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1. Introduction and Results 

Consider the Schr6dinger operator H'.=Ho+Vs+VL in the Hilbert space ~ :  
=lS(Nn), h e n  where H 0 . . = ( - d ) ) C ~ ( N  n) and V s and V L are real-valued func- 
tions, satisfying the following assumptions: 

Let NeN,  then 

~(x)NVs(Ho + 1) -~ is bounded for some be(0,�89 
(S) ( ( x ) 2 N r s ( x ) = o ( I x l )  ' Ixl--'~ 

and 
N + 2 +  n 

[ VLe C [2])(N ~) such that 

(g) ~lD~r(x)l<c~(x) -I~1-~ for e>0, 
/ 
(suitable c~ and any multiindex e with [c~] = N + 1. 

Note that above we used the notation (x )  for the Sobolev weight (l+[x]2) ~ 
and for the associated self-adjoint multiplication operator. (We will use it in 
this way throughout the paper). 

Note also, that H is a self-adjoint operator in ~r with domain the Sobolev 
space D(H) = 9f2(N~). 

Let )~e C~ with Z(2)=0 if 2<20 and Z(2)= 1 if 2>__220 for 20>0 suitably 
large. We are interested in the time evolution 

4)(t)'.=e-ial)~(H)~o for teN,  qSe~;  

which is the (Hilbert space)-solution of the Schr/Sdinger equation 

d 
- i ~ t  (~(t)=H(o(t), teN, O(O)=z(H)r 
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By the Kato-Agmon-Simon Theorem (cf. [19], Theorem XIII.58), H has no 
positive eigenvalues, and it is also known (cf. Cycon [5], Mourre  [14] or 
Perry-Sigal-Simon [17]) that H has no singular continuous spectrum. Hence, 
for any 2 o > 0  and any q~L2(N n) )~(H)~b lies in the absolutely continuous 
spectral subspace for H. 

Hence )~(H)~b should be a scattering state, and one expects that it leaves 
every bounded region of IR ~ eventually for t--, __ oo (see [2]). 

This can be quantitatevely expressed as the time-decay of the "local- 
ized" time evolution i.e. for s > 0 there exists a decay rate c~ > 0 such that 

II<x}-Se-~tu)~(H)~)ll < C(1 + Itl)-~ II<x}'~bll, t eN.  (1.1) 

Intuitively, it is clear that the decay-rate e depends on the "smoothness"  of the 
potential (besides depending on the "localization weight" <x}-S). 

The aim of this paper is to prove a more precise quantitative statement of 
this kind, i.e. we will show 

Theorem 1. Let N ~ N ,  N >  3 and H : = H o +  Vs+ VL, where V s and V~ satisfy the 
assumption (S) and (L) respectively. Let zeC~176 as above for suitably large 
2 o > 0. Then 

S 

II <x) -Se -~z (H)<x) -S] l  < C(1 +ItD s+N (1.2) 

for any s~[0, N], t~lR and a suitable constant C>0 .  

Remarks. 1. While the operator <x} -s on the L.H.S. of e -~tr~ in (1.2) can be 
understood as a "localization weight", the operator <x> -s on the other side 
has for its range those states which are concentrated near the center at time 
zero. 

2. We make the assumption that 2 o is large for technical convenience. 
Actually by combining Theorem 1 with results of Jensen et al. [9] we can treat 
the case of )~e Ca(R),  supp •<(2o, ~ )  for any 2 o >0.  

3. Theorem 1 implies that if one increases the smoothness of the potential 
(i.e. if one increases N), then the time-decay can be more and more increased 
(by increasing s) and one approaches more and more the best possible result of 
this type, i.e. 

]l<x>-Se-~U<x>-Sll < C(1 + Itl) -~ 

which is known for the free Hamil tonian H o. 
Local time-decay of scattering states for Schr6dinger operators with short- 

range potentials has been discussed by many authors, see for example [18, 7, 8, 
15]. The long-range case seems to have not been considered until recently (see 
however [4]). There is also a paper by Kitada [11] which contains a result 
very similar to our Theorem 1 above. In fact our paper  was stimulated by [11] 
but has a more general result than [11]. However, while Kitada employs quite 
an involved Fourier integral operator machinery, we use a completely different 
method. 

The basic idea in our paper consists in proving some estimates for certain 
powers of the resolvent of H near the real axis and then transforming them 
into estimates for e-~tr~ by Cauchy's integral formula. 



Time-Decay of Scattering States for the Schr6dinger Equation 127 

We obtain these estimates by following a strategy which goes back to 
Mourre [13, 14], i.e., one rotates the essential spectrum of H (and thus also the 
essential spectrum of the resolvent) away from the real axis by a "complex 
dilation" in order to find a differential inequality for certain powers of the 
"dilated" resolvent in suitably weighted spaces. This differential inequality can 
be solved by an iteration procedure which leads to the desired estimates. 

We note that, besides using a finite order approximation of the usual 
dilation family O~e ~ we use the modified generator 

A: =�89 G(p)+ G(p). x) 

instead of the usual dilation generator �89 +p-x) ,  where G(p) is like p near 
zero and IG(p)[=l for Ipl>,~0 for suitable )~0>0. This modified A has the 
advantage that it is bounded in the p-variable. This will be used explicitly in 
the derivation of the differential inequality. The "approximate dilated" Hamil- 
tonian we use in this paper (compare [91 for a similar technique) is defined as 

~ (-iO) k 
H(O):= HL + - -  [HL, iA] (k) 

k=l k! 

where 0 is real, H L = = H 0 + V  L and [H L,iA] (k) is the closure of the (k)-th 
commutator  [...[[H, !A], iAJ,...iA], (initially defined as forms on S(~') 

(k-times) 
x S(IR"), the C~ of rapid decrease). 

We should mention that H(O) has as essential spectrum a line which starts 
at 0 with an angle - 2 0  (like the usual dilated Hamiltonian [191) and ends up 
to be the lower part of a paraboly in the complex plane (see Fig. 1) 

/ Gss (H (9)) 

Fig. 1 

This shape of aess(H(O)) should be kept in mind if one looks at the (crucial) 
a priori estimate in Lemma 2.3. 

The paper is organized as follows. In Sect. 2 we derive the basic estimates 
which lead to the main estimates for certain powers of the resolvent for the 
long-range case. Sect. 3 contains a short-range perturbation of the main es- 
timates and in Sect. 4 we prove Theorem 1. The appendix in Sect. 5 is a 
collection of results for pseudo-differential operators which we add for the 
convenience of the reader. 

One of us (H.C.) would like to thank R. Wrist and R. Seiler for many 
enlightening discussions. 
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We should note that after finishing the manuscript we learned that 
I.M. Sigal has used a very similar modified dilatation generator for to discuss 
resonances [211. 

2. Some Estimates for the Long-Range Hamiltonian 

We first define the "modified" dilation generator mentioned in the introduc- 
tion. Let )~0 > 0 and define 

t 

g(t)'.=c ~ ~(s)ds, t >O (2.1) 
0 

where 

and 

~,(s):= { ~ x P { - ( S -  s - 2 -  s -  2} 

c== ~(s)ds . 

for s<,~o 

for s>,~ o 

we can define a symmetric operator A on S(F,") by 

A: = l ( x .  ~ ( P )  + d(p) .  x), p, = - i Vx. (2.2) 

The construction of G guarantees that A is a pseudodifferential operator with 
AEOPS(O, {1 --i}i~N). 

Moreover by the commuta tor  Theorem of [20, Theorem X.36] with N = x  2 
+ 1, A is essentially self-adjoint on S(IR") and has a unique self-adjoint re- 
alization on L2(R ") which we also denote by A. 
Now let V L satisfy the hypotheses of Theorem 1 and let HL: = H o + V L. 

For  keN,  denote by B1 the commuta tor  

[HL, iA] on S(N") x S(ll."), 

and by B k the commutator  [B k_l, iA]. The B k extend to bounded operators 
from D(Ho) to La(~  ") for 1_< k<_N+ 1 by the hypotheses on V and the explicit 
calculations we make below. We also use the notation [Ho, iA] (k) and 
[VL, iA] (k) to denote the k-fold commuta tor  of iA with H o and V L respectively. 
For NEN,  N >  2, we define the "dilated" Hamiltonian and its resolvent by 

N ( - i ~  [ _ ~ , ~ ]  
H(O)"=HL+ ~ k[ Bk' OE X x 

k = l  

S(O, z): = (H(O)- z ) ,  l, 
(2.3) 

(the estimates we make below show that G(0, z) exists and is analytic in 0 for 
the z we want to discuss). 

g(t) is a C~176 with a zero of infinite order at t = 0, g(t) = 1 for t > )~0 and 
g'(t) has a zero of infinite order at t=,~0. If we now set 
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Remark 2.1. An easy calculation shows that 

[H0, iA](l)= 2H~ g(H~)=." f (Ho) (2.4) 

and all higher commutators are bounded functions of H o. Using Corollary A 2 
and A4 in the appendix one also sees that 

[VL, iA] (k )eOPS(-k ,  { - ~- i} f= 1) 

and are therefore compact operators. Thus, H(O) is an analytic family of type 
(A) in the sense of Kato [10]. 

Now we prove a technical lemma which will be useful in the following. The 
proof uses an idea due to Enss [6]. 

Lemma 2.2. Let g be as in equation (2.1) and 

f(2)-" = ~ 22~g(2~) 1 for 2 > 0  (2.5) 
(-2121"g(121 ~) for 2<0.  

Then f ( H L ) -  f (Ho)  is a bounded operator. 

Proof Let h (2 ) :=2-z f (2 ) .  Then h~C~176 and vanishes at oo like 0(2-21). We 
remark that some of the following calculations are formal only. They can be 
rigorously justified however by assuming that he C~ ~ and then by an approxi- 
mation argument. We have 

f (HL) -- f (Ho) = H E h(HL) - H o h(Ho) 

= H o {h(HL) - h(Ho) } + V L h(HL). 

The last term in the second equality is bounded. 
To show that the first term is also bounded we expand it by Duhamel's 

formula: 

Uo {h(HL) - h(Ho)} = Ho S ds em~ . [[(s). 1 {e-iHos eiHLs _ 1} 
S 

= Ho( - i) ~ ds e in~ h'(s) V L (2.6) 

H o ( _  i)~dseiHos~,(s ) 1 i dsl( e-m~ VL eiu . . . .  VL). (2.7) 
SO 

The term (2.6) is equal to 

Ho h'(Ho) V L 

and therefore bounded. Thus we have to show that (2.7) is bounded. Using the 
identity d 

H o e ila~ = - i dss em~ (2.8) 

we can write (2.7) after a partial integration as 

~dsem~ d )  h ' ( S ) s ! d S l ! d s 2 e - i H ~  (2.9) 
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Since the term in ()-brackets is not bounded, we insert (H o + 1)(H o + 1)- ~ into 
(2.9), then use (2.8) and partial integration again. 
Then we get for (2.9) 

where 

( d)(d)f  1 } ~ds em~ l + ~ s  s ids h'(S)sidSllds2e-m~ 
0 0 

B I : :  (H o + I)-*(VLH L- H o VL) 

(2.10) 

is a bounded operator. 

If we denote hi . '= h' and fl(s)== ds 1 ~ ds 2 e-i~~ 1 e mL~ we have for the 
0 

integrand of (2.10) 

( d)(d) l + i ~ s  s ids (hl(S)f~(s))=i(h'~f~+h,ff)-(h'~f~+2h~f~+h,f;.'). 

Thus (2.10) consist of 5 integrals. 

Since sh'~ and h t are in LI(N) and l-fl(s ) and f[(s) are bounded functions, it 
is clear that s 

[lSdsem~ + hi f;)l[ ~c.  

Now consider the third integral in (2.10) 

where 

(2.11) 

is also a bounded operator. 
s s1 s2 

1 ! S ds2 ~ d%e mos3B2eim,~ is bounded Thus -~ dsl o o 

s--*s 2 ~s  2 h'(s) is in LI(IR), (2.13)is bounded. Note that 

d2 ( d )^(s)=(2th' +h2h'')~(s) Sds2R'(s)= d ta ~ h ( ' )  

and therefore we have 

~ dsem~ (~--~ l~'(s))= 2Hoh'(Ho)+ H~)h'(Ho) 

which is also bounded. 

B2:=B1HL-HoB 1 

and since 

i H o s  t t  Sdse hlfx 
s s t  

=SdseiU~ (dd22 fi'(s)) ~ !dsx ! ds2e-iU~ iHLs2 (2.12) 

[dsei~OSs 2 d ~ .. 1 ~ d s l l d s ~ d s 3 e _ , ~ O S 3 B ~ e , H L s  3 (2.13) 
= h'(s) ~- o 0 o 

+ ~ dseiH~ (~@ h'(s)) B1 (2.14) 
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Therefore  (2.14) and thus (2.12) is bounded.  
By similar a rguments  one sees that  the last two integrals in (2.10) 

ds eiH~ h' 1 f ;  + h I f ; ' )  

are also bounded.  Thus  we can conclude that  (2.7) is a bounded  opera to r  and 
this proves  the lemma.  []  

N o w  we can p rove  some est imates for G(O, z). 
The first is an a priori  estimate.  

L e m m a  2.3. Let z : = A + i t / ;  t / , 2 > 0 ;  0c(0, 1); 6~[0,�89 and G(O,z) as in (2.3). Then 
there exist 2 1 > 0  and c > 0  such that 

11(Ho+1)~G(O,z)][<=cO-12 -(~-~) for 2_>_)~ 1. (2.15) 

Proof Let  ,~o >0 ,  g and f as in (2.1) and L e m m a  2.2 and denote  

/~(0), = H L -  iO f (HL). 

Let  G(0, z ) :=  (/4(0) - z ) -  1, 
x ( o ) , = u ( o ) - ~ ( o )  

and suppose that  we can prove  that  for a suitable 21 > 0  

[[(H o + 1) a G(0, z)[I < cO- a ) -(~-a) (2.16) 

< •  (2.17) II x (o )  d(O, z)II = 2 

for 2>,~1, 0e(0,1), ae(0,1). 
Then by the identity 

G(O, z) = G(O, z) (1 - X(O) G(O, z))- 1 

the required est imate holds. Thus  we need only check (2.16) and (2.17). To  
check (2.16) we observe that,  choosing c > 0  so that  HL+C>O we need only 
bound  II(HL+e)~d(O,z)ll since (Ho+I)O(HL+C) -~ is a bounded  ope ra to r  for 
6~ [0 ,1 ]  (with bound  uni form in ~5). But writ ing z = 2 + i t /  we have by the 
functional  calculus 

]1 (HL + c)~(I71(0) - z)-  1 

= sup (x+c)al(x-)~)+iOf(x)+it l]  1 
XE~r(HL) 

__< sup  (x + c) ~ I-(x - ~)2 + 0 2 f 2  ( x ) ] -  ~. (2.18) 

N o w  choose 2' 1 >2)~ o. Fo r  to est imate 

F(x, 2) :=(x+c)~[(x-2)2+O2fZ(x)] -~ ,  for 2 > 2 1 ,  x~lR 

we consider 3 cases. 
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Casel .  L e t x e  , 2 and)~>571. 

Then,  since f ( x ) = x  +- for x>)[o ,  we have 

F ( x , 2 ) < ( ~ 2 + c ) 6 [ 0 2 ~ ]  - ~ =  __<c 1 0 -126-~  (2.19) 

for c 1 > 0  suitably. 

Case 2. Let  x > } 2 .  Then  we have 

F(x, )0 < (x + c)~(x - ).)- 1 < c22~ 1 (2.20) 

for c 2 > 0 suitably. 

Case 3. Let  x<�89  Then  we have 

F(x, 2)__< + c  <c3 26-1 (2.21) 

for c a > 0  suitably. 
F r o m  (2.18)-(2.21) we conclude that 

11 (HE + c) G(0, z)II < max {c 10-12~-  ~, (c z + c 3)2 ~ 1 } 

which gives (2.16) for suitably large 21 . 
To  check (2.17), we note  that  

X(O) = i O [ f  (HL) -- f (Ho) ] -- 0 Y(O) (2.22) 
where 

N ( - i 0) k - 1 
Y(0):= ~ i [Vr, iA] (k) 

k = l  1s 

N (_iO)k 1 
+ ~ i I-H 0, iA] (k) (2.23) 

k=2 k !  

is bounded  uniformly in 0 ~ ( 0 , 2 ) b y  Remark2.1.  S i n c e a l s o f ( H r ) - f ( H o ) i S  

bounded  by Lemma  2.2, we have, using (2.16), that 

I I s ( o )  (I:1(0) - z ) -  111 < e,~- ~ __< �89 (2.24) 

for 2_>_ 2~ and some suitable 2~ > 0. 
Choosing 21 :=max{2 '  1, 2~}, we get (2.17), and hence the desired bound.  [ ]  

The next lemma is closely related to the so-called Mourre- type  estimate 
[14, 173. 

L e m m a  2.4. Let 0~(0,1), z : = 2 + i r /  and H(O) as in (2.3). Then there exist P o > 0  
and c > 0 such that 

1 Ep 2 {(H(O)-z)-(H(O)-z)*}Ep>_cEp_ (for P>=Po) (2.25) 
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_ _  H E  holds, in the sense of quadratic forms, where Ep:-E<p,~ is the spectral projector 
of H L on (p, oo). 

Proof Note  that  for g , f  as in L e m m a  2.2, we have (2�9 Then  

i 
{(H(0) - z) - (H(O) - z)*} = Of(Ho)+ 0 [VL, iA] <1) 

+ Z (-i~ 
3<=k<=N k! [HE' iA]<k)+tl>=O{f(HL)+B(O)} 
(k: odd) 

where 
�9 ( - i O )  k 

B(O)==(f(Ho)--f(HL))+EVL, iA](I~+ ~ z ~ - .  [HL, iA] (k). 
3<=k<=N 
k:odd) 

Note,  that  f rom L e m m a  2.2 and R e m a r k  2.1 we know, that  B(O) is a bounded  
opera to r  (uniformly in 0e[0,  1]). Thus  we can es t imate  (as quadra t ic  forms), if 
we choose P0 > 0  suitably large 

i 
E ,  ~ { ( H ( 0 ) -  z ) -  (U(O)- z)*} Ep >= OE o { f (HL) - -  C 1} ep 

>= OEp H L {g(HL) - p -  �89 c 1 } Ep 
> _OEpH~c2Ep, for P>=Po and suitable cl ,  c2>0 .  

Thus,  since EpH~> p+Ep we have 

i 
Ep ~ {(H(0) - z) - {H(0) - z)*} Ep > 0 cE o, for C : ~ . c 2 p  0 

and this is the desired est imate (2.25). []  

Using (2.25) we can show a resolvent  est imate which is closely related to 
Mour re ' s  "quadra t i c  es t imate"  1-14]. 

L e m m a  2.5. Let z : = 2 + i t /  and H(O), G(O,z) as in (2.3)�9 Then there exist . ~ 2 > 0 ,  

c > 0 and 0 o > 0 such that 

IIG(O,z)(x) lll<cO-+{ll(x)-lG(O,z)(x)-*ll+-(2-22)-+} (2.26) 

for 2 > 2 2  and 0e(0,0o). 

_ _  /tL Proof Let  q~e~,  p > 0 ,  Ep'.-E<p,~) as in L e m m a  2.4. Then  with G==G(O,z) 

II G ( x > -  i ~ II 2 = ( ( x > -  i r G* G ( x > -  i r 

= ( ( x ) - i  cb, G* Ep G ( x ) -  1 (~) + ( ( x ) -  * O, G* (1 - Eo)G ( x ) -  10). (2.27) 

Note,  that  for 2 > 2~: = p we have for a suitable c > 0 and f as in L e m m a  2.2 

II G* (1 - Eo) G II <= I[(1 -- Ep) G fl 2 < c()~- )(~)- 2, (2.28) 
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since, by (2.17), 

I1(1 - E p ) G l l  = ][(1 - go)(ITI(O ) -  z ) -  a [ 1  + X(O)(ffI(O)- z)- 1]- 11[ 
__< c II(1 - Eo)(HL-  iOf(HL) -- z)- 1][ 

__< c sup Ix-- iO f (x)-- 2-- i~l]- 1 
x<p 

<clp-21-1<c(2-)4)-L 

Furthermore, we have by Lemma 2.4, 

(2.29) 

(<x>-, 4', c,~o G <x> ~ 4) <~ (<x>- ~ 4', c* {(H(0)- z)-  (H(0)- z)*} C<x>-i 4') 
C 

q - o ( ( x ) - 1 4 ' , ( B a + B 2 + B 3 ) ( x ) - 1 4 ' )  (2.30) 

where we used Ep = 1 -  ( 1 -  Ep) and 

BI :=  G*(1 - Ep) {(H(0) - z ) -  (H(O) - z)*} (1 - Ep) G 

B2:= G*(1 - eo) {(H(0)- z ) -  (H(O)- z)*} G 

B3: = G* {(H(0) - z ) -  (H(O) - z)* } (1 - Eo) O. 

By arguments similar to those in (2.29) we can see that 

lIB1 +Bz+B3[] =<c(2-2~) -1, for 2>2~ and 2~>0 suitably. (2.31) 

Inserting (2.28), (2.30) and (2.31) into (2.27) one obtains for 42:= max{2~, 2~} 

IIG(x)-l[12 =0 {ll(x)-1G(x>-111 +(2-22)- 1), (2.32) 

for 2 > 22 and this gives (2.26). [] 

We can now prove the main resolvent estimates for the long-range case. 

Theorem 2.6. Let k, N c N ,  t />0 and HL:=Ho+ V L as above. Then there exist 
23>0, c > 0  and et >0  such that 

k--1 
II(x)-N(HL--2--i~I) k(X)-NI]<C(2--23)-~ --~* for l <_ k <_ N, (2.33) 

and k I 
I[(x} N(Ho+l)a(HL--2--irl)-k(x}-Ulq <c(2) ~ - - , 1  (2.34) 

for N>=2, l < k < N - 1 ,  6~[0,�89 and 2<23 . 

Proof. Let A, G:=G(O,z) be as in (2.2), (2.3) and k ,N~N,  6~[0,�89 Then a direct 
calculation shows 

d (--iO) N 
- -  G= [iA, G] G[HL, iA] m+ a)G. (2.35) 
dO N! 

Now, denote 
F, = ( x ) -  N(H o + 1)a G ~ ( x ) -  N. 
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Then we have 

F ' : =  d F = (x )  N(H 0 -t- 1)aliA, G k] (X) N 

( -- i O) N k 
(x)-X(Ho + 1) a ~, (GJ[HL, iA](N+I)Gk+I-J)(x)-N 

N! S=l 

and we can estimate for a suitable c > 0  (note that  [HL, iA] (k) is bounded for 
k_>2) 

IIF'][ <c{ll(x)-N(Ho + 1)aA(Ho + 1) a (x )  N 1111/(x) (s-1)(Ho+ 1)OGk(x)-NI[ 

+ [1 (X)-N(Ho + 1)aGg(X)-(N 1)[1 H ( X )  (N- 1)A(x)-N][ 

q- oN [I (X5 - I(Ho + 1) ~ 6 Ih II G II(k- 1)[I G (x5 - ill }. (2.36) 

Since (x)-N(Ho+ 1)aA(Ho+ 1)a(x) N 1 and (x)  s - l A ( x ) - u  are pseudodiffer- 
ential operators in the class OPS(O,{-i}~~ they are bounded (see 
Theorem A3, Appendix). Note  that  this is the technical reason for our choice 
of A in (2.2). 

Furthermore,  by an interpolation argument  we can split 
1 1 1 

ll(x)-(N-1)(Ho+l)aak(x)-Nil<ll(go+l)~Gk(x)-Nll~llFH -~ (2.37) 
and 

1 1 
[l(x)-N(Ho+l)aGk(x)-(N-1)ll<]i(x) N(Ho+I)aGkliNIiFI[1-~. (2.38) 

Inserting (2.37) and (2.38) into (2.36), one gets for a suitable c 

1 1 1 
[If'll <c{ I1(//o + 1)aGk(x) l llN+ II ( x ) -  *(H o + l)aGkltN } IIF][~-N 

+cONIl(xS-l(I-Io+t)aall IIa[I k l l lG(x)-l lI .  (2.39) 

Now we consider three cases: 

Case 1. Let c5 = 0, k = N = 1, then with 

we get from (2.39) 
FI:= ( x ) - i  G(x5 1 

IIF~ I[ ~c(lIG(x)-lll + 0 II ( x ) -  a GII2). 

Now by Lemma 2.5 (2.26) and (2.32) we get the differential inequality 

tlF;ll <=c{O +(11Fl11~+(,~-22)-~)+ 11/7111 +(2-22)-~}.  

Inserting the a priori estimate (2.15) from Lemma 2.3 (for 6 = 0), integrating and 
inserting again we obtain 

I[F1 tl =< c ( 2 -  23) -"~ 

This implies (2.33) for k = N = l  
Lemma 2.5 gives 

[IG(xS-i/I ~ C 0 - - � 8 9  1 6  

for " ~ > ' ~ 3 :  =max{21,22}.  (2.40) 

and e l =  �89 Note that  (2.40) and (2.26) in 

1 

for suitable c > 0. (2.41) 



136 H.L. Cycon and P.A. Perry 

Case 2. Let c5 = 0, N < 2, 1 _< k < N. Denote 

F2:= <X>-NC, k<X> -N. 
Then we get from (2.39) 

k - - 1  1 1 1 

IIF~II <c{I[G[ITI[G(x>-III~IIF2II -~+0N[IGII k-11Fa(x>-Xl[2}. 

Thus by (2.15) and (2.41) we obtain the differential inequality 

IIFdlI < c { 0 - 1 + ~ ( 2 - 2 3 )  ~[[F211 + ( 2 - 2 3 )  -~2} (2.42) 

k - 1  1 
for e 2 : = ~ - + i ~  and 2>23:=max{21,22}.  Starting with the a priori estimate 

k 

IlEal1 <eO-k2-~  for 2>)~3 

which follows from (2.15) in Lemma 2.3, we can iterate (2.42) and obtain after a 
finite numver of steps 

k - 1  

IIF2 II _-< c(-~-,~3) -~--~1 

for a suitable el > 0. This implies (2.33) for 1 < k _  N, N => 2. 

Case 3. Let (~[0,�89 N=>2, l < k < N - 1 .  Denote 

V~..= <x>- ~(Ho + 1)~ G~<~> -~. 

Then we get from (2.39) and Lemma 2.3 (2.15) the differential inequality 

1 ea 1 __1 

IIF~II<c{0-~+~,~-~IIF31[ N+,~-~3}, for )~>,~1 

k 6 and ~3: = ~ - -  �9 Now starting with the a priori estimate 

[IF 311 <= cO-kR-~ 

which follows also from (2.15), one gets by a similar iteration as above 

k 

I[F311 _-<c,l -~+~§ for ~>0, 

which implies (2.34) for suitable e~. [] 

3. The Short-Range Perturbation 

We will prove now an analog of the main resolvent estimate (2.33) for the 
whole Hamiltonian H = H c +  V s. In order to do this we need a technical 
lemma. 

Lemma 3.1. Let N>=2, l <_k<_N-1, r />0 and V s as in Theorem 1. Let g~>0 and 
23>0  as in Theorem 2.6. Then there exists a c > 0  such that 

k - - 1  

]l<x>NVs(HL-2-irl) ~(x)-NII < c ( ; t - ) t 3 ) - ~  --~* for 2 > 2  3. (3.1) 
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Proof. Let  R > 1 and XR E C~(1R) such that  

)R(X):={1 if [x]<R 
0 if Ix[ > 2 R .  

Denote  RL." = (H L -  2 - it/)- 1. Then  

I[ (x)  N VsR~(x)- Nil < II (X)NZR Vs(Ho + 1)-~(x)NIt II (x)-N(Ho + 1 ) ~ R [ ( x ) -  NIl 

+ II ( x )  2N Vs(1 - ZR)Ir IL (x)-~R~(x)-NII. 

Since by assumption (S) and Theorem A 3 

II(x)NZgVs(Ho+ 1)-~(x)NII _--< II(x)NNzRII II Vs(Ho + 1)-~l] 
II(Ho + 1)~(x)  N(Ho + 1 ) - ~ ( x )  N [I < c, 

we obtain (using Theorem 2.6 and assumption (S)) for a suitable c and R 
suitably large 

(~ 5) ,1 II(x)Ngse~(x)-N[I <c{(2-- ,~3)-  T - + ) ~ - ( ~ ) - ~ }  

and this gives (3.1). []  
The next  Theorem asserts the central estimate in this paper. It is proved by 

an induct ion argument  similar to one used by Jensen and Kato  [8]. 

Theorem 3.2. Let N~N, N>2, t / > 0  and H=Ho+ Vs+ V L as in Theorem 1 and 
e 1 > 0  as in Theorem 2.6. Then there exist 2 4 > 0  and c > 0  such that 

I[(x)-N(n--,~--it/)-~(x>-NII < c ( , ~ - - , ~ ) - ( ~  ) ~ for 2> ) t  4. (3.2) 

Proof. Let  z . ' =2+ i t / ,  HL:=Ho+V L. Denote  RL:=(HL--z ) ~ and R : = ( H  
-z) 1. Then, if we differentiate the resolvent identity 

R L = R(1 + VsRL) 

( N - l ) - t i m e s  with respect to 2, we get 

R~=R~V(l + VsR)+ (N11)RN ~ VsR2 + .... 

Using the identity 

I_RVs=(I  +RLVs) 1, 

we get (compare  [8]) 

RN= {(I + RL Vs) 1RZ~- (N ? I ) R2 VsR~- I - . . .}(1- VsRL)- I. 

For  N = 2 we get by (3.3) 

( x ) -2RZ(x ) -2={( l+(x ) -2RLVs(x )2 )  - l ( x ) - 2 R L ( x  ) 2  -2} 

�9 (1 -- (x )  2 VsRL(x ) - 2)- 1. 

(3.3) 
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By Lemma 3.1 we know that [[(x) 2 VseL(x)-2l l  < 1 if 2 is large enough. 
Therefore using Theorem 2.6 (2.33) we obtain 

N f x ) - 2 R 2 ( x ) - 2 H  < ~ c ( 2 - 2 4 )  - � 8 9  for 2 > 2  4 

and 2 4 suitably large. 
Now the assertion (3.2) follows by induction on N. Indeed, suppose it holds 

for all k with 2 < k < N - 1  and consider a typical term in (3.3) (multiplied by 
the weights ( x )  X). Then we can estimate 

11 (X) -u Rk Vsn(ff + ~ -k)(1 - VsRL)- 1 (x )  -NIl 

< 11 ( x ) -  ~ R~(x )  - N II II ( x )  N r/s R(~+~ - ~ ) ( x ) -  NII II (1 - ( x )  N VsRL ( x )  N)- ~ll 
& lx [N-k~ 

< c ( 2 -  2 4 ) - t ~ - )  . . . .  ( 2 -  2 4 ) - i T  > ~  for 4 > 4  4 

and suitably large 4 4 . 

The last inequality holds by the induction hypothesis and Lemma 3.1 and 
since 

]1 (X)N VsRL(X ) -  N H < 1 for 2 large enough. 

Thus we have 

H(x) NRkVsR~+I-k(1 -- VsRL)-I(x)-~II  ~C(2- -24) - (N~ ) -~ .  (3.4) 

The first term in (3.3) is exeptional but can be estimated in a way similar to 
the others, if one uses Theorem 2.6 (2.33), by 

N-1 
I I (X)-N(I+RLVs)-*  N -N RE(X)  I I < c ( 2 - & )  ( T  -)-~* (3.5) 

for 2 > 2 4 and 2 4 suitably large. 
Collecting all terms (3A) and (3.5) one gets (3.2). [] 

4. Proof  of Theorem 1 

We first prove a lemma which will be needed in the following. 

Lemma 4.1. Let N e N ,  20>0, H = H o + V  and xeC~176 with 7~(2)=0 !f 2__<2 o 
and Z(2)= 1 /f 2 > 2 2  o as in Theorem 1. Then 

(x)N~(H)(x} -N 

is a bounded operator in Jg. 

Proof Denote 

and 
B(a)'.=ei~{x>(H + 2o)- l e -i~x>. for aelR 

~(2).-= 
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Note that 2e C~~ and c~--~B(e) is norm - C  N (since V commutes with ( x )  
and e~--~er e-~<x> is an analytic family of type (A) [10]). Then 2(B(c~)) 
preserves D((X) N) for c~sN (see [16, Prop. A4]). Since 2(B(0))=z(H), Lemma 
4.1 follows by the closed graph theorem. [] 

Now we reexpress e ,H in terms of the resolvent of H and use the estimate 
(3.2) in Theorem 3.2 to prove Theorem 1. 

Proof (of Theorem 1). Let N > 3 , / 7 > 0  and Z be as above. By Cauchy's integral 
formula and the functional calculus we have, for + re(0, oo), 

e_~eu_~t)~(H) ( N -  i)! 2~i (-it)-(~-l~d,;fe-~t~(H-)c~-i/7) Nx(H). (4.1) 

We consider only the case t > 0  in the following (the case t <0  can be treated 
similarly by "dilating" the essential spectrum of H(O) into the positive half- 
plane). 

From (4.1) follows for suitable c > 0 

II(x)-Ne itH--"tz(H)(x)-NII 

<Ct-(N-1)~d211(X)-N(H--2--i/7)-Nz(H)(x)-N[I (4.2) 

Let 20 > 0. Then we split the R.H.S. of (4.2) into two parts 

,i_ o 

ct-(N-1){ii+lz}=Ct (N-l) j  ""+7 .... (4.3) 
- -  oo  2 o  

The first integral 11 is obviously bounded uniformly in /7 and 12 can be 
estimated by 

c o  

I2< jodRil(x)-N(H--R--i/7)-N(x)-NII N(x)N)~(H)(x)-N][. (4.4) 

T 
The second factor of the integrand in (4.4) is bounded by Lemma 4.1 and if we 
choose ~,0:=4)[a ( for)[4>0 as in Theorem 3.2) we obtain for suitable c > 0  

I2<c .[ 2 -  c for e l > 0  as in Theorem 3.2. 
~,o 

Thus 12 and therefore the R.H.S. of (4.2) is also bounded uniformly in 11 
and by taking limits in (4.2) we get 

II(X)-Ne--itHz(H)(x) NIl _--<C(1 +t )  -(N-t), t > 0  (4.5) 

for suitable c > 0. 
Now let se[0, N]. Then an interpolation argument shows that 

s 
- 5 - t -  II(x)-~e-~tHx(H)(x)-~ll<c(l+t ) N for t>O 

and together with a similar estimate for t < 0  one gets (1.2). [] 
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5. Appendix. Some Facts About Pseudodifferential Operators 

For  the convenience of the reader, we collect some basic results on the classes 
of pseudodifferential operators used here. 

We are using the notation of Agmon [1]. Some results are proved in 
' Taylor 's book [22] but we are mainly quoting from a thesis of Klein [12]. 

Definition. Let k, meN  and {#(i)}/k=~ be a non-increasing sequence of real 
numbers. Then we define the symbol class S~(/)~ to consist of p(x, ~)sCk(IR" 
x IR") such that 

ID~D~p(x, 3)1 < G,#(~>m-I,t<x>,(lal) 

holds for x,~MR", multiindices e, fi with I~l,l#l<k and suitable constants 

car l > O. 

Definition 2. Let m e n  and {#(i)} as above. Then we define the class of 
pseudodifferential operators 

OPS(m, {#(i)}) 

to consist of operators p(x,D) defined by 

p(x,D)4(x):=~p(x,{)~(r for ~bsL2(N n) 
and 

Then we have the symbolic calculus: 

Theorem A 1. Let mi ,m2eN and {#1(')}, {#2(')} be non-increasing sequences. 
Let 

m l  m2 a~S{~(i)}, bffS{u2(i)} 

and A~OPS(m 1, {#1(i)}) and BeOPS(m 2, {#2(0}) be the operators arising from 
the symbols a and b respectively. 

Then the operator AB is a pseudodifferential operator with 

ABeOPS(m~ +m 2, {#~(0)+ #2(0 ) -  i}) 

and the symbol a@b of AB has an expansion for any N ~ N  

ilal 
a@b= y"--D~aD~b+rN(a,b) 

I~I<N 0d 

where the remainder rN(a, b) is a symbol 

rN( a, "~ 

with ~h:=m 1 + m 2 -  N-l f i l  and 

/frO: = max {#1(j)+#2(N+k)},  iEN. 
j + k - - i  

For  a proof, see [12]. 
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Corollary A 2. Let aeS{~*l(1) }, b~S~(i)} and A and B the corresponding operators 
respectively. Then we have for the commutator 

[A,  B]  ~ O P S ( m a  + m2 - 1, {,fi(i)}) 

~(i):= max {#1(j)+#2(1 +k), #1(1 +j)+#2(k)} , ieN.  
j + k : i  

One of the central problems in pseudodifferential operator theory is the L 2- 
continuity. The first result of this type was shown by Calderon and Vaillan- 
court, but the optimized version we are quoting here i due to Cordes [3]. 
Compare also [22, Ch. XIII]. 

Theorem A a. Let p~S~o } such that 

ID~D~p(x, 4)1 < c~a (A1) 

for (x, r 2n and I~l,I/~[_-< [2] + 1 and suitable C~fl ~ O. 

Then the associated operator is bounded, i.e. 

Hp(x,D)ll<=csup{c~all~l,lfil<[2]+l } 

where c depends only on n. 
W e  give  a lso  a useful  

Corollary A 4 [22].  I f  p~S~o } satisfies (A1) and 

Ip(x, ~)1--~0 as Ixl+l~l~o% 

then P(x,D) is compact on LZ(N'). 
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