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MINIMAL BOUNDARIES ENCLOSING 

A GIVEN VOLUME 

Eduardo Gonzalez, Umberto Massari, Italo Tamanini 

We prove some facts concerning surfaces of minimal 
area bounding regions of prescribed volume in ~n. The 
main result we prove is that the mean curvature of such 
a surface is constant, if possibly a discontinuous funct- 
ion of the enclosed volume. The boundary behaviour of the 
solutions is also discussed. 

Introduction 

In this paper we study sets minimizing surface area 

with prescribed volume. This kind of problem naturally 

appears when considering (parametric) capillary surfaces 

in the absence of gravity (see [2], [3], [5], [6] for the 

non-parametric case). Soap bubbles constitute a typical 

example. 

In Section i we recall some definitions and results 

concerning the existence and regularity of solutions. The 

constancy of the mean curvature of the free boundary of 

any such solution constitutes the main result of Section 

2. We prove it by showing that otherwise it would be pos- 

sible to decrease surface area by removing material from 
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2 GONZALEZ et al. 

more curved regions to less ones. In Section 3 we discuss 

the boundary behaviour of the solutions; in particular, 

we show that any solution will meet tangentially the 

boundary of the given domain if it does not assume the 

prescribed boundary values. Finally, in Section 4 we give 

an example of non-uniqueness of the solutions to this 

problem. The same example shows that the mean curvature 

of the solution may be a discontinuous function of the 

enclosed volume. 

i. Let ~ be an open bounded subset of ~n with locally 

Lipschitz boundary 3~ and let r be a (Borel) subset of 

~ Our problem will then be: 

(P) 

Here 

E, P~(E) 

to minimize ~(E) = P~(E) + fI@E-~rldHn_l , 

among the Borel subsets E of ~ satisfying 

IEI = v, v < 

~E denotes the characteristic function of the set 

is the perimeter of E in ~ , i.e. 

P~(E) : sup { fdiv g(x)dx, g & [CIo (~)]n, IgI~ i} 
E 

As it is well-known, every set E with P~(E) < + ~ has a 

trace integrable on ~ , which we still denote by ~E 

(see [i], [4], ). 

Roughly speaking, we are looking for a solution set 

E taking on the prescribed boundary value F , such 

that the area of its free surface ~En~ yields a mini - 
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mum when compared to the area of the free boundary of any 

admissible set, having the same volume in ~ and the sa- 

me trace on ~ . In our formulation, the "Dirichlet con- 

dition" F is actually retained in the functional itself, 

as a "penalty term". 

Alternatively, we might prescribe as "boundary con- 

dition" a set M of finite perimeter, thus looking for a 

solution set E, satisfying the volume constraint IEI = v 

and minimizing the perimeter in the closure of ~, among 

the sets which, outside ~ itself, do coincide with M 

(i.e. E - ~ = M - ~). 

Our starting point will be the following (known) re- 

sult: 

THEOREM i. For every v < I~I and F c ~ there exists 

a solution E to problem (P); moreover, the boundary DE 

is analytic in ~ , except perhaps for a closed singular 

set whose Hausdorff dimension does not exceed n - 8. 

(See [i13, [123, [133, [153 ). 

2. Now assume that x ~ ~ DE n ~ is a regular point of 

the free boundary of a solution E to problem (P); that 

is, there exists a cylinder C centered at x o, C=B Oxl, 

with B an n-I dimensional ball and I an open inter- 
O 

val in ~, such that E nC = epigraph of an analytic 

function u : B 0 § . It is well known (see [7], [i0]) 

that in this case there exists a local Lagrange multi- 

plier ~ , by means of which our constrained problem (P) 

can be locally converted into a free one; that is, u is 

a minimum of the functional 
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I(v) = /~i+ IDvl 2 + lS v 

B O Bp 

with v ~ BV(Bo) (the space of functions of bounded varia- 

tion on B 0 ), v = u on ~B 0 , graph v r (i.e. Iv-ul 

small). 

It follows 

= Du 
div Tu = % on B O , where Tu ~i + IDul 2 ; 

that is, ~ coincides wit___~h n- i times the mean curvature 

of DE in C (measured with respect to the inner nor - 

mal, so that convex sets have non negative boundary mean 

curvature). 

The local character of % can be easily understood with 

the aim of the following simple example: consider problem 

(P) with ~ = B R and r = @ ; then, for each v, its 

solution will clearly be any ball B 0 CUR, with 

O = (~I v)i/n 

On the other hand, the minimum of the functional 

~(E) + ~ ]El , 

with E=B R uncostrained, is E = @ (corresponding to 

n n 
~ - ~ ) or E = B R (corresponding to % < - ~ ). There 

follows the non-existence of a "global multiplier" conver- 

ting the constrained problem (P) into its usual free-as- 

sociated. 

Nevertheless, the local multiplier ~ derived above 

does not actually depend on DE n C : the mean curvature 
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of DE N~ is the same at every regular point. This remar- 

kable fact (which is rather obvious for connected regular 

parts of ~En~ ) can be suggested by the following 

simple example: let ~ be the upper half-space in ~3 and 

let F be the union of two disjoint disks contained in 

3~ . Then the solution E is the union of two pieces of 

a suitable ball in ~3. In general we have the following 

THEOREM 2. Let E be a solution to problem (P), x I and 

x 2 regular points of DE n ~ Then 

div TUl(X I) = div Tu2(x2) , 

where Ul, u 2 are functions describing DE near x I 

and x 2 , as seen in the preceding discussion. 

The following results will be used in the proof of theo- 

rem 2; let 

I>(v) = f / 1  + IDvl 2 + ~ f v +  f l v -  r 
B R B R 3B R 

with BRC~ n-I , ~gC~ Ig]R, v~BV(BR). Then: 

(~) 

(B) 

n-i 
if u minimizes I 1 , then Ill ~< R ; 

n-2 then there exists a unique function if {%{~< R , 

u minimizing 1% , which moreover satisfies u =~ 

on ~B R. 
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Part (~) follows integrating by parts in the equation 

div Tu = I; while (B) can be proved using e.g. the 

method in [9] 

Proof of Theorem 2 

As x I and x 2 are regular points of DE in ~ , there 

will be two balls BI, B 2 c ~n-i together with two open 

intervals Ii, 12 c R such that 

i) x i is the center of the cylinder C i = B i x I i 

and CI ~ C2 = ~ 

ii) E ~C i = epigraph of a suitable function 

u.~ C2(Bi, I i) 
I 

iii) u. minimizes 
i 

I (i)(v) = //I + IDvl 2 

B~ 
1 

+ I i /v + / Iv-uild Hn_ 2 
B i ~Bi 

with respect to any perturbation v eBV(B i) whose graph 

is contained in Ci; where I i is a suitable Lagrange 

multiplier, as seen above. We have to show that l I = 12 �9 

We can assume that the radius R~ of B. is so small that 
1 1 

iv) I(min u i) - R. , (max u i) + R C I i 

now suppose 
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v) 0 ,%< %1 < %2 

and fix Ri in such a way that (see(s) above): 

n-I n-2 
xi 

Now, if l 

then, using 

u ( i)  of 
P 

n-2 
is chosen in the interval ( ~I'. ~.~i A 12 ), 

property (B), we can find an unique minimum 

(,i) f~+lDv] 2' +Xfv + f lv-ui l  
B(i) B(i)  ~B(i) 

0 P p 

on B6 i) ( c Bi, 
(i) 

~Bp o 

( i) 
for any O ~< Ri; moreover u 

' 0 
= u. 

1 
on 

Call 

5(i) 

P Ii l) 
on 

on 

B (i) 
P 

B.- B (i) 
i O 

Then, for every P < RI ' we obtain from ([83, section 3) 

5 (1) <u I on B 1 , while 5(2)~ u2 on B 2 if P ~ R2 
0 P ~ " 

Moreover, from iv) and property (~), it follows easily 

that graph u [i)" " is always contained in C.. 
p I 

Defining 

v(i) <i) 1 
= flui- 

B~ i) 
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8 GONZALEZ et al. 

we claim, that for suitable radii rl, r 2 there holds 

(I) (2) 
vi) v = v 

r I r 2 

To see this, minimize ( .I ) with O = RI' thus getting 

u (I) and the corresponding value v(1)> O; then start - 

ing with O = R2 ' minimize ( .2 ) with 0~< R2 decrea- 

sing to zero, thus getting u (2) and the corresponding 
0 v(2) values v (2) ; as O § O implies § O, there 

0 O v(2) < v(1) 
will be a value r2, O<r2<R 2 such that O< r2 RI " 

~I) .I 
Let's then come back to the solutions u of ( ), 

with P ~< R1 decreasing to zero: p+O implies again 

v (I) § 0 so that, in view of the continuity of v (I) 
P P 

with respect to 0 (which can be easily checked) there will 

be a value rl < R1 such that vi) holds true. 

If we now set 

then vi) implies precisely 

EAE cC ~, while 

IE*I = IEI; clearly, 

X 2 
P~(E) - P~(E*) = f + IDUll + f~l +IDu2 12 

B (I) B (2) 

r I r 2 
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( / /1 + IDu(1) I 2 

B(1) rl 

r I 

f /i + [Du (2) I 2 ) + 
B(2) r2 
r 2 

u (I)) + ~f (u~-u (2)) 
+ ( kf (u I- rl r2 B(1) B(2) z J 

r l  r 2 

(note that the last contribution vanishes, in view of vi)). 

In view of the strict minimality of u (I) (2) (see r I , Ur 2 (.i)) we get P~(E)>P~(E*), which yields the expected con- 
tradiction to our assertion v). 

A similar argument applies in the cases 11 < 12 ~ O, 

11 < O < 12 

3. Using a general regularity result for minimal bounda- 

ries in presence of smooth obstacles, we can show that if 

a solution E to problem (P) does not assume the prescri- 

bed boundary value F , then it must be tangent to ~ . 

Precisely: 

THEOREM 3. Let O ~ ~ be a regular boundary point 

(i.e. ~nBr(O) is a cl-manifold for a suitable 

r >0). If 0 # F , then there exists 0 < p < r 

such that DE m B0(O) is als____o of class C 1 (possibly 
o 

empty). (Similarly, if 0 �9 F , then ~(~ - E) ~ B0(O) 

is of class CI). 
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Proof. We observe that ~ =~n_E minimizes perimeter in 

Br(O) , with a volume constraint and with respect to the 

obstacle L =~n _ ~; that is to say, for every set F 

s.t. FAE~CBr, FDL and IF~Br[ = IE~Brl , there 

holds: (E) ~ (F). The result is then a consequence 
PB r PB r 

of Theorem 2 of [16] , which works (essentially with the 

same proof) in the presence of a volume constraint as well. 

RE~RK. Consider problem (P) with ~ = {(y,t) : 

: y~A, t >O } and r= {(y,t) : either y ~ ~A and 

O~tg~(y) or y ~A and t =0 } (non-parametric case) , 

where A is a domain in ~n-i with smooth boundary and 

is a continuous positive function on ~A. If the mean 

curvature of ~A is strictly positive, then the (uniqu~ 

solution E of : 

P~(E) + f[~- ~Id Hn_ I -> min 

(the "uncostrained solution") is known to satisfy the 

boundary condition, i.e. ~ = ~ on ~. 

Moreover, using the non-parametric theory (see e.g. [9]) 

one can derive the existence of ~ > 0 (depending on 

the data ~A and ~) s.t. if E v denotes the solution to 

(P) corresponding to the constraint IEI = v, then 

Iv-l~II < g implies CE v = ~i~ on ~ . 

4. We can expect neither uniqueness of solutions to 

problem (P) nor continuous dependence of the mean curva- 

ture of DE n ~ as a function of the volume v . Con- 

sider the following 
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Example. Let the domain Q c ~n be constituted by two 

balls of the same radius R connected by a narrow cylin- 

drical pipe, r being the radius of the circular section 

of the pipe and 2R its length. Let F be the surface 

of the left ball (figure A). 

F 

2r 

a 

As the volume v increases starting from v = O, the so- 

lution E v (whose free-boundary is of course a spherical 

cap) fills the left ball, partially at first and then 

completely; then it begins to enter the pipe (figures B 

and C). 

@ O@ 0 
b c 
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However, it r is small enough, then the solution E 
v 

cannot continue to expand in the pipe while remaining 

connected. Precisely, there will be a first value v =v' 

admitting two different solutions with different mean 

curvature (figures D and E). 

d e 

A further increasing of the volume will give rise to a 

contraction toward the left ball together with an expan- 

sion in the right ball of the disconnected solution E~, , 

until it coincides exactly with the union of the two 

balls (figures F). 

@ @@ @ 
f g 
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GONZALEZ et al. 13 

Then the solution enters again the pipe symmetrically 

from the opposite sides (figure G), until a new disconti- 

nuity appears, corresponding to a second value v =v" 

(figures H and I). 

h i 

The connected solution E2,, will then expand and 
v 

eventually fill ~ . 

When n= 2, the "mean curvature versus volume" diagram 

results as follows: 

x 

r - 1  . . . . . . . . . . . . . . . . . .  

R - ~  . . . . . . . . . . . . . . .  

I ; I 
[ I I 

v' o)nR n 

-m-' 

_i.-I 

i 
I 
] 

I 
I 
l 

i 

V" V 
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