.).
- 5. BRODSKII, S.D. : Equations over groups and groups with one defining relator (Russian). Uspehi Mat. Nauk. 35, 4, 183 (1980)
- 6. COHEN, J.M.: Aspherical 2-complexes. J. Pure Appl. Alg. 12, i01-ii0 (1978).
- 7. GERSTEN, S.M.: Conservative groups, indicability, and a conjecture of Howie. Preprint (1981).
- 8. HIGMAN, G.: The units of group rings. Proc. London Math. Soc. (2) 46, 231-248 (1940).
- 9. HOWIE, J.: Aspherical and acyclic 2-complexes. J. London Math. Soc. (2) 20, 549-558 (1979).
- i0. HOWIE, J.: On the fundamental group of an almost-acyclic 2-complex. Proc. Edinburgh Math. Soc. 24, 119-122 (1981).
- ii. HOWIE, J.: On pairs of 2-complexes and systems of equations over groups. J. reine angew. Math. 324, 165-174 (1981).
- 12. HOWIE, J.: On locally indicable groups. Math. Z. 180, 445-461 (1982).
- 13. MILNOR, J.: On the 3-dimensional Brieskorn manifolds $M(p,q,r)$. Ann. Math. Studies 84, 175-225 (1975).
- 14. SHORT, H.: Topological methods in group theory; the adjunetion problem. Thesis, University of Warwick (1981).
- 15. STALLINGS, J.: Homology and central series of groups. J. Alg. [, 170-181 (1965).
- 16. STAMMBACH, U.: Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten yon Prasentierungen. Math. Z. 94, 157-177 (1966).
- 17. STREBEL, R.: Homological methods applied to the derived series of groups. Comment. Math. Helv. 49, 302-322 (1974).

HOWIE-SCHNEEBELI

- 18. SWAN, R.G. : Projective modules over finite groups. Bull9 Amer. Math. Soc. 65, 365-367 (1959).
- 19. WALDHAUSEN , F.: Algebraic K-theory of generalised free products. Ann. Math. 108, 135-256 (1978).
- 20. WHITEHEAD, J.H.C.: On adding relations to homotopy groups. Ann. Math. 42, 409-428 (19ql).
- 21. WHITEHEAD, J.M.: Projective modules and their trace ideals. Comm. Alg. 8, 1873-1901 (1980).

J. Howie* University of Glasgow, GLASGOW GI2 8QW U.K.

H.R. Schneebeli, Margelstrasse 14, CH-5430 WETTINGEN Switzerland.

* Supported by an SERC Postdoctoral Fellowship.

(Received December 7, 1983)