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HOMOLOGICAL AND TOPOLOGICAL PROPERTIES 
OF LOCALLY INDICABLE GROUPS 

James Howle and Hans Rudolf Schneeheli 

The classes of locally indicable groups, conservative groups and 
D-groups have each been defined in a different context, and have been 
~tudled for various reasons. These three classes are shown to co- 
incide. The corresponding mod p versions of the classes are also 
shown to coincide, for any prime p. Applications to topology 
are given. In particular, new light is shed on work of Adams on a 
problem of Whitehead concerning asphericity in 2-complexes. 

i. Introduction 

The object of this paper is to show that three group-theoretic 

notions, which have arisen independently in different contexts, are 

in fact equivalent. This equivalence sheds new light on the work of 

Adams Ill on Whltehead's problem about aspherlcal 2-complexes, and 

on other related topics. 

The first notion under consideration is that of a (locally) 

indicable group, which was introduced By Higman in his work [8] on 

the zero-divlsor and unit problems for group rings. Let R Be 2 or ~ . 
P 

We then call a group G R-indlcaBle if R is a homomorphlc image of G. 

A group is locally R-indicaBle if every nontrlvlal finitely generated 

subgroup is R-indicable. Let LI(R) denote the class of locally 

R-indicaBle groups. We also refer to (locally) ~-indicable groups as 

(locally) indicable, and write LI for LI(2). 

The second notion is that of a group conservative over an aBelian 

group A, defined by Adams [lJ as follows. A G-covering is a regular 

covering of 2-complexes whose group of covering transformations is 

to G. A group G is conservative over A if H2(K,A) = 0 isomorphic 
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whenever K § K is a G-covering such that H2(K,A) : O. A group is 

conservative if it is conservative over every abelian group A. Let C 

and C(A) denote the classes of conservative groups and groups con- 

servative over A, respectively. 

The third notion is that of a ~(R)-group, where R is a commutat- 

ive ring with i. In [17], Strebel defines a group G to be in the 

class D(R) if the functor R @RG - detects injective homomorphisms 

between projective RG-modules. That is, whenever r : M § N is an 

RG-homomorphism between RG-projectives, such that 

(i @ ~) : R @RG M § R @RG N is injective, then r itself is injective. 

As Strebel points out, it is sufficient that the above property hold 

when M and N are free of finite rank. If G ~ D(R) for all R, then we 

say G e D or G is a D--group. 

Locally indlcable groups have recently been shown to be of 

interest in connection with equations over groups and 1-relator 

products [5, 7, ii, 12, 14]. Conservative groups have been studied 

in ~], under a slightly different, but equivalent definition. The 

properties of ~-groups have been applied to various problems in [4 3 

and [17]. 

The equivalence between D(R) and LI(R) has been discovered 

independently by Gersten [7]. His methods rely on tower construct- 

ions [ii] and cyclic covers. 

Our results are as follows. 

i.i. Comparison and reduction 

THEOREM 1 The classes LI(R), C(R) and D(R) coincide for R = 

or R:~ . -- p 

With the help of this theorem we show how to relate the classes 

C(A) and D(R) for any abelian group A and commutative ring R with i, 

to the classes LI and LI(]F ). 
-- -- p 

THEOREM 2 (i) If A = O, then C(A) is the class of all groups. 

(ii) If A is a torsion group, the orders of whose elements involve 

only finitely many primes Pl' "''' Pn' then C(A) = 

(iii) Otherwise C(A) = LI 

n 

i=l -- ' 
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THEOREM 3 (i) If R has characteristic O, then D(R) = LI. 

(it) If R has characteristic n > 0, then 

D(R) = ~. nIOFp). 
- -  p prlme -- 

Pln 

REMARKS 1 If R 1 and R 2 are rings whose additive group structures are 

~somorphic, then D(R I) = D(R2). 

2. Clearly LI c L~p) for all p. It follows that LI = C : D. 

1.2. Applications 

For any group G let r(G) denote the union of all the finitely 

generated, nonindicahle subgroups of G. Then r(G) is a fully 

invariant subgroup of G, which we call the locally indicable residual 

of G. An equivalent definition of r(G) is that it is the smallest 

normal subgroup N of G such that G/N is locally indicable. 

A 2-complex X is called almost acyclic if H2(X, I~ p) = O for 

every prime p, or equivalently if H2(X) = 0 and HI(X) is torsion- 

free [9]. The class of almost acyclic 2-complexes is denoted P 

in 

PROPOSITION 3.1. Let X § X be a regular covering of 2-complexes such 

that X is almost acyclic. Then cd (~I(X) / r(~l(X) ~ $ 2. 

COROLLARY 3.2. Let A be any finitely generated central subgroup of 

~I(X). Then there exists a finitely generated perfect subgroup P of 

(X) such that A/ (A~ P) is free ahelian of rank p ~ 2. The group P 
1 

can be chosen so that Q = 0 unless [~I(X),~I(X)] / r(~l(X) ) is free, 

and so that p $ 1 unless ~I(X) / r(~l(X) ) ~ ~ • ~ and ~I(X)/ ~I(X) 

is infinite. 

These results apply in particular in the case where X is a sub- 

complex of an aspherieal 2-complex Y. Then ~I(X) can be taken to be 

the kernel of ~lX + ~i Y, and it is conjectured that r(nlX) = i. 

These results should be con~pared with [4], Theorem 3.6. and Corollary 

3.7. 

An RG-module M is perfect if R 8RG M = O. In general it is not 

known whether nonzero finitely generated perfect projective 

2G-modules exist. Note that no finitely generated perfect projective 

2G-module is stably free. 
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In contrast, for any group G containing a nontrivlal, finitely 

generated, perfect subgroup, methods of [21] can be used to construct 

a nonzero, countably generated, perfect projective ~G-module. 

COROLLARY 3.4. (a) if ever[ nontrivlal, finitely generated sub- 

grou p of G has a proper subgroup of finite index, then there are 

n_~ononzero , finitely generated, perfect projective 2G-modules. 

(b) If G has a transfinite subnormal series 

G = G 0> G 1 > ... ~Ga ~ G~+I~... such that ~G~ : {i} 

and each quotient G/Ge+ 1 is locally p-!ndicable for some prime Pe' 

then there are no non-zero perfect ~G-projectives. 

REMARK The best-known example of~ group which does not satisfy the 

hypotheses of Corollary 3.4. (a) i~sHigman's grou______p 

G : <a, h, c, d I a 2 = a b, b 2 = b c, c 2 = c d, d 2 = d a > �9 

However , results of Waldhausen [19] show that finitely generated 

2G-projectiyes are stably free, so in particular there are no nonzero, 

finitely generated perfect NG-projeetives. 

These results are related to [43 via the notion of a Cockroft- 

property for n-complexes. We say that a connected n-complex X is 

Cockroft if ~I(X) : 0 for 2 $ i < n and the Hurewicz map 

~n(X) § Hn(X) vanishes. For n = 2, this notion was introduced in [3]. 

THEOREM 3.5. Let X be a Coekroft n-complex such that cd(~l(X)) ~ n. 

Then ~n(X) is a perfect projective 2~l(X)-module. If in addition 

~I(X) has a subnormal series as in Corollary 3.4. (b) above, then X 

is aspherical. 

We are g~ateful to K.A. Brown, P. Linnell and R. Strebel for 

various comments and suggestions which have enabled us to make several 

improvements to the paper, and to eliminate a number of errors. 

2. Proofs 

Subsection 2.1. is devoted to proving D(R) = LI(R) and 2.2. to 

proving D(R) = ~(R), where R is either ~ or]Fp for some prime p. The 

proof of Theorem 1 is presented here as a chain of Lemmas. In 2.3. 

below we prove Theorem 2 and in 2,4. we prove Theorem 3. 
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2.1. Equivalence of D(R) and LI(R). 

For the case R = ~, Strehel proved in ~ that D(R) c LI(R). 

His arguments remain valid also for the case R = IF and we shall not 
P 

repeat them here. 

LEMMA 2.1. LI(R) c D(R) 

Comment on the proof: our proof is indirect and uses induction 

on a certalnmeasure of complexity. Suppose G is a locally 

R-indicable group outside D(R). The key idea is to reduce the problem 

to a situation where a finitely generated subgroup H ~ G may be 

considered. If H is locally R-indicable, then either H = 1 or H has 

a normal subgroup K with H/K isomorphic to the additive group C of R. 

The fact [17] that C ~ D(R) can now be used to pass from H to K with 

a resulting reduction in complexity. 

Proof of Lemma 2.1. Suppose G is an LI(R)-group not belonging to 

D(R). Then there exist free RG-modules M and N and a non-injective 

RG-homomorphism ~ : M § N such that 1 @ ~ : R 8RG M § R @RG N is 

injective. Let m denote a nonzero element in the kernel of r and 

let X be an RG-hasis for M. We now define the complexity of the data 

(m,X,G) to be the set S = S(m,X,G) of elements of G appearing in the 

unique R-linear expression 

m = [ lij gij xi' lij e R\ {0}, gij e G, x. e X . 

This set is always finite and it is nonempty unless m = O. The size 

of the complexity is the number of its elements. 

Let H be any subgroup of G. Then we denote by ~ the free 

RH-module with basis X and by SH the restriction of % to MH. 
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The commutative diagram 

R @RH MH 

- \ 1  " 
R @RG M > 

I~Gr 

RSRHN 

R @RG N 

shows that ~o(i | CH )' and hence i @H CH itself, is injective. 

If in addition S(m,X,G) c H holds, then m lies in the kernel of 

~H and S(m,X,H) = S(m,X,G). Furthermore, H ~ i, othemwise I @H CH 

would equal ~Hand hence would be both injective and non-injective. 

Now if H is finitely generated in this situation, then by 

assumption on G, there exists a normal subgroup K ~ H with C = H/K 

isomorphic to the additive group of R. 

We now observe that the functor (R ~RH -) factorises as 

(R @RH -) : (R @RC -) o (R | -)" 

The modules R @RK MH and R @RK N are RC-free, and so 

1 @K CH : R @RK MH ~ R @RK N is injective, since C ~ D(R), [17]. 

We finally are ready for the inductive argument: so suppose 

that we have chosen the data (m,X,G) such that the size of S(m,X,G) 

is as small as possible. Suppose also that 1 E S(m,X,G). (If 

necessary, we can satisfy this assumption by replacing X by gX for 

some g e S, for S(m,gX,G) : g-I S(m,X,G), and so in particular 

IS(m,gX,G)I : IS(m,X,G)I) . 

Let H c G be the subgroup generated by S(m,X,G). Then H ~ 1 and 

H is finitely generated. If T is any transversal for the normal sub- 

group K in H, then YT = {tx ; t ~ T, x e X} is an RK-basis for MH, 
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and S = S(m,X,H) is a disjoint union of subsets S ~ Kt, t e T. Since 

1 e S m K, we have S n K ~ ~, and since S generates H ~ K, we have 

S ~tK. So S ~ Kt ~ ~ for at least one other coset Kt disjoint from 

K. We n~y thus choose our transversal T such that S ~ T contains at 

least two elements, say 1 and u. We now consider the set S(m,YT,K). 

It may be expressed as 

S(m,YT,K) = ~J (S ~ Kt) t -I 
t e T 

But 1 e (S n K) ~ (S ~ Ku) u -l, so the above union is not disjoint. 

Thus 
IS(m,YT,K) I < [ I( S ~ Kt)t-ll 

teT 

t~T 

= IS(m,X,H)] 

: IS(m,X,G)I. 

This contradicts our assumption of a choice of (m,X,G) realising 

minimum complexity. 

REMARK This proof also shows that LI ~ D(S) for any ring S, using 

the fact [17], Prop. 1.3. that the infinite cyclic group 

belongs to D(S). It follows that LI ~ D. 

2.2. Equivalence of D(R) and C(R) 

In this subsection we will prove that ~(R) = ~(R) when R is 

either �9 or F . The proof of the inclusion D(R) c C(R) is elementary, 

and applies to an arbltrar-y ring R. 

LEMMA 2.2. Let R be a commutative ring with i. Then D(R) c C(R). 

Proof Suppose G & D(R), and let K § K be a G-coverlng of 2-complexes, 

such that H2(K;R) = O. Then the cellular R-chain complex 

C,(K) of K consists of free RG-modules and RG-homomorphlsms, while 

that of K is obtained by applying the functor R ~RG - to C,(K) : 

C,(K) ~ R ~RC C,(K). 

Furthermore, since C3(K) = 0 = H2(K;R) , the boundary 

homomorphism C 2(K) § CI(K) is injective. Since G & _D(R) it follows 

that C2(K) § C (K) is also injectlve, that is H2(K;R) = O. 
I 
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Hence C 6 ~(R), as required. 

LEMMA 2.3. Let R denote either Z or]Fpfor some prime p, and 

suppose r : M § N is an RG-homomorphism between free 

RG-modules of finite rank. 

(a) There exist a free RG-module F, a G-covering K' + K of 

2-complexes, and a commutative diagram 

d 2 
C 2 (K') > CI(K') 

M ~N C" ~NSF 

of RG-modules. 

(b) Furthermore, in the case R =~ we may choose the 2-complex K 

to be almost acyclic. 

COROLLARY 2.4. Let R be either ~ or �9 for some prime p. Then 
P 

C(R) ~ D(R). 

Proof of 2.4. If in Lemma 2.3., 1 @ ~ is injective, then so is 

1 8 d 2 : R @RG C2(K') § R @RG CI(K')" But R @RG Ce(K') ~ C,(K), so 

H2(K,R) = ker(l | d 2) = 0. 

If, in addition, G e ~(R), then ker d 2 = H2(K',R) = 0, so d 2 is 

injective and hence so is 4- It follows that G & D(R), as desired. 

Proof of 2.3 .  Consider first the case R = ~. Choose ~G-bases X, Y 

for M, N respectively and a set Z of generators for G. Let F denote 

the free ~G-module with basis Z, and write ~(x) in the form 

n(x) 
~(x) = [ ~(x,i) g(x,i) y(x,i) 

i=l 

for each x e X with l(x,i) & ~, g(x,i) e G, y(x,i) e Y. 

For each pair (x,i) choose a word h(x,i) over the generating set 

Z of G representing the element g(x,i) of G and define W(x) to be the 

word n(x) 

W(x) = ~ h(x,i) y(x,i) X(x'i) h(x,i) -I 
i=l 

over the disjoint union Y u Z. 
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Let K be the geometric realisation of the presentation 

<Yu Z ] W(x), x~ X~ (i) 

and let F = Zl K be the group presented by it. 

The map Z + G extends to a map 8 : Y u Z + G with 8(Y) = {i} 

and so to an epimorphism 8 : F---->> G (since each relator W(x) is a 

product of conjugates of elements of Y.) 

Then the covering K' § K corresponding to ker 8 is a G-covering, 

and the second boundary homomorphism of the cellular P-chain complex 

of K' is given by the matrix of Fox derivatives of the presentation 

(i), reduced to 2G via the canonical map 2F + 2G. It is easy to check 

that this matrix determines the composite M § N C-~ N @ F with respect 

to the bases X, Y, Z for M, N, F respectively. 

Now consider the case R =IF . By Lemma 2.5. below we may choose 
P 

a ~G-homomorphism 40 : M 0 § N O between free ~G-modules and IFpG- 

isomorphisms 

p :iF p 8~ M 0 + M, ~ :IFp 8~ N O + N 

such that 9 -I o $ o B = 1 @ 40 : ~p 8~ MO+ IFp 87 NO' and such that 

+~ N O is split injective. Applying the above 1 @ 40 : ~ 87G M 0 8~G 

argument to #0 gives a G-covering K' § K such that the cellular 

-chain complex of K' has the desired form, which proves (a). It 
P 

also follows from the fact that (i 8 40) : ~ 87G MO§ Z @~G NO is split 

injective, that K is almost acyclie, which proves (b). 

LEMMA 2.5. Let ~ : M § N be an r G-homomorphism between freeiF Q- 
P P 

modules of finite ranks m and n respectively, such that 

= i @ ~ : rp ~pG M § ~pG N is injective. Then there exists a 

~G-homomorphism 40 : M 0 + N O between free ~G-modules, and iso- 

morphisms p : Fp 8~ M 0 + M, 9 : ~p 8~ N O § N, such that the square 

18~ o 
@~ M 0 > 1 m 02 N ~Fp p 0 

M > N 

commutes, and such that ~-0 = i 8 40 

injective. 

: �9 8~G M 0§ 8~G N O is split 
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Proof Choose an ~ G-basis X of M, and let X = s be the induced 
P 

basis of M = Ic-p ~G M, where s : F G ~ is the augmentation map. 
~p P P 

Since ~ is an injective map between ~ -vector spaces, the set ~(~) 
P 

extends to a basis Y of N = ~p ~pG N ; and the matrix of ~ with 

respect to the bases X and ~ has the form 

where I denotes the identity m • matrix. 
m 

The basis ~ may be lifted to a basis Y, say, of N, such that 

c(Y) = ~. Let (fij) denote the matrix of r with respect to the bases 

X and Y. Then 

Since the canonical map ~ : Z~ * ~G/p~G ~ IF G is surjective, we 
P 

may choose Fij E ~G for all (ij), such that ~(Fij) : fij" Let 

r : (2G)m § (2G)n denote the ~G-homomorphism defined by the matrix 

(Fij) , and let ~ : IFp @~ (~G) m ~ (~pG) m + M, 

: % @~ (~G) n ~ (FpG) n § N be the isomorphlsms obtained by sending 

the canonical bases onto X, Y respectively. Then clearly the square 

18r I 

(F G) m , (I c G) n 
P P 

M ~ N 

= 1 @ r : 2~ @~G (~G)m + ~ @~G (~G)n need not in 

Define an integer matrix (blj) by 

commutes. 

The map ~1 
general be split injective. 
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Then each b.. is a multiple of p, since 
13 

Now let ~0 

Then ~0 

mod. p. 

: (~G) TM § (NG) n he given by the matrix (Fij + hij). 

: ~m + ~n is given by the 2-matrix 

so is split injective, while (i @ ~0 

This completes the proof. 

) = (i 8 #I ) : (FpG) m § OFpG) n. 

2 . 3 .  Proof of Theorem 2 

Assertion (i) of the theorem is immediate, and requires no 

further comment. We will first prove the theorem in the case where A 

is finitely generated. This follows from some easy remarks. 

(a)  ~ (A 1 @ A 2) = ~ (Al)n ~ (A2) , 

because H 2 (X ; A 1 0 A 2) = H 2 (X ; A l) $ H 2 (X ; A 2) for any 

2-complex X. 

(b) C (~/pn~) = C (Y) for any n ~ i, 
_ _ p 

because H 2 (X ; ~/pn~) = 0 if and only if H 2 (X ;IFp) = O, for 

any 2-complex X. This is seen by an easy inductive argument, using 

the long exact sequences. 

0 § H 2 (X ; ~/pn-l~) § H2 (X ; ~/pn~) § H2 (X ; Ep) + ... 

(c) ~ (~) ~ ~ (rp) for every prime p; 

by Theorem I, because any indicahle group is p-indicahle for every 

prime p. 

Now (a) and (b) together show that C (A) = C QF ) whenever A is 
-- p 

a (non zero) finite abelian p-group. Then (a) and Theorem 1 show 

that the theorem holds for any finite A. If A is finitely generated 

but infinite, then 

where each A, i s  a f i n i t e  a b e l i a n  p i - g r o u p  f o r  a ( p o s s i b l e  empty) s e t  
1 

of primes {PI' "''' Pn }" Hence 
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C (A) : C (~)~ ... ~ C (N) n C (~ ) ~ ... o C (~pn) by (a) 
. . . .  Pl 

= C (~) by (c) 

A direct limit argument extends the result to the case of 

infinitely generated A: we have H 2 (X ; A) : 0 if and only if 

H 2 (X ; B) : 0 for every finitely generated subgroup B of A, for any 

2-complex X. Hence C (A) is the intersection of all the classes C (B), 

where B varies over all finitely generated subgroups of A. In partic- 

ular, if A contains elements of prime order for an infinite set w of 

primes, then 

= r LI (Fp) by Theorem 1 
p -w - -  

= LI 

= C (~) 

c ~] c (B) by (c) 

= C (A). 

REMARK It follows immediately from Theorem 2 that a group G is 

conservative if and only if G ~C (Fp) for every prime p. By Lemma 

2.3. (b) this holds if and only if every G-covering of an almost- 

acyclic 2-complex i salmost-acyclic, so our definition of conservative 

agrees with that in [6]. 

2.4. Proof of Theorem 3. 

(i) D (R) c C (R) by Lemma 2.2. 

= C (2) by Theorem 2 

= LI by Theorem i 

c D (R) by the remark in 2.1. 

(ii) Let ~ denote the p-primary component of R. Then R is isomorphic 

to a finite product of rings Rp (pln), and it follows that 

D (R) = ~ D (R_). We are thus reduced to the case where R = R for 
-- pl n -- p P 

some prime p, so R has characteristic pk for some k >I I. Since we 

already know, from Lemmas 2.2. and 2.3. and Theorem 2, that 

D (R) ~ C (R) -- _C (Fp) = D (Fp), we argue by induction on k to show 

that D (Fp)c _D (R). 
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If k : I, then every projective RG-module is a projective 

G-module and every RG-homomorphism is an r G-homomorphism. More- 
P P 

over, the natural L-isomorphism OFp ~ G -) m (R | -) implies that 
P 

D ~Fp)s h (R). 

Now suppose k ~2 and D ~F ) ~ D (S) for any ring S of 
-- p -- 

characteristic pk-l. Let I denote the annihilator of p in R so that 

the ring S = R/I is isomorphic (as an R-module) to the ideal pR of R. 

We assume that the group G belongs to D ~F ) and we consider an -- p 

RG-homomorphism # : M + N between free RG-modules such that 

i @ ~ : R @RG M + R @RG N is injective. 

The exact sequence 0 + I § R + R/I § 0 together with the map 

: M + N gives rise to a commutative diagram 

0 § IM + M § M/IM § 0 

0 § I N  ~ N § N / I N  § 0 . 

Its rows stay exact. 

First note that r is a map between free %G-modules and 

1 | ~I : R @RG IM + R @RG IN is injective being a restriction of 

18~. 

Using again the natural isomorphism (rp ~ G -) -" (R ~RG -) it 

P 
follows from G ~ D (rp) that r is injective. 

Secondly, the map #S is an SG-module homomorphism between free 

SG-modules. Now there is a commutative square of additive group 

homomorphisms 

S ~SG M/IM IS ~ r > S ~SG N/IN 

pR ~RG M ~ ~ pR ~RG N 

where ~ is a restriction of 1 8 4. Hence 1 S ~ ~S is injectlve. Also 

S has characteristic pk-l, so ~ 0Fp) ~ D (S) by inductive hypothesis. 

Thus ~S is injective and so is ~ by the Five - Lemma. 

This shows that ~ (%) ~ ~ (R) and the proof is complete. 

83 



HOWIE - SCHNEEBELI 

3. Applications 

3.1. Whitehead's question 

Let L be an aspherical 2-complex and K a subcomplex of L. An 

open question of J.H.C. Whitehead [20] asks whether K is necessarily 

itself aspherical. Let G denote the kernel of the inclusion-induced 

map i : ~IK + Wl L. Then a theorem of Adams [i] says that, if K is not 

aspherical, then G has a non-trivial perfect subgroup. Indeed, Adams' 

construction determines a normal subgroup PA(G) for any group G, 

namely the smallest normal subgroup N ~ G such that G/N is conservat- 

ive. The subgroup PA(G) is not in general perfect, but it is perfect 

in the case G = Ker i above. 

Now Theorem 1 gives a purely group-theoretical interpretation of 

PA(G): it is precisely the locally indicable residual r(G). Note 

that r(G) is not in general equal to the maximal perfect subgroup 

PI(G), even in the situation of Whitehead's question. Indeed, Adams 

[i] gives an example of a pair K E L with L (and also K) aspherical, 

and PI(G) = [G,G] : {i}. But in this example G is a torsion-free 

1-relator group, so by a theorem of Brodski~ [5] is locally indicable, 

in other words r(G) = {i}. 

Now it is unknown whether G = Ker i is always locally indicable 

in the situation of Whitehead's question, so Adams' result may turn 

out to be stronger than has been generally realised. 

If K c L and G are as above, then the regular covering K G of K 

corresponding to G ~IK is isomorphic to a subcomplex of the 

universal cover L of L, which is contractible. In particular, K G is 

almost-acyclic. Thus the following results generalise [4], Theorem 

3.6. and Corollary 3.7. 

PROPOSITION 3.1. Let X be a 2-complex and G a normal subgroup of wlX 

such that the corresponding regular covering X of X is almost-acyclic. 

Then (zlX) / r(G) has eohomological dimension at most 2. 

Proof Let X' denote the covering of X corresponding to the subgroup 

r(G) of G = ~I(X). Then H2(X') = 0 because H2(X) = O and G/r(G) e ~. 

Also HI(X') = HI(r(G)) = O, since r(G) is perfect [iO]. In other 

words, X' is acyclic, so the cellular chain complex of X' is a free 

~(~i X /r(G))-resolution of ~, of length 2. 
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COROLLARY 3.2. Let X and G he as in the Proposition, and let A be a 

finitely generated central sub~rou p of~iX. Then there exists a 

finitely generated perfect subgroup P of G such that A/(A N P) is free 

abelian of rank d ~ 2. Furthermore, we may assume d ~ 1 unless 

~I(X) / r(G) ~ �9 x ~ and G has infinite index; and we may assume 

d = O unless [~i x, niX ] / r(G) is free. 

Proof By ~] and the Proposition, the centre of F = ~I(X) / r(G) is 

either: 

a) F if F is abellan, 

b) trivial; or 

c) ~, only if IF,F] is free. 

Let B be the kernel of A + niX + F. Then B is a finitely 

generated subgroup of r(G), so is contained in a finitely generated, 

non-lndicable subgroup Q of G, which is in turn contained in a 

finitely generated perfect subgroup P of G [iO]. Since P ~ r(G), 

we have A/(A n p) ~ A/B, which is a finitely generated central sub- 

group of F. The conclusions of the corollaz-y are immediate in cases 

b) and c) above, but some further comment is necessary in case a), 

when F is abellan. Since cd(F) ~ 2, either F has rank i, so A/B has 

rank ~ i, or F ~ ~ • 2. In the latter case we must also prove that G 

has infinite index in ~iX. But if I~IX : G I is finite, then 

G/[G,G] = G/r(G) ~ 2 • ~. Also H2(G) = 0, so it fonows [15, 16] 

that G has the same lower central factors as the free group of rank 2. 

But this contradicts G/IG , [G,G]I = G/r(G)~ 2 • ~ (since r(G)is 
h. 

perfect ~0, 17]. 

3.2. Perfect projective modules 

If G e D(R) and M is a perfect projective ~G-module, then con- 

sideration of the map R 8~ M § 0 shows that R 8~ M = O, and so M = O. 

In this section we use this remark and the results of section 2 to 

show that no nonzero perfect projective ~G-module exists for a 

large class of groups G, and apply the result to a question in topology. 

PROPOSITION 3.3. Let P be a perfect projective ~G-module. Then 

(i) There exists a subgroup H of G minimal with respect to the 

property that P is perfect as a ~H-module. 
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(ii) 

(iii) 

(iv) 

(v) 

The group H is trivial if and only if the module P is zero. 

No nontrivial homomorphic ' image of H is locally p-indicable 

for any prime p. 

The group H is perfect. 

If P is finitely generated as a ZG-module, then H is finitely 

generated as a group and has no proper subgroup of finite 

index. 

Proof (i) We consider an idempotent endomorphism # : F + F of some 

free ~G-module F, factorising as F 7> P > > F. Fix a 

~G-basis X of F. For any x & X define the set A(x,X) to consist of 

all the elements I. ~ 0 in ~G which occur in the representation 
1 

m(x) 
~(x) = ~ x i x i . 

i=l 

For any subgroup H c g let IH r ~H denote the augmentation ideal 

and let JH = ~G @2H IH denote the left ideal of ~G generated by IH. 

Then N(G/H) = gG @~H 2 = ~G/JH and so P is perfect as a ~H-module if 

and only if the set A(X) =xVX A(x,X) is contained in JH. 

If H 0 g H I g ... is a descending chain of subgroups of G, with 

intersection H ; O H, then JH 0 ~ JH 1 a .... is a descending 

chain of left ideals of gG, and it is easy to check that its inter- 

section is JH. Assertion (i) is now an immediate consequence of 

Zorn's lemma. 

(it) Clearly J{l} = {0}, so H = {i} if and only if A = ~, in other 

words, if and only if P = {0}. 

(iii) This follows from the remark at the beginning of the section, 

for if K ~ H with H/K locally p-indicable, then H/K ~ ~(F ) by 
P 

Theorem ! and P = ~ e2K P = ~(H/K) @2H P is a perfect projective 

~(H/K)-module. Hence P = O, so P is a perfect ~K-module, and so 

K = H by minimality of H. 

(iv) If H is not perfect, then there exists a nonzero homomorphism 

H + C for some prime p, contradicting (iii). p- 
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(v) Since A(X) = JH, each r may be expressed as a finite sum 

r(x) 

r : [ g (x) (i - he(x)) 
~:i 

(g (x) e G, ha(x) e H). Since P is finitely generated, the basis X 

may be chosen to be finite, so the set A(X) is finite, and there are 

only finitely many elements h (x) of H involved in the above re- 

presentations. Let K c H be the subgroup generated by the elements 

h (x). Then A(X) c JK, so P is a perfect ~K-module, and so K = H 

by minimality. 

Finally, suppose N is a normal subgroup of finite index in H. 

It follows from [i~ , Theorem 3 that there are no nonzero, finitely 

generated, perfect 2(H/N)-projectives, and the argument used in (iii) 

above shows that N = H. 

COROLLARY 3.4. (a) If every nontrivial, finitely generated subgroup 

of G has a proper subgroup of finite index, then there are no nonzero, 

finitely generated, perfect projective ZLG-modules. 

(b) If G has a transfinite subnormal series G = G > G m ... such 
0 1 

that ~ G = {i} and each G /G + 1 is locally p -indicable for some 

prime p~, then there are no nonzero perfect projective ~G-modules. 

Suppose X, Y are Cockroft 2-complexes with isomorphic fundament- 

al groups, such that Y is aspherical. It is an open question [4], 

Question 2, whether X is necessarily also aspherical. The answer is 

known to be in the affirmative if both X and Y aye finite [3], or if 

G = ~i X has no perfect subgroups [4]. We generalise the latter 

result as follows. 

THEOREM 3.5. Let X be a Cockroft n-complex (n ~ 2) such that 

cd(WlX) ~ n. Then ~n(X) is a perfect projective ~(~IX)-module. 

Proof Let X denote the universal cover of X. Then H X ~ ~ X E ~ X 
n n n 

by the Hurewicz theorem, and H.X = 0 for 1 ~ i ~ n - i. Hence the 
l 

cellular chain complex CeX yields an exact sequence 

0 § ~ X + C X + ..... § C X § ~ + O. 
n n 0 
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Since cd(~iX) ~ n and each C.X is a free ~(~iX)-module, it 
l 

follows that ~n X is projective as a ~(~iX)-module. (Actually, this 

part of the proof requires only cd(~iX) ~ n + i). 

Now add cells in dimensions (n + i) and above to X to obtain an 

aspherical complex Y. From the commutative diagram 

n+2 n+l n n 

C n X �9 CX Cn+2 Y �9 Y ...... > Hn n 

d 

we deduce that the map Cn+IY + CnY = CnX is the zero map and hence 

~(~iX) (~n X) = 2 @~(~IX) (coker d) 

= coker d (by right exactness) 

= Hn+IY 

= Hn+I(~IX) 

= 0 (since cd(~iX) ~ n). 

COROLLARY 3.6. I__f, in addition to the hypotheses of the theorem, the 

group G = ~i x has a subnormal series as in Corollary 3.4. (b), then X 

is aspherical. 

4. Example s 

4.1. 

Every finite p-group is locally p-indieable [17], whereas the 

class LI contains only torsion-free groups, as does the class 

II(]Fp) n LI~Fq) where p and q are distinct primes. It is not a 

priori clear that the class LI~Fp) contains torsion-free groups which 

are not in LI, or even that the class LI(Fp) n II~Fq) strictly con- 

tains LI, but we will give examples in this section to demonstrate 

that both inclusions are strict. More generally, for any nonempty 

set ~ of primes, let LI(~) denote the intersection N LI~Fp), 

and TF the class of torsion-free groups. Then we will show that the 

classes L_II(~) n T_[F, for finite ~, are all distinct and properly con- 

tain LI. (For infinite ~ it is clear that LI(~) n TF = LI(~) = LI). 
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Let n >. 1 be an integer, and let G n denote the fundamental group 

<a, b, c I an = bn = cn = abe 

of the Brieskorn 3-manifold [13] 

M = M(n,n,n) = (ZI,Z2,Z3) & r ; Z1 Z 3 IZ 1 IZ 2 IZBI = 1 . 

LEMMA 4.1. If n is divisible by the integer m Z 3, then G n ha__~s ~ 

locally indicable normal subgroup of index m. 

Proof. The 3-manifold M is a nilmanifold if n = 3, or hyperbolic if 

n > 3 [13]. In either case it is aspherical and hence so is any 

covering manifold. Now suppose K is an indicable subgroup of G n. 

Then the corresponding covering M K of M is aspherical and HI(M K) = 

HI(K) ~ O. It follows [12], Theorem 6.1. that K = ~IMK is locally 

indicable. Thus it is sufficient to find an indicable normal sub- 

group of index m. 

Let ~ = e 2~i/m be a primitive m'th root of unity, and define a 

(right) affine action of G on the complex plane r by 
n 

Z a = Z~ 

Z b = Z~ + 1 

Z c : Z~-2 + a -2. 

Provided m ~ 3, these three transfor~nations satisfy the defining 

relations of Gn, and so do indeed define an action of G n. The image 

of G n in Aff(@) is a Bieberbach group whose translation subgroup T is 

nontrivial and of index m. Thus the inverse image of T in G is an 
n 

indicable normal subgroup of index m. 

COROLLARY 4.2. The group G is locally p-indicable for any odd prime 
n 

factor p of n. If 4 In then % is locally 2-indicable. If n ~ 3 

then G is not locally indieable. 
.... n - -  

Proof. The first two assertions are immediate from Lemma 4.1., since 

the classes LI(~p) are extension-closed. For the third assertion, a 

direct computation shows that 

G ab s (~/n~) 2 x ~/(n - 3)~, 
n 

which is finite of order n2]n - 31, provided n ~ 3. 
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LEMMA 4.3. If n > 3 and p ~ 3 is a prime divisor of n - 3, then G is 
n -- 

not locally p-indicable. 

Proof, Write n - 3 = m.q, where q is a power of 3, and 3 ~m. Then 

let K be the kernel of the map ~ : G ">> ~/m~ given by 
n 

~(a) = ~(b) = ~(c) = 1 + mR. Note that K has a transversal in G con- 

sisting of the central elements a in (0 $ i ~ m - i), since m and n are 

coprime. It follows that [K,K] = [K,G], so from the exact 

sequence [15, 16] 

K G 
0 = H2(~Im~) -+ ~ -~ 2 / m ~  --,- 0 

[K,G] [G,G] 

of abelian groups, we can deduce that 

IKab I = IK : [K,G]I = IGabl / m = n2q, which is comprime to m. Hence 

G is not locally p-indicahle for any prime factor p of m, that is for 
n 

any prime factor p ~ 3 of n - 3. 

COROLLARY 4.4. Let K be a nonempty finite set of primes. Then there 

exists a torsion-free group G such that H is precisely the set of primes 

p for which G is locally p-indicable. 

Proof. Let n he the square of the product of all the primes in 9, and 

take G = G . Then G 6 LI(H) by Corollary 4.2., and is torsion-free 
n n 

since M is an aspherical 3-manifold. Conversely, suppose p is a prime 

LIOFp). Then certainly Pl IGabl = n2(n - 3). If such that G n __ 

p I (n - 3) then we must have p = 3 by Lemma 4.3., so in any case P I n, 

that is p e N. 

4.2. 

Higman's group H = <a,bsc,d I a 2 = ab,b 2 = b C,c 2 = cd,d 2 = d e > 

is not locally indicable (indeed not locally p-indicable for any 

prime p) so H is not conservative, by Theorem i. In particular, by 

the Remark in 9.3., there exists an H-covering K + K of 2-complexes 

with K almost-acyclie and K not almost-acyclie. Indeed, the arguments 

of [17], Proposition 1.9. and of 2.2. enable us to construct an 

explicit example of such a covering. 

Let K he a 2-complex with a single 0-cell; 8 1-cells s, t, u, v, 

w, x, y, z ; and 4 9-cells ~, 8, Y, 6, with attaching maps given 
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by the words 

respectively. 

: wsws-ltw-lt-lz-lv2zv-2 

8 : xtxt-lux-lu -lw-ls2ws-2 

Y : yuyu-lvy-lv-lx-lt2xt-2 

6 : zvzv-lsz-ls-ly-lu2yu -2 

Let K § K be the H-covering defined by the epimorphism 

ZlK ,> H which maps s, t, u, v to a, h, c, d respectively, and each 

of w, x, y, z to i. 

Then K has O-cells Ph (h e H) ; 1-cells Sh, th, Uh, Vh, Wh, Xh, 

Yh' Zh (h & H) ; and 2-cells eh' 8h' Yh'6h (h e H). The 1-cells 

Sh, th, Uh, v h join Ph to Pha' Phb' Phc' Phd respectively, while 

Wh' Xh' Yh' Zh are loops based at Ph" The 2-cells are attached along 

paths lifted fmom the attaching maps of a, 8, y, 6. For example 

. . . .  I-I 
~h : WhShWhaShlthWh~thlZhlVhVhdZhd2VhdVh 

The action of H on K is by left translation of the indices, 

thus: ~(Ph ) = Pgh etc. The 2-complex K is cleanly almost-acyclic, 

but H2(K) ~ ~H, generated by the 2-cycle 

~I + 81 + Y1 + 61 - ~a - 8b - Yc - 6d" 
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