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HOMOLOGICAL AND TOPOLOGICAL PROPERTIES
OF LOCALLY INDICABLE GROUPS

James Howie and Hans Rudolf Schneebeli

The classes of locally indicable groups, conservative groups and
D-groups have each been defined in a different context, and have been
Studied for various reasons. These three classes are shown to co-
incide. The corresponding mod p versions of the classes are also
shown to coincide, for any prime p. Applications to topology
are given. In particular, new light is shed on work of Adams on a
problem of Whitehead concerning asphericity in 2-complexes.

1. Introduction

The object of this paper is to show that three group-theoretic
notions, which have arisen independently in different contexts, are
in fact equivalent. This equivalence sheds new light on the work of
Adams [l] on Whitehead's problem about aspherical 2-complexes, and

on other related topics.

The first notion under consideration is that of a (locally)
indicable group, which was introduced by Higman in his work [8] on
the zero-divisor and unit problems for group rings. Let R be Z or fb.
We then call a group G R-indicable if R is a homomorphic image of G.

A group is locally R-indicable if every nontrivial finitely generated

subgroup is R-indicable. Let LI(R) denote the class of locally
R-indicable groups. We also refer to (locally) Z-indicable groups as
(locally) indicable, and write LI for EE(Z).

The second notion is that of a group conservative over an abelian
group A, defined by Adams [;J as follows, A G-covering is a regular
covering of 2-complexes whose group of covering transformations is

isomorphic to G. A group G is conservative over A if Hz(K,A) =0
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whenever K » K is a G-covering such that HZ(K,A) = 0. A group is
conservative if it is comservative over every abelian group A, Let C
and C(A) denote the classes of conservative groups and groups con-

servative over A, respectively,

The third notion is that of a D(R)-group, where R is a commutat-
ive ring with 1, In [17], Strebel defines a group G to be in the
class D(R) if the functor R ®n

G
between projective RG-modules. That is, whenever ¢ : M > N is an

- detects injective homomorphisms

RG-homomorphism between RG-projectives, such that

(18¢) :R eRG M-+ R 8RG N is injective, then ¢ itself is injective.
As Strebel points out, it is sufficient that the above property hold
when M and N are free of finite rank. If G € D(R) for all R, then we

say G € D or G is a D-group.

Locally indicable groups have recently been shown to be of
interest in connection with equations over groups and l-relator
products [§, 7, 11, 12, lﬂ]. Conservative groups have been studied
in [6], under a slightly different, but equivalent definition. The
properties of D-groups have been applied to various problems in Dﬂ

and [17].

The equivalence between D(R) and LI(R) has been discovered
independently by Gersten [7]. His methods rely on tower construct-

ions [ll] and cyclic covers.
Our results are as follows.

1.1, Comparison and reduction

THEOREM 1 The classes LI(R), C(R) and D(R) coincide for R = Z
or R =1F_,
- p

With the help of this theorem we show how to relate the classes
€(A) and D(R) for any abelian group A and commutative ring R with 1,

to the classes LI and EEOFP).
THEOREM 2 (i) If A = O, then C(A) is the class of all groups.

(ii) If A is a torsion group, the orders of whose elements involve

n
only finitely many primes Pys +++5 Dy then C(A) = M ELGFP ).
i=1 1

(iii) Otherwise C(A) = LI
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THEOREM 3 (i) If R has characteristic O, then D(R) = LI.

(ii) If R has characteristic n > O, then

DR) = () LI@).
- p prime = p
p|n

REMARKS 1 If R1 and R2 are rings whose additive group structures are

isomorphic, then EﬂRl) = E(Rz)'

2. Clearly EE_C‘EQSEE) for all p. It follows that LI

:9:2,

1.2. Applications

For any group G let r(G) denote the union of all the finitely
generated, nonindicable subgroups of G. Then r(G) is a fully

invariant subgroup of G, which we call the locally indicable residual

of G. An equivalent definition of r(G) is that it is the smallest

normal subgroup N of G such that G/N is locally indicable.

A 2-complex X is called almost acyclic if HZ(X’ Ib) = 0 for
every prime p, or equivalently if HZ(X) = 0 and Hl(X) is torsion-
free [9]. The class of almost acyclic 2-complexes is denoted P
in [6].

PROPOSITION 3.1. Let X > X be a regular covering of 2-complexes such
that X is almost acyclic, Then cd ("1(X) / r(wl(Q))> < 2.

COROLLARY 3.2. Let A be any finitely generated central subgroup of

WI(X). Then there exists a finitely generated perfect subgroup P of

nl(i) such that A/ (A~ P) is free abelian of rank p ¢ 2. The group P

can be chosen so that p = O unless [ﬂl(X),rl(X)] / r(nl(?)) is free,
and so that p < 1 unless wl(X) / r(wl(i)) 2 Zx 7 and ﬂl(X)/ nl(i)
is infinite.

These results apply in particular in the case where X is a sub-
complex of an aspherical 2-complex Y. Then wl(i) can be taken to be
the kernel of nlx > HIY, and it is conjectured that r{m;X) = 1.

These results should be compared with [5], Theorem 3.6. and Corollary

3.7.

An RG-module M is perfect if R GRG M = 0., In general it is not
known whether nonzero finitely generated perfect projective
2G-modules exist. Note that no finitely generated perfect projective

2G-module is stably free.
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In contrast, for any group G containing a nontrivial, finitely
generated, perfect subgroup, methods of [21] can be used to construct

a nonzero, countably generated, perfect projective ZG-module,

COROLLARY 3.4, (a) If every nontrivial, finitely generated sub-

group of G has a proper subgroup of finite index, then there are

no nonzero, finitely generated, perfect projective ZG-modules.

(x) If G has a transfinite subnormal series

=G P> G > ,..»G b B =
6=6," G ¢, > ¢ such that ﬂGa {1}

otl

and each quotient Ga/Ga+1 is locally pa-indicable for some prime P>

then there are no non-zero perfect 2G-projectives.

REMARK The best-known example of a group which does not satisfy the

hypotheses of Corollary 3.4. (a) is Higman's group
¢ = a,b, 0,4 | a2 = ab, b2 = 1%, o2 = 4, a2 = a3 ).

However, results of Waldhausen [19] show that finitely generated

ZG-projectives are stably free, so in particular there are no nonzero,

finitely generated perfect 4G-projectives.

These results are related to [4] via the notion of a Cockroft-
property for n-complexes. We say that a connected n-complex X is
Cockroft if WI(X) = 0 for 2 ¢ 1 < n and the Hurewicz map

ﬁn(X) - Hn(X) vanishes. For n = 2, this notion was introduced in [3}.

THEOREM 3.5. Let X be a Cockroft n-complex such that cd(ﬂl(X)) < n.

Then wn(X) is a perfect projective ZWI(X)—module. If in addition

nl(X) has a subnormal series as in Corollary 3.4. (b) above, then X

is asgherical.

We are grateful to K.A. Brown, P. Linnell and R, Strebel for
various comments and suggestions which have enabled us to make several

improvements to the paper, and to eliminate a number of errors.

2, Proofs

Subsection 2.1, is devoted to proving D(R) = LI(R) and 2.2. to
proving D(R} = C(R), where R is either 2 oriEﬁ for some prime p. The

proof of Theorem 1 is presented here as a chain of Lemmas. In 2.3.
below we prove Theorem 2 and in 2.%. we prove Theorem 3.
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2.1. Eguivalence of D(R) and LI(R).

For the case R = 3, Strebel proved in [17] that D(R) = LI(R).
His arguments remain valid also for the case R =IE£ and we shall not

repeat them here.

LEMMA 2.1. LI(R) e D(R)

Comment on the proof: our proof is indirect and uses induction
on a certain measure of complexity. Suppose G is a locally
R-indicable group outside D(R). The key idea is to reduce the problem
to a situation where a finitely generated subgroup H< G may be
considered, If H is locally R-indicable, then either H = 1 or H has
a normal subgroup K with H/K isomorphic to the additive group C of R,
The fact [17] that C e D(R) can now be used to pass from H to K with

a resulting reduction in complexity.

Proof of Lemma 2.1. Suppose G is an LI(R)-group not belonging to

D(R). Then there exist free RG-modules M and N and a non-injective
RG-homomorphism ¢ : M + N such that 1 ® ¢ : R eRG M=+ R SRG N is
injective. Let m denote a nonzero element in the kernel of ¢, and
let X be an RG-basis for M. We now define the complexity of the data
(m,X,G) to be the set S = S(m,X,G) of elements of G appearing in the

unique R-linear expression

= \ . » = .
m i%‘ Aij gij Xss )\ij e RN {0}, gij e G, xlc X

This set is always finite and it is nonempty unless m = O, The size
of the complexity is the number of its elements.
Let H be any subgroup of G. Then we denote by MH the free

RH-module with basis X and by ¢H the restriction of ¢ to MH
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The commutative diagram

R @RH MH

shows that vo(l 8H ¢H), and hence 1 8H ¢H itself, is injective.

If in addition S(m,X,G) ¢ H holds, then m lies in the kernel of
¢H and S{m,X,H) = S(m,X,6). Furthermore, H # 1, otherwise 1 @H ¢H

would equal ¢Hand hence would be both injective and non-injective.

Now if H is finitely generated in this situation, then by
assumption on G, there exists a normal subgroup K <tH with C = H/K

isomorphic to the additive group of R,

We now observe that the functor (R gRH -) factorises as

(R @ =) = (R8,~)o (R8 -).
The modules R eRK MH and R @RK N are RC-free, and so
1 QK ¢H : R eRK MH + R gRK N is injective, since C € D(R), [17].

We finally are ready for the inductive argument: so suppose
that we have chosen the data (m,X,G) such that the size of $(m,X,G)
is as small as possible. Suppose also that 1 € S(m,X,G). <If
necessary, we can satisfy this assumption by replacing X by gX for
some g e §, for S(m,gX,6) = g ! S(m,X,G), and so in particular
|5(m,gx,6)| = [s(m,x,8)]) .

Let Hc G be the subgroup generated by S(m,X,G). Then H # 1 and
H is finitely generated. If T is any transversal for the normal sub-

group K in H, then YT = {tx ; te T, x € X} is an RK-basis for MH,
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and S = S(m,X,H) is a disjoint union of subsets S~ Kt, t € T. Since
le Sa K, we have S n K # @, and since S generates H # K, we have

S+ K. So SN Kt # @ for at least one other coset Kt disjoint from
K. We may thus choose our transversal T such that S » T contains at
least two elements, say 1 and u. We now consider the set S(m,YT,K).

It may be expressed as

= U N -1
S(m,YT,K) =g (s Kt) t7°.

But 1€ (SN K)n (S n Ku)u~l, so the above union is not disjoint.

Thus
Is(m,¥,K) < § (s n k)t
teT
= 7 s o xt)]
teT
= |s(m,X,H)|
= [s(m,X,6)].

This contradicts our assumption of a choice of (m,X,G) realising

minimum complexity.

REMARK This proof also shows that LI = D(S) for any ring S, using

the fact [17], Prop. 1.3. that the infinite cyclic group
belongs to D(S). It follows that LI < D,

2.2, FEquivalence of D(R) and C(R)

In this subsection we will prove that D(R) = C(R) when R is
either Z or Iﬁ. The proof of the inclusion D(R) € C(R) is elementary,

and applies to an arbitrary ring R.

LEMMA 2.2. Let R be a commutative ring with 1. Then D(R) & C(R).

Proof Suppose G e QﬂR), and let K » X be a G~covering of 2-complexes,
such that Hz(K;R) = 0. Then the cellular R-chain complex
C*(R) of K consists of free RG-modules and RG-homomorphisms, while

that of K is obtained by applying the functor R 8_, - to C*(R) :

RG
CalK) = R 8p, Cu(K).

Furthermore, since C3(K) =0 = HZ(K;R), the boundary
homomorphism CZ(K) > Cl(K) is injective. Since G & D(R) it follows
that CZ(R) > CI(R) is also injective, that is Hz(k;R) = 0.
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Hence G & C(R), as required.

LEMMA 2.3. Let R denote either Zgr_\]f‘pf_cﬁ some prime p, and

suppose ¢ : M -~ N is an RG-homomorphism between free

RG-modules of finite rank.

(a) There exist _a free RG-module F, a G-covering K' + K of

2-complexes, and a commutative diagram

dy
C2 x') — CI(K')

M—>NEC—>NBF
¢

o_f_ RG-modules.

(b) Furthermore, in the case R = IFP, we may choose the 2-complex K

to be almost acyclic,

COROLLARY 2.4, Let R be either Z SEIFP for some prime p. Then
C(R) = D(R).

Proof of 2.4, If in Lemma 2.3., 1 @ ¢ is injective, then so is

. [} ' 1y ~
18d, : RO C(K') »R @ CI(K). But R 8 Cu(K') = C(K), so

HZ(K’R) = ker(l ® d2) = 0.

1f, in addition, G € C(R), then ker d, = HZ(K"R) = 0, so d2 is

injective and hence so is ¢. It follows that G € D(R), as desired.

Proof of 2,3, Consider first the case R = 2., Choose ZG~bases X, Y
for M, N respectively and a set Z of generators for G. Let I denote
the free ZG-module with basis Z, and write ¢(x) in the form

n(x)
#(x) = ] A(x,i) g(x,i) y(x,i)
i=1

for each x € X with A(x,1) ¢ %, g(x,i) € G, y(x,i) « Y.

For each pair (x,1) choose a word h(x,i) over the generating set
7 of G representing the element g(x,i) of G and define W(x) to be the
word
n(x) A .
Wx) = T h(x,i) ylx,i) ) px,i)71
i=1

over the disjoint union YU Z.
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Let X be the geometric realisation of the presentation

<YU z | Wx), x€ x> (1)

and let T = le be the group presented by it.

The map Z - G extends to a map 0 : Yu Z > G with o(Y) = {1}
and so to an epimorphism © : T —>> G (since each relator W(x) is a

product of conjugates of elements of Y.)

Then the covering K' + K corresponding to ker € is a G-covering,
and the second boundary homomorphism of the cellular Z-chain complex
of K' is given by the matrix of Fox derivatives of the presentation
(1), reduced to ZG via the canonical map 2T -+ ZG. It is easy to check
that this matrix determines the composite M » N&»> N @ F with respect
to the bases X, Y, Z for M, N, F respectively.

Now consider the case R =1Fp. By Lemma 2.5. below we may choose
a ZG-homomorphism ¢0 : M0 > N0 between free ZG-modules andIEbG—
isomorphisms

W 8y Mo > M, v T 8 Ny > N

-1 - .

such that v odou=18 ¢0 : E£ QZ M0+ IFP 82 NO, and such that
19 ¢0 : 2 @ze MO-+2 eZG N0
argument to ¢0 gives a G-covering K' + K such that the cellular

is split injective. Applying the above

Ep—chain complex of K' has the desired form, which proves (a). It

also follows from the fact that (1 ® ¢0) 2 8y, Mo+ z8,. N0 is split

injective, that K is almost acyclic, which proves (b).

IEMMA 2,5, Let ¢ : M » N EE_EE_FPG-homomorphism between freeIFPG—

modules of finite ranks m and n respectively, such that

¢ =18 ¢ : I§ ngG M +]Fp %TpG N is injective. Then there exists a

2G-homomorphism ¢0 : M0 > N0 between free 2G-modules, and iso-

morphisms u : Eb QZ Mg > M, v E% 8Z N, + N, such that the square

186,
_—>
Ib @Z M0 IE 82 N
o | s
M —_— N
¢
commutes, and such that Eb =18 ¢0 : 2 @ZG M°-+Z QZG N0 is split

injective.
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Proof Choose ani&bG-basis X of M, and let ¥ = €(X) be the induced
basis of M = F M, where € : F G »F_ is the augmentation map.
D QFPG s D p gm p
Since ¢ is an injective map between ]I‘P-vector spaces, the set ¢(X)
extends to a basis Yof N = F & o N ; and the matrix of $ with
p pG

respect to the bases X and Y has the form

)

where Im denotes the identity mXm matrix.

The basis Y may be lifted to a basis Y, say, of N, such that
e(¥) = ¥, Let (fij) denote the matrix of ¢ with respect to the bases
X and Y. Then

I

m
e(fij) =

0

Since the canonical map w : %G » 2ZG/pZG £ IF G is surjective, we

may choose F,. € ZG for all (ij), such that n(F,.) = f,.. Let
13 1] 1]

4, : (26)™ + (26)" denote the ZG-homomorphism defined by the matrix
(Fij), and let p :]FP @Z (Z6)™ = (]FPG)m > M,

v i Ey e, (26)" = CFPG)n -+ N be the isomorphisms obtained by sending

the canonical bases onto X, Y respectively. Then clearly the square

189,

Fe)r — (]FpG)n

I

—_— N

$

=
= & v

commutes,

The map EI =109, : 78, (z6)" > 2z @ " (26)" need not in

2
general be split injective. Define an integer matrix (bij) by
I
m
(bij) =z - e(Fij).
0
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Then each bij is a multiple of p, since

Im
e(Fij) = mod. p.
0

Now let ¢ : (26)™ + (2G)" be given by the matrix (Fij + bij)'

Then ab : 2™ » 27 is given by the Z-matrix

I
m

0/,

so is split injective, while (1 & ¢0) = (18 ¢1) : OFPG)m > GFPG)n.
This completes the proof.

2.3. Proof of Theorem 2

Assertion (i) of the theorem is immediate, and requires no
further comment., We will first prove the theorem in the case where A

is finitely generated. This follows from some easy remarks.

(a) E(A1 $A2) = E(Al)f‘g(Az),

because H2 (X 3 A ® Az) = H, (X Al) & H, (X 3 A2) for any
2-complex X.

(r) C (2/p"2) = E_(fp) for any n > 1,

because Hz (X ; 2/p"3) = 0 if and only if H, (X ;Eb) = 0, for

any 2~complex X. This is seen by an easy inductive argument, using
the long exact sequences.

0> H2 (x 3 z/pn'lz) > H2 (x 3 2/p%2) ~ H2 (X ; EE) > e

(c) () C (I'p) for every prime p;
by Theorem 1, because any indicable group is p-indicable for every

prime p.

Now (a) and (b) together show that C (A) = C GFP) whenever A is
a (non zero) finite abelian p-group. Then (a) and Theorem 1 show
that the theorem holds for any finite A. If A is finitely generated

but infinite, then
Az286 ...8289 A1 vee B An’

where each Ai is a finite abelian p;-group for a (possible empty) set

of primes {pl, +ess Py}, Hence
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¢ (a)

"
kel

() ... C(ZINnCT_ ) ...oC )by (a)
- - P - Pn

1
(@]

(2) by (c)

A direct limit argument extends the result to the case of
infinitely generated A: we have H, (X 3 A) = 0 if and only if
Hz (X 3 B) = 0 for every finitely generated subgroup B of A, for any
2-complex X, Hence C (A) is the intersection of all the classes C (B),
where B varies over all finitely generated subgroups of A, In partic-
ular, if A contains elements of prime order for an infinite set 7w of

primes, then

C (8 c f\ C (F)
- per— P
= ﬁ LI (F ) by Theorem 1
pem ™ P
= L
= c(d

c () c@) by ()
= ¢ (A).

REMARK It follows immediately from Theorem 2 that a group G is

conservative if and only if G & C CFP) for every prime p. By Lemma

2.3, (b) this holds if and only if every G-covering of an almost-

acyclic 2-complex is almost-acyclic, so our definition of conservative

agrees with that in [6].

2.4, Proof of Theorem 3.

(i) D(R) < C (R} by Lemma 2.2.
= C (2) by Theorem 2
= LI by Theorem 1
< D (R) by the remark in 2.1.

(ii) Let Rp denote the p-primary component of R, Then R is isomorphic
to a finite product of rings Rp (p|n), and it follows that

D (R) (Rp) We are thus reduced to the case where R = R_ for
p]n - p

some prime p, so R has characteristic pk for some k > 1. Since we
already know, from Lemmas 2.2. and 2.3. and Theorem 2, that

D(R)c C (R) = 9_(Ib) =D (I%), we argue by induction on k to show
that D (I‘p) < D (R).
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If k = 1, then every projective RG-module is a projective
FpG—module and every RG-homomorphism is an IbG—homomorphism. More-

over, the natural Iﬁ—lsomorphlsm GFP %FPG =) z (R eRG -) implies that
D ;GFP) e D (R).

Now suppose k > 2 and D GFP) < D (8) for any ring S of
characteristic pk'l. Let I denote the annihilator of p in R so that
the ring S = R/I is isomorphic (as an R-module) to the ideal pR of R.
We assume that the group G belongs to D GFP) and we consider an
RG-homomorphism ¢ : M > N between free RG-modules such that

18®8¢:R ®RG M->R @R N is injective,

G
The exact sequence O - I > R + R/I + 0 together with the map

¢ : M > N gives rise to a commutative diagram
0 > IM > M =+ M/IM > O
l¢1 l¢ l¢s
0O - IN » N > N/IN > 0.
Its rows stay exact.
First note that ¢I is a map between free EbG—modules and

18 ¢, : R8
18 4.

IM + R QR IN is injective being a restriction of

G G

Using again the natural isomorphism (Ib %F G =) = (R Pre -) it

P
follows from G € D CFP) that ¢I is injective.

Secondly, the map ¢S is an SG-module homomorphism between free
SG-modules. Now there is a commutative square of additive group
homomorphisms

S B e M/IM > S SSG N/IN

S 1. ® ¢S l

o

PR 8RG M ————%f———? pR QRG N

where ¢ is a vestriction of 1 & ¢, Hence lS 8 ¢S is injective. Also

S has characteristic pk'l, so D GFP) < D (S) by inductive hypothesis.

Thus ¢S is injective and so is ¢ by the Five - Lemma.

This shows that B.Cfp)g; D (R) and the proof is complete.
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3, Applications

3.1, Whitehead's question

Let L be an aspherical 2-complex and K a subcomplex of L. An
open question of J.H.C. Whitehead [20] asks whether K is necessarily
itself aspherical. Let G denote the kernel of the inclusion-induced
map i ﬂlK > nlL. Then a theorem of Adams [l] says that, if K is not
aspherical, then G has a non-trivial perfect subgroup. Indeed, Adams'
construction determines a normal subgroup PA(G) for any group G,
namely the smallest normal subgroup N <0G such that G/N is conservat-
ive. The subgroup PA(G) is not in general perfect, but it is perfect

in the case G = Ker i above.

Now Theorem 1 gives a purely group-theoretical interpretation of
PA(G): it is precisely the locally indicable residual r(G). Note
that r(G) is not in general equal to the maximal perfect subgroup
Pl(G), even in the situation of Whitehead's question. Indeed, Adams
[1] gives an example of a pair K © L with L (and also K) aspherical,
and Pl(G) = [C,G] = {1}. But in this example G is a torsion-free
l-relator group, so by a theorem of Brodskil [5] is locally indicable,

in other words »(G) = {1}.

Now it is unknown whether G = Ker i is always locally indicable
in the situation of Whitehead's question, so Adams' result may turn

out to be stronger than has been generally realised.

If K< L and G are as above, then the regular covering KG of K

corresponding to G <]n1K is isomorphic to a subcomplex of the
universal cover L of L, which is contractible., In particular, KG is
almost-acyclic. Thus the following results generalise [4], Theorem

3.6, and Corollary 3.7.

PROPOSITION 3.1. Let X be a 2-complex and G a normal subgroup of wlx

2
X

such that the corresponding regular covering X of X is almost-acyeclic.

Then (nIX) / r(G) has cohomological dimension at most 2.

Proof Let X' denote the covering of ¥ corresponding to the subgroup
r(G) of G = x (X). Then H,(X') = 0 because H (X) = 0 and &/r(6) € C.
Also HI(X’) = Hl(r(G)) = 0, since r(G) is perfect [10]. 1In other
words, X' is acyclic, so the cellular chain complex of X' is a free

Z(wlx /r(G))-resolution of Z, of length 2.
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COROLLARY 3.2, Let X and G be as in the Proposition, and let A be a

finitely generated central subgroup of T X Then there exists a

finitely generated perfect subgroup P of G such that A/(An P) is free

abelian of rank d ¢ 2. Furthermore, we may assume d € 1 unless

wl(X) / r(G) = Z x Z and G has infinite index; and we may assume

d = 0 unless [ﬁIX, nlxj / r(G) is free.

Proof By [2] and the Proposition, the centre of T = wl(X) / r(G) is

either:

a) T if r is abelian,
b) trivial; or

c) %, only if [P,F] is free.

Let B be the kernel of A » nlx + T. Then B is a finitely
generated subgroup of r(G), so is contained in a finitely generated,
non-indicable subgroup Q of G, which is in turn contained in a
finitely generated perfect subgroup P of G [ld]. Since P < r(G),
we have A/(AN P) = A/B, which is a finitely generated central sub-
group of T, The conclusions of the corollary are immediate in cases
b) and c¢) above, but some further comment is necessary in case a),
when TI' is abelian. Since cd(T') ¢ 2, either T has rank 1, so A/B has
rank € 1, or T 2 Z x Z, In the latter case we must also prove that G
has infinite index in w X. But if [wIX : 6] is finite, then
6/[6,¢] = 6/r(6) = Z x 2. Also H,(G) = 0, so it follows [15, 16]
that G has the same lower central factors as the free group of rank 2.
But this contradicts G/[é, [G,Gj] = 6/r(G) = 2 x % (since r(G) is
perfect [;O, l7].

3,2. Perfect projective modules

If G € D(R) and M is a perfect projective 2G-module, then con-
sideration of the map R 82 M » O shows that R @Z M =0, and so M = 0.
In this section we use this remark and the results of section 2 to
show that no nonzero perfect projective ZG-module exists for a

large class of groups G, and apply the result to a gquestion in topology.

PROPOSITION 3,3. Let P be a perfect projective ZG-module. Then

(i) There exists a subgroup H of G minimal with respect to the

property that P is perfect as a ZH-module.
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(ii) The group H is trivial if and only if the module P is zero.

(iii) No nontrivial homomorphic image of H is locally p-indicable

for any prime p.

(iv) The group H is perfect.

(v) If P is finitely generated as & ZG-module, then H is finitely

generated as a group and has no proper subgroup of finite

index.

Proof (i) We consider an idempotent endomorphism ¢ : F + F of some

free ZG-module F, factorising as F—>> P >— F. Tix a
#G-basis X of F. TFor any x € X define the set A(x,X) to consist of
all the elements Ai # 0 in ZG which occur in the representation

m(x)
$(x) = -Z A %
izl
For any subgroup H ¢ G let IH « ZH denote the augmentation ideal
and let JH = 2G ©__ IH denote the left ideal of ZG generated by IH.

izt

Then Z(G/H) = 26 QZH Z = 2G/JH and so P is perfect as a ZH-module if

and only if the set A(X) = LJX A(%,X) is contained in JH.
Xe

If HG > H > ... is a descending chain of subgroups of G, with

1
intersection H_ = M Hi’ then JH0 > JH; > ... is a descending

i
chain of left ideals of ZG, and it is easy to check that its inter-
section is JH . Assertion (i) is now an immediate consequence of

Zorn's lemma.

(ii) Clearly J{1} = {0}, so H = {1} if and only if A = @, in other
words, if and only if P = {0},

(iii) This follows from the remark at the beginning of the section,
for if K <aH with H/K locally p-indicable, then H/K & QGFP) by
Theorem 1 and P = 2 gZK P = Z(H/X) QZH P is a perfect projective
Z(H/K)-module. Hence P = 0, so P is a perfect ZK-module, and so

K = H by minimality of H.

{iv) If H is not perfect, then there exists a nonzero homomorphism

H - pr for some prime p, comtradicting (iii).
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(v) Since A(X) «¢ JH, each ¢(x) may be expressed as a finite sum

r{x)
¢(x) = ] g () (1-h(x)
o=l

(ga(x) € G, ha(x) e H), Since P is finitely generated, the basis X
may be chosen to be finite, so the set A(X) is finite, and there are
only finitely many elements ha(x) of H involved in the above re-
presentations. Let K ¢ H be the subgroup generated by the elements
ha(x). Then A(X) < JK, so P is a perfect ZK-module, and so X = H

by minimality.

Finally, suppose N is a normal subgroup of finite index in H,
It follows from [}é], Theorem 3 that there are no nonzero, finitely
generated, perfect Z(H/N)-projectives, and the argument used in (iii)

above shows that N = H,

COROLLARY 3.4. (a) If every nontrivial, finitely generated subgroup

of G has a proper subgroup of finite index, then there are no nonzero,

finitely generated, perfect projective ZG-modules.

(b) If G has a transfinite subnormal series G = Got> Gltx «+. such

that CD Ga = {1} and each Ga/Gu+1 is locally pu—lndlcable for some

prime 1 then there are no nonzero perfect projective 2G-modules.

Suppose X, Y are Cockroft 2-complexes with isomorphic fundament-
al groups, such that Y is aspherical. It is an open question [}J,
Question 2, whether X is necessarily also aspherical. The answer is
known to be in the affirmative if both X and Y are finite [3], or if
G = nlx has no perfect subgroups Dﬂ. We generalise the latter

result as follows.

THEOREM 3,5. Let X be a Cockroft n~complex (n > 2) such that

cd(wIX) < n. Then nn(X) is a perfect projective Z(nlx)-module.

n

Proof Let X denote the universal cover of X. Then HnX nnX = nnX

by the Hurewicz theorem, and HiX = 0forlsgig¢<n-1, Hence the

cellular chain complex C/X yields an exact sequence

0 » X + CX > .o... = CX > 2 > O.
n n 0
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Since cd(ﬂlX) € n and each CiX is a free Z(ﬂlx)-module, it
follows that wnX is projective as a Z(ﬂlx)-module. (Actually, this
part of the proof requires only Cd(ﬂ1X) <n+1).

Now add cells in dimensions (n+1) and above to X to obtain an

aspherical complex Y. From the commutative diagram

]
el
4

Cn+2 Y ——> Cn+1 Y —>> nnX >—> C X

| A

Crl+2 Y —— Cn+1 Y —> HnX _ CnX

we deduce that the map Cn+1Y > CnY = CnX is the zero map and hence

gz(w1X) (wnX) = 2 QZ(WIX) (coker d)
= coker d (by right exactness)
= Hn+1Y
= H +1(ﬂ1X)

0 (since cd(wIX) £n

COROLLARY 3.6. If, in addition to the hypotheses of the theorem, the

group G = WIX has a subnormal series as in Corollary 3.4. (b), then X

is aspherical,

4, Examples
4,1,

Every finite p-group is locally p-indicable [17], whereas the
class LI contains only torsion-free groups, as does the class
ELGFP)(w ElGFq) where p and q are distinct primes. It is not a
priori clear that the class ELOFP) contains torsion-free groups which
are not in LI, or even that the class Lgﬂfb)lﬁ EEGTq) strictly con-
tains LI, but we will give examples in this section to demonstrate
that both inclusions are strict. More generally, for any nonempty
set 1 of primes, let LI(I) denote the intersection pCDH EEQFP),

and TF the class of torsion-free groups. Then we will show that the
classes LI(N) n TF, for finite I, are all distinct and properly con-
tain LI. (For infinite I it is clear that LI(I) n TF = LI(N) = LI).

88



HOWIE -~ SCHNEEBELI

Let n > 1 be an integer, and let Gn denote the fundamental group

<<:a, b, c ! a® = b® = ¢ = abe t>

of the Brieskorn 3-manifold [13]

M = M(n,n,n) = {(zl,zz,za)e e +z’2‘+zra1 o,|zllz+|22|2+|23[2= 1}.

LEMMA 4.1, If n is divisible by the integer m > 3, then G, has a

locally indicable normal subgroup of index m.

Proof. The 3-manifold M is a nilmanifold if n = 3, or hyperbolic if
n>3 [13]. In either case it is aspherical and hence so is any
covering manifold. Now suppose K is an indicable subgroup of G-
Then the corresponding covering MK of M is aspherical and Hl(MK) =
HI(K) # 0. 1t follows [12], Theorem 6.1. that K = ™ M is locally
indicable. Thus it is sufficient to find an indicable normal sub-

group of index m.

Let a = 2™ /M pe a primitive m'th root of unity, and define a

(right) affine action of Gn on the complex plane € by

728 = Za
7P = ze +1
7¢ = 7072 4+ o2,

Provided m 3 3, these three transformations satisfy the defining
relations of Gn’ and so do indeed define an action of Gn' The image
of Gn in Aff(€) is a Bieberbach group whose translation subgroup T is
nontrivial and of index m., Thus the inverse image of T in Gn is an

indicable normal subgroup of index m.

COROLLARY 4.2, The group Gn is locally p-indicable for any odd prime

factor p of n. If 4|n then G is locally 2-indicable. Ifn # 3

then Gn is not locally indicable.

Proof. The first two assertions are immediate from Lemma 4.1., since
the classes Ezﬁfp) are extension-closed. For the third assertion, a
direct computation shows that

Gib = (2/aD)2 x 3/ (n - 3)7,

which is finite of order n2|n - 3|, provided n # 3.
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not locally p-indicable.

Proof, Write n - 3 = m.q, where g is a power of 3, and 3 ¥ m. Then
let K be the kernel of the map ¢ : Gn-~>> %/mZ given by

¢(a) = ¢(b) = ¢(c) = 1 + mZ, Note that K has a transversal in G con-
sisting of the central elements ain (0<igm-1), since m and n are
coprime, It follows that [K,K] = [K,G], so from the exact

sequence [15, 16]

0= H (ZmD) > —— > —S_ > 22 >0
x,c]  [e,€]
of abelian groups, we can deduce that
!Kabl = |k : [x,6]] = |c2| / m = n2q, which is comprime to m. Hence

Gn is not locally p-indicable for any prime factor p of m, that is for

any prime factor p # 3 of n - 3.

COROLLARY 4.4, Let II be a nonempty finite set of primes. Then there

exists a torsion-free group G such that n is precisely the set of primes

p for which € is locally p-indicable.

Proof. Let n be the square of the product of all the primes in I, and
take G = Gn' Then Gn € LI(n) by Corollary 4.2., and is torsion-free
since M is an aspherical 3-manifold. Conversely, suppose p is a prime
such that G e Egﬁfb). Then certainly p ‘Gibl = p2(n - 3), 1If

p I(n - 3) then we must have p = 3 by Lemma 4.3., so in any case p] n,

that is p € 1.

4.2,

Higman's group H = {a,b,c,d | a2 = ab,b2 = b%,e2 = cd,d2 = 4% :)

is not locally indicable (indeed not locally p-indicable for any
prime p) so H is not conservative, by Theorem 1. In particular, by
the Remark in 2.3,, there exists an H-covering K > K of 2-complexes
with K almost-acyclic and K not almost-acyclic. Indeed, the arguments
of [}7], Proposition 1.9. and of 2.2, enable us to construct an

explicit example of such a covering.

Let K be a 2-complex with a single O-cell; 8 l-cells s, t, u, v,

W, X, ¥, z 3 and 4 2-cells a, B, v, §, with attaching maps given
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by the words
ot wsws ltwlt7lz71ly22¢72
8 : xtxt lux"lu"lw"ls2ws™2
v @ yuyu lvy lvTlx"142xt72
§ 1 zvzv lszTlsTlyly2yy~?
respectively.

Let K > K be the H-covering defined by the epimorphism
m,K—>> H which maps s, t, u, v to a, b, ¢, d respectively, and each

of w, x, y, z to 1.
Then X has 0O-cells Py (h & H) ; l-cells 4 h’ Yo Vs Wps Xy

Yo 2Zp (h € H) ; and 2-cells @ B Gh (h € H), The l-cells

h? Yh’
th’ Ups Yy join Py to Pha’ Phb® Phe® Phd respectively, while

Wis Xps Vy» Zy @re loops based at Py The 2-cells are attached along
paths lifted from the attaching maps of a, B, Y, §. For example

-1 m1l-] -1 -1
: t
% Y5%hYha®h hhbth %h hVha“hd2'hd'h

The action of H on K is by left translation of the indices,
thus: g(ph) = Pgh etc. The 2-complex K is clearly almost-acyclic,
but HZ(K) = ZH, generated by the 2-cycle

@, + 61 + Y, + 61 -a - Bb Y.~ Gd.

91



10.

11.

12.

13.

14,

15.

16.

17.

HOWIE-SCHNEEBELI

REFERENCES

ADAMS, J.F.: A new proof of a theorem of Cockcroft.
J. London Math. Soc. 49, 482-488 (1955),

BIERI, R.: Normal subgroups in duality groups and in groups
of cohomological dimension 2. J.Pure Appl. Alg. 7,
35-51 (1976).

BRANDENBURG, J., DYER, M.: On J.H.C. Whitehead's aspherical
problem I. Comment. Math. Helv, 56, 431-u446 (1981),

BRANDENBURG, J., DYER, M., STREBEL, R.: On J.H.C. Whitehead's
aspherical problem II. To appear in Proc. Symposia Pure Math.
(Amer. Math. Soc.).

BRODSKIf, S.D. : Equations over groups and groups with one
defining relator (Russian)., Uspehi Mat. Nauk. 35, &4,
183 (1980)

COHEN, J.M.: Aspherical 2-complexes. J. Pure Appl. Alg. 12,
101-110 (1978).

GERSTEN, S.M.: Conservative groups, indicability, and a
conjecture of Howie. Preprint (1981).

HIGMAN, G.: The units of group rings. Proc. London Math.
Soc, (2) 29, 231-248 (1840).

HOWIE, J.: Aspherical and acyclic 2-complexes. J. London
Math, Soc. (2) 20, 549-558 (1979).

HOWIE, J.: On the fundamental group of an almost-acyclic
2-complex. Proc. Edinburgh Math. Soc. 24, 119-122 (1981).

HOWIE, J.: On pairs of 2-complexes and systems of equations
over groups. dJ. reine angew, Math. 324, 165-174 (1981).

HOWIE, J.: On locally indicable groups. Math. Z. 180,
bus-u61 (1982).

MIINOR, J.: On the 3-dimensional Brieskorn manifolds M(p,q,r).
Ann. Math, Studies 84, 175-225 (1975).

SHORT, H.: Topological methods in group theory; the
adjunction problem. Thesis, University of Warwick (1981).

STALLINGS, J.: Homology and central series of groups. J. Alg.
2, 170-181 (1965).

STAMMBACH, U.: Anwendungen der Homologietheorie der Gruppen
auf Zentralreihen und auf Invarianten von Prasentierungen.
Math. Z. 94, 157-177 (1966).

STREBEL, R.: Homological methods applied to the derived
series of groups. Comment. Math. Helv. 49, 302-322 (1974),

92



HOWIE-SCHNEEBELI

18. SWAN, R.G.: Projective modules over finite groups. Bull.
Amer. Math. Soc. 65, 365-367 (1959).

19, WALDHAUSEN, F.: Algebraic K-theory of generalised free products.

Ann. Math. 108, 135-256 (1978).

20.  WHITEHEAD, J.H.C.: On adding relations to homotopy groups.
- Ann, Math. 42, 409-428 (19u1).

21. WHITEHEAD, J.M.: Projective modules and their trace ideals.
Cowm. Alg. 8, 1873-1901 (1980).

J. Howie®

University of Glasgow,
GLASGOW G12 8QW
U.K.

H.R. Schneebeli,
Margelstrasse 14,
CH-5430 WETTINGEN
Switzerland,

* Supported by an SERC Postdoctoral Fellowship.

(Received December 7, 1983)

93



