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We consider a retrial queueing model with collision arising from the specific 
communication protocol CSMA/CD. Under the retrial control policy in which the retrial 
rate is inversely proportional to the number of customers in the retrial group, we derive 
the generating function of the limiting distribution of the number of customers in the 
retrial group at the moment when the channel is free. Using the theory of Markov 
regenerative processes, we also obtain the limiting distribution of the number of customers 
in the system at arbitrary time points. 
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1. Introduction and model description 

We consider  a single channel  queueing system with cus tomer  conduct ing 
retrials. Customers  arrive from outside the system according to a Poisson process 
with rate ~,. The service t ime o f  each customer  consists o f  two consecut ive phases.  
The  first phase o f  service t ime is constant  t ime a and the second phase o f  service 
t ime is a random variable S with distribution funct ion F ( . )  and its LST  ( L a p l a c e -  
Stieltjes t ransform F( . )  defined by 

F(u) = f e-UtdF(t) ,  

0 
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finite mean ~" and finite second moment S 2 . An arriving customer, either from 
outside the system or from the retrial group, to the service channel first checks the 
channel state. On arrival to the channel, if the channel is free, the customer immediately 
occupies it. On arrival to the channel, if the channel is busy with the first phase 
of a customer's service time, then a collision occurs. On the other hand, if the 
channel is busy with the second phase of a customer's service time, then a collision 
does not occur and the arriving customer joins the retrial group. If a collision 
occurs, then it takes a random time C, called the collision recovery time, for the 
channel to be free. Let G(.) be the distribution function of C, let G(.) be the LST 
of G(.),  and let ? be the mean of C and c 2 the second moment of C. If a collision 
takes place, then all the customers in the service channel remain in the channel 
during the collision recovery time and then join the group at the end of collision 
recovery time. If no one arrives within the first phase of service time of a customer, 
then the customer in the service channel will be served successfully. In this case, 
it takes service time S + a for the channel to be free. The access of input stream 
to the channel is controlled by the retrial control policy described below. If the 
number of customers in the retrial group is n, then each customer in the retrial group 
independently attempts to occupy the channel after an exponential amount of time 
with parameter O/n. 

A major motivation for this model comes from a specific communication 
protocol CSMA/CD (carder sense multiple access with collision detection). The 
first phase of service time, the second phase of service time, the collision recovery 
time, the customers in the retrial group and retrial control policy in the queueing 
terminology correspond to the propagation delay, transmission time, the collision 
recovery time, blocked terminals and retransmission control policy in CSMA/CD 
protocol terminology, respectively [11 ]. For the detailed description of CSMA/CD 
and other protocols in communication networks, see Tobagi and Hunt [12] or 
Hammond and O'Reilly [7]. It is known that the slotted ALOHA [6] and slotted 
CSMA/CD models [11] with infinite terminals are unstable in the absence of the 
channel control disciplines. For stabilized channels, Fayolle et al. [6] examined two 
classes of  control policies: the retransmission control policy and the threshold 
control policy, and they gave sufficient conditions for the system to be stable under 
each control policy. Meditch and Lea [11] found a sufficient condition for the 
slotted nonpersistent CSMA/CD to be stable under the retransmission control policy, 
and they obtained the distribution of the number of blocked terminals for a stabilized 
channel at successful departure points when the service time is deterministic. 

In this paper, we derive a sufficient condition for the system with a retrial 
control policy to be stable. Next, we obtain the generating function of  the limiting 
distribution of the number of customers in the retrial group at the moment when 
the channel is free. We also obtain the limiting distribution of the number of 
customers in the system at arbitrary time. We follow the same technique, using the 
theory of Markov regenerative processes, as in Kulkami and Choi [9]. As a related 
work, Falin [4] analyzed the retrial queueing model with collision, called the queue 
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with double connections, in which, if an arriving customer finds the channel busy, 
then the channel becomes free immediately and both the arriving customer 
and the served customer join the retrial group. The analysis for the retrial queue 
with the same retrial control policy and a = 0 was given by Choi and Park [3] and 
Farahmand [5]. 

The organization of this paper is as follows. In section 2, we investigate the 
embedded Markov chain for our model which provides the basis for the main results 
in the sequel. In section 3, we find the limiting distribution of the number of 
customers in the system at arbitrary time points. 

2. Distribution of system size 

Let Tn be the time when the channel is sensed idle for the nth time and To = 0. 
We shall call (Tn_ l, Tn] the nth cycle. Let Q(t) be the number of customers in the 
system at time t and Qn = Q(T, + 0) (n > 0). Since all customers in the system are 
in the retrial group just after T,, Q, represents the number of customers in the retrial 
group just after Tn. Next, we shall study the limiting distribution of {Qn, n > 0}. 
First we note that the cycle (Tn_ 1, Tn], n > 1 is one of the six different types as 
described below (fig. 1): 

Type 1: An external arrival takes place before a retrial, a collision occurs by 
another external arrival. 

Type 2: An external arrival takes place before a retrial, a collision occurs by a 
retrial. 

Type 3: A retrial takes place before an external arrival, a collision occurs by an 
external arrival. 

Type 4: A retrial takes place before an external arrival, a collision occurs by 
another retrial. 

Type 5: An external arrival takes place before a retrial, service is completed without 
collision. 

Type 6: A retrial takes place before an extemal arrival, service is completed without 
collision. 

Let "rb be the time when the first phase of service time ends in the cycles of 
types 5 and 6 (see fig. 1). Let At(n) be the number of extemal arrivals during the 
period of a collision recovery time C in the nth cycle of types 1 - 4  and let A,(n) 
be the number of extemal arrivals during the time interval ('t'b, T~], which is the 
same as the random variable S, in the nth cycle of types 5-6 .  Then {At(n), n > 1 } 
and {A,(n), n > 1 } are sequences of i.i.d, random variables whose generic variables 
are denoted by Ac and As, respectively. It is well known that 

E(z ac ) = G(~ - G2z), E(z A, ) = ff'(~, - 2z). (2.1) 
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Fig. 1. Types of cycle (vertical arrows in the ~ and 0 represent 
external arrival times and retrial times to the channel, respectively). 

Define In = k if the nth  cycle is of  type k. From the above description of  the 
model,  we obtain the following: 

Q n + 2 + A c ( n + I ) ,  if l n+l=l ,  

Qn + l + A ~ ( n + l ) ,  if In+l = 2, 

Q n + l + A c ( n + l ) ,  if ln+l = 3, 

Qn+l= Q ~ + A c ( n + l ) ,  if I n + l = 4 ,  

Q n + A s ( n + l ) ,  if In+l = 5, 

Q ~ - l + A s ( n + l ) ,  if ln+l = 6. 

(2 .2)  

From the independence of  (As(n + 1), Ac(n + 1)) and {Qk, 0 < k < n}, we see that 
{Qn, n > 0} is an embedded Markov chain. Clearly, {Qn, n > 0} is aperiodic and 
irreducible. From the definition of  type In § 1 of  the (n + 1)st cycle, we have 

Z 

eqn+l = liOn = j)  = ~ ( 1 -  
1 - e -~'a ,  

e-(Z+0)a) 
~ + 0  ' 

if j _ > l ,  

if j = O ;  
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P(I,~+I = 21Q~ = j )  = { 
~--~--~ (1 - 

0, 

e_(Z+o)a) 0 
Z + 0 '  

0 _e_(Z+o)~ ) 
"~T-O "(1 A 

0 
P(t.+l = 31Q~ = j )  = - ~ - - f f ( 1 - e - Z ~ ) ,  

o, 

if j > l ,  

if j = 0 ;  

t 0 P(In+l = 4[Qn = j )  = "~~ '0"(1-  

[0, 

e_(Z+o)~ ) 0 
;I, + 0 '  

P(I.+I = 510.  = j )  = 
e -za  , 

e -(z+~ if j > l ,  

if j = 0; 

if j_>2 ,  
+ 0 '  

if j = l ,  

if j = 0; 

if j > 2 ,  

if j < l ;  

P(ln+l = 6IQ. = j )  = 

0 e_CZ+o)~ if j > 2 ,  , - 

0 e_Za ' if j = 1, 
27-ff 

0, if j = 0 .  

(2.3) 

Now we find a sufficient condition for the system to be stable by applying 
the following lemma [12]. 

PAKES'  LEMMA 

Let {X,, n > 0} be an irreducible and aperiodic Markov chain whose state 
space is the set of  nonnegative integers. The following conditions are sufficient for 
the chain to be ergodic: 

(a) 

(b) 

IE(Xn+ 1 -XnIXn = i) l< ~' for all i; 

lim sup E(Xn+I - Xn I Xn = i) < O. 
i--~o* 
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Let ~ = E(C) < ~,, and g = E(S) < ~,. We have from (2.2) and (2.3), f o r j  > 2, 

E(Q~+I - Q,, IQ~ = J) 
6 

= ,~_, E(Qn+I - Q n  Ien = j, ln+l = k)P(In+l = klQn = j)  
k=l 

= ~-(1 - e -(z+~ + A.Y e -(z+~ + - -  

Let r /= Z + 0 and 

22 2,71. + 0 

2 + 0  ~ + 0  
_ _  e-(Z+o)a. 

;I,(2 - e -~Ta + ~'r/(1 - e -ha)  + gO e-Oa) 
P = 7/e -rla 

Then r / i s  the total access rate to the channel, and for {Q,, n -> 0} to satisfy the 
condition (b) in the lemma, we must have 

p < 1. (2.4) 

Thus, we have: 

THEOREM 1 

If (2.4) holds, then the embedded Markov chain {Qn, n -> 0} is ergodic. 

Remark 

When a = 0, our model becomes a retrial queue without collision, and with 
a retrial control policy in which the retrial rate is proportional to the inverse of  the 
number of  customers in the retrial group, condition (2.4) becomes &s < 0/(~, + 0), 
which is the necessary and sufficient condition for the system to be stable (see Choi 
and Park [3], Farahmand [5]). 

In the remainder of  this paper, we always assume that condition (2.4) holds. 
Then the limiting distribution {K/}7__ 0 of  Markov chain {Q,,, n > 0} exists and all 
~rj's are positive. Next, w e  will find the generating function of  {9}" Using eqs. 
(2.1)-(2.3)  and the formula 

6 
E( •Qn+l 10n = J) m Z E(zQ.n§ IQ,, = j, ln+l = k)P(In+l = klQ,, = j ) ,  

k = l  

we obtain that 

E(za"+'lQ,,=j)=zJ-1 z G ( Z - 2 z )  ~ 0  (1 - e - (Z+~  

A,z + 0 e_(X+o)~) for j _> 2, + ~(Z - Zz)-y~-- O- ) (2.5) 
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( ~ 1 ~, (,~z + O) (1 - e -(z+~ + --~--~-0- (1 - e -za) E(z  ~ IQ. = 1) = z2(~(A, -,~,z) (,~, + 0) 2 

+ ~'(A, - Az) ~ - ~ ( & z e  -(z+~ + Oe-Za), (2.6) 

E(z ~ I a .  = 0) = z2~(,~ - Zz) (1 - e - z a )  + P ( ~  - &z)e - z a .  (2.7) 

Let On(z) = E(z a") and 0(z) = Y.7=o~.Z i. Then, under condition (2.4), 0n(z) ---) 0(z). 
From eqs. (2.5), (2.6) and (2.7), we have that 

0,+1 (z) = )g E( z~ 1 9_., = J)P(Qn = J) 
j=O 

= l ( o n ( z ) - P ( Q n  = O)-zP(Qn = 1)) 
g 

2 ) Z +O (l_e_(Z+o)a)+~(&_&z) ,~z+O .~, + 0 e-(Z+O)a 

+ P(Qn =l)(z2G('~'-'~'z)(~(-~'-~z-+O) (1-e-(Z+~ !~ (2~ + 0) 2 " ~ " 0  "(1 - e -Za) ]  

+ P( ,~ -az )  ~--~fi-~(&ze-(Z+~ + Oe-Za)] 

+ P(an = 0) ( z 2 a ( ~ l ,  - .~Z) (1 -- e -z'z ) + P (Z  -- Zz) e -za  ). 

Letting n---> ,,o in (2.8), we obtain, after some algebraic manipulation, 

O(z) = ZoAo(z) + zlAI(Z), 

where Ao(z) = ao(z)/d(z), Al(z) = a1(z)/d(z) and 

(2.8) 

(2.9) 

_ f/1,z+O'~ 2 _~z~ZZ+O,_(z+o),Z_z, 
d(z)= z O ( Z - " l z ) t ~  ] ( 1 - e - ( Z + ~  "" " ,~, +0 

_ ((/%z+Oh 2 e_(Z+o)cc) - e -Za) ]  ( l -  - z2 (1  

+ /~(X-~.z)IXz+------~0 e-(Z+o)c~_ze -zcc] 
; i ,+0  
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(O(&z+O) (l_e_(Z+O)a) Oz ( l _e_Za) )  
al (z)  = z2(~(A - ~z)  (X + 0)  2 A, + 0 

0 (e_(Z+o)a e_Xa + z P ( Z -  ;tz) ~ - ). 

It remains to determine ~ and zq. Using the facts f(1) = 1 and ~'(0) = zl, we have 
from (2.9) a simultaneous linear equation: 

1 = Ao (1)~ro + Al(1)~rl, 

7q = A~(0)Zo + A~(0)zrl. 

This simultaneous linear equation yields 

1 - A~(0) 
Zto = A~ (0)A1 (1) + ,4o (1) (1 - A;(0))' 

(2.10) 
A~(0) 

7rl = A~ (0)AI (1) + Ao (1) (1 - A;(0))" 

Substituting Zo and zl into (2.9), we obtain 

(1 - A; (0 ) )Ao  (z)  + A~ (0)A1 (z)  
0(z) = ~ t ~ ~ ~ - - - ~ 7 ~ .  (2.11) 

Thus, we have the following theorem after a simple calculation: 

THEOREM 2 

Under condition (2.4), the Markov chain {Qn, n > 0} is ergodic and the generating 
function O(z) of the limiting distribution of {Qn, n > 0} is given by (2.11), where 

A~(0) = 
1 - e-Za~'(X) 

0 e_(Z+o)~,p(Z ) ' 
X+O 

a6 (1) af (1) 
A f ( O ) = l - e  ~ Ao(1)=77v,,,  and AI(1)-  

d '(1) '  a ( l )  

a~(1) = - X ( g -  g)(e  -za - e  -(z+~ 20 
X+O 

2& + 0 e_(;t+o) a + 2 e -~'a, 
~ + 0  
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a{ (1) = -A, (~" - ~') 7 + 0  ( e-~'~ - e-(~+~ ) + gO (1_ e_(~.+o)~) 
+ O) 2 

0 -~.ot + ~--~---ff ( 2 e - 1 -  e-(Z+~ 

d'(1) = ,~,~'(1 - e -(;~+~ ) + ,;I,g e -(z+~ + - -  
2;I, 2,71,+0 

X+O ~ + 0  
e-(L+o)a. 

COROLLARY 3 

The mean number ~'(1) of customers in the system at embedding time is 
given by 

d"(1) 1 A6(O)a{'(1)+(1-A{(O))c6"(1) 
~ ' (1 )=  2d'(1) + 2- A6(0)a{(1)+(1-A{(0))a6(1) '  

where 

d"(1) = 2~,~- 1 + (1 - e -(z+~ + ;I,z c-2(1 - e -(z+~ + 2A, Y 

+ ffs2--e_O,+o)~ + (  4Z 2.__~! 
~ ~--~  + (2t,+O)2 )(1-e-(~'+~ 

2 0 3 e -z~ o4'(1) = 2 ; t r  +------g + 
3 , ~ + 0  / 
;I, + 0 e-(Z+~ 

+ A'2c2(e-ZU-e-(Z+~ "~-~~0  + (-~-+-0 

- 6 ( 1 - e - ~ ) + 2 ~ ( ~ + 0  e-(Z§176 -e-(Z+~ 

a{'(1)=2~O+o'~(2(e-ZU-e-(Z+~176176176 

+ ;i,2c-g 0 (e_Z,x _ e_(Z+o)=) 20 ,e_Z~ _ e_(Z+o)a) 
; t + 0  +X-+-fi t 

+ 4&0 (1_ e_(Z+o)a ) 
(~, + 0) 2 

40 _e_Z~ ) 
~ ,+0  (1 

- (2&Y + ~'2-g's ) -ff-~--~ ( e 0  -za _ e-(Z+o)~) . 
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3. Limit ing distribution of the {Q(t), t > O} process 

We define the idle period as the time period between the epoch when the 
channel is free and the epoch when the channel is occupied by one customer.  Let 
X(t) denote the state of  the channel at t ime t as defined below (see. fig. 2). 

X( t )  = 

0 if the channel is in the idle period. 

1 if the channel is in the period between the first arrival and 
the second arrival in the case of collision. 

2 if the channel is in the collision recovery period. 

3 if the channel is in the period of service time in the case 
of no collision. 

1~ C ,..l.., I~  S + tt -J"J 

T_  1 "In "Cb T+I  

X(0=0 X(0=I X(.t)=2 X(t)=0 X(t)=3 

Fig. 2. The states of the charmel. 

In this section, we shall obtain the generating function of  the l imiting 
probabilities P(j,k) = lim, ~ . .P(Q (t) = j,  x ( t )  = k lQ(O) = i, X(0) = 0) of  the (Q(t), x(t))  
process. Then, we easily obtain the generating function of  the limiting probabilities 
Pj = lira, ~ . , e ( Q ( t )  =J l  Q(0) = i) of the Q(t) process by the relation Pj = P(j,o) + P(j,1) 
+ P(s + P(Zs). 

It is easily seen that {(Qn, Tn), n > 0} is a regular Markov renewal sequence 
and all condit ional  f ini te-dimensional  distributions of {Q( t+  Tn), t >  0} given 
{Q(u), 0 < u < Tn, Q(T~) = i} are the same as those of  {Q(t), t > 0} given Q(0) = i. 
This shows that {Q(t), t_> 0} is a Markov regenerative process with embedded 
Markov renewal sequence {(Qn, T~), n > 0}. Let {~ri} be the l imiting distribution of  
{Qn, n > 0}. Let TCZk ) be the time spent by the (Q(t), X(t)) process in state (j ,  k) 
during [0, 7"1). It is known from the property of  Markov regenerative processes that 
the limiting probability of  (Q(t), X(t)) as t---) ~ exists and is given by 
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o o  

P(j,k) = ~ ~., zriE(T(j,k) lQ(O) = i), j = O, 1, 2 . . . . .  k = O, 1, 2, 3, 
i=0 

where M is a normalizing constant. 
Let P(z)=Y.7=oPjzJ and Pk(z)=Z7=oP(j,k)zl, 

= E~_-o ek(z). 

(3.1) 

k = 0 , 1 , 2 , 3 .  Then P(z) 

THEOREM 4 

The generating functions Pk(z), k 0, 1, 2, 3, are given by 

1 1 1 0 
Po(z) = O(z) M /~ +----~ + Iro M ~(/~ + 0) '  (3.2) 

O~ e -za ote -~ 1 1 &z + 0 (1 - e -(z+~ 2 - & 0 1 
Pl(z)= O(z) M (3,+0)  z l_e_Za _e_Oa 

1 (  &z+O (1-e-(Z+~ 
-- /tO (,~l, + 0 )  2 

Zo -~176 
1 - e -za 01 - e -~ ) 

-zO-e-2~)[,�88 
1 - e - ~  �84 

1(  Oz e_(Z+o)ce) ( ae -za ae  -~ ) 
- 1r1-~- ( ; t - ~ ) 2  (1-  2- ;~ i - e _  ~ 01_e_Oa 

o_z_ (,_l 
;I.+0[,1, i - e _  ~ O - e - ~ )  , (3.3) 

and 

1 1 - (~ (~ -~ tz ) [  ( /~z+O) 2 
Pz(z) = "~" ~--~z O(z) ~'.7._ O (1 -e  -(z+~ 

- 1to ~ + 0  (1-e-(;t+~ 

( ( l.z + O)Oz 
-z~ (,%+0) 2 

k 

(1-e- (Z+~ -za) , (3.4) 
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( 1-P(;t-,%z))(., , Z z + O  
/~(z) = 0t4 -~ ~ ~zz J ~ q~ t z ) --~--~-~- e " " 

( '2z+O - , z .o ,a  On Ce_C;L.0) ~ e_Xa)l,(3.5) 
- Z t o ~ e  " " - z e ' Z a ) - ~ r l A + 0 "  

where the normalizing constant M will be given by (3.19). 

Proof  
(1) Since the sample path of Q(t) is independent of i during the time period 

{X(t) = 0} of the cycle under Q(0) = i, we have 

E(T(j,o) IQ(0) = i) = 

0 if j ~ i ,  

1 
if j = i >  l, 

/ , + 0  
1 

if j = i = 0 .  

Thus, from (3.1) we obtain 

f 1 1 "~" /1 + 0 nj 
P~j.o) = 1 1 

T'o 

if j > l ,  

if j = 0 ,  

and so we have (3.2). 
(2) For simplicity of computation, let 

P(~,t) = - ~  7tiE(T(j. 0 IQ(0) = i, 1 = k)P(I  = klQ(0) = i)) (3.6) 

and Ptk(z) = ]~*=0/~k/ )z  j ,  1 = 1, 2, 3. Then for l = 1, 2, 3 we have 

Pt(z) = ~Ptk(z) .  (3.7) 
k=l 

For Pl(z), we will compute Plk(z) for each k. In the case of type 1, an external 
arrival takes place before a retrial so that there are i + 1 customers in the system 
when the channel starts service, and a collision has Occurred by another external 
arrival. Thus, we have 
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{ E(T(j.1) IQ(0) = i, # = 1) = 

1 r e -ka 
E(AIA < a )  = -~- - l _e_Za  

0 

if j = i + l ,  

if j • i + l ,  

where A is the interarrival time. Hence, from (3.6) we obtain that 

1(1 #s,,) = ~ ~, e -za ---7---~/e(te---) = IlQ(O) = j -  1) n:)_l 

= 1 ( 1  

0 

and so 

i - -e_  ~ ,  ~ (1-e- (Z+~ 1 if j > 2 ,  

a e -za "~ 
1--Se_~.)(1-e-Za)Zro if j = 1, 

if j = 0 ,  

~~176 ~ ~ 

--  ~ 0  /~ 
oo  l(c /2 ) 

i Z e  - ~  ~ ( 1 - e - ( Z + ~  -~'a �9 

In a like manner, one obtains 

z ( 1  
~2(z) = (O(z)- ~o)~" 0 ae-~ 1 ~0 (1_ e_(Z+o)a), 

i~-e - ~  J ('~' + 0) 2 

(3.8) 

(3.9) 

els (z) = (O(z)- =o) ,l, 

zll 
- ~l ~ k 

t~e-Za .] ,1,0 (1 _ e_(~,+o)~) 
1 - e - z ~  ) ( 2  + 0 )  2 

1(1 pl4(z) = (r ~o - ~lz)~- 0 ~ ~-g-c~-) t ~--~---~- j (1 - e-(Z+~ 

(3.10) 

(3.11) 
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In the case of  types 5 and 6, a collision does not occur  and hence 
E(T(j,1)IQ(O) = i, I = k), k = 5, 6. Combining the results (3.8)-(3.11) and using (3.7), 
we have the result (3.3). 

(3) Let ~:c be the time when a collision occurs in the cycle of  types 1 - 4  (see 
fig. 2). In the case of  type 1, there are i + 2 customers in the system at the moment  
when a collision occurs, so we have 

E(Tu,2 )IQ(0) = i, I 1) = E 

0 

:i 
0 

Thus, from (3.6) we have that 

f l(Q('c c +u) = j)dudG(t)lQ(vc) = i + 2  

0 

l 

f (/~u)J-2-i (--~_~-~!e-~'UdudG(t)l(j > i + 2 ) .  (3.12) 

0 

1 Ji~ ~ (;~u)J -2-i 
P(~,2) = " ~  ( j - 2 - i ) t  

0 0 

e-ZUdudG(t)P(1 = I lQ(0)  = i)rci 

t 

: + f r -  o 0 

(Xu)J-2 e-ZUdu dG(t)  (1 - e -~'a ) Zro l ( j  > 2) 
( j - 2 ) !  

and so 

+If 
0 

t 

f j-2 i=, ~]~2_-~i.e auclti(t>~-~-~-~) (1-e-( '~+~ > 3), 

0 

e] ( z ) : --ff 
0 

( Xuz )J -2 
( j - 2 ) !  

e-ZUdu dG(t)  (1 - e -za)~ro 

+ / 2 z J 2  (,,~//)j-2-i -aUdudO(t) (1 e -(z+~ 
0 ~)j=3 i=1 ( J - 2 - i ) ! e  

= o ( z ) 1 - o ( X - X z )  •  Zz )2 
;I, - +~z M ~. A, + 0 ) (1 - e -(z+~ ) 

1-d(;t-Xz) 3 (  Xz )~(e_~ e_(~+o)~ 
- rCo ,q , - ,~ ,z  M ~ , + O J  - )" 

(3.13) 
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In a like manner,  one obtains 

- 0 ( ; t  - ~z) z ~0 (1_  e_(Z+o)a), 
P22(z) = (r ~o) 1 ~-S~z M (/1, + 0) 2 (3.14) 

t'gna(z)=(r 1-o('a'-'a'z) z /1.0 (1_  e-(Z+o)a) 
;I, - ~.z M ( ; I ,+0)  2 

z2 ( 0  31,, 
- z l  ~ - - - ~ z  " M ( /1 ,+0)  2 ; I ,+0  ' 

Pa(z)=(~J(z)-  ~ro- ~qz)1 - ~(~;z&Z)------ 1 (  0 ~2M~,~+0)  ( 1 -  e-(Z+~ (3.16) 

In the case of  types 5 and 6, a collision does not occur, so we have E(T(j,2)I Q(O) = i, 
l = k ) = 0  for k = 5 , 6 .  Combining the results (3.12)-(3.15) ,  we have the 
result (3.4). 

(4) The successful service completion can happen only in a cycle of types 
5 and 6. Hence, we have E(T(j,3) I Q(0) = i, I = k) = 0 for k = 1, 2, 3, 4. Let "rb be 
the t ime when the first phase of service t ime ends in the cycles of  types 5 and 6 
(see fig. 2). In the case of  type 5, an external arrival takes place before a retrial 
so that there are i + 1 customers in the system at the moment  when the period of 
propagation delay ends, and a collision does not occur. Thus, we have the following: 

E(T(j,3} IQ(0) = i, I = 5) 

li = aSi+l, j + E f l(Q('r b 
0 

= O~8i+l'J + (J -- 1 -- i)! 
0 0 

where ~k,t is the Kronecker  delta, 

+ u) = j) du dF(t) lQ('c b) = i + 11 

e-ZUdu dF(t)l(j > i + 1), 

P(sj,3) = -~- zciE(T(j,3) IQ(0) = i, I = 5 ) P ( I  = 51Q(0) = i) 

= a•l'J+ I (2~u)J-le-aUdudF(t) e-Zalr~ 
(j  - 1)! 

0 0 

1) 
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1 j-1 ( 

and 

I;: e3S(z) = ~ o  az+ 
0 0 

f f (~)j-l-i e-ZUdudF(t) e-(~'+~ > i+l) 
( j  - 1 - i )!  0 0 

~Z j (~t'U) j-I -2~u ~ e-Za 
j=l (~l)--~'e dudF(t)J  

ii + -~ zJ ~, ~i a6i+l j + 
j=2 iffil ~, ' 0 

(2u)J-~-~ 
( j  - 1 - i ) !  

/~ e-(Z+o)a e-aUdudF(t) 

z ( 1 -  P( ; t  - ; tz))  e_Za z 
= ZCo'--~ a +  ~Z '~z  ) + - -~(O(z) -Tro)~ '~oe- (Z+~ 

z 1 - F(A, - &z) ;I, 0 e-(Z+~ + ~-(r 1to) ~,- ~,z ;t+ 

1 - P ( Z - ~ z ) ~  z /1, e_(Z+o)a 
= ~(z) a+ ~ -~z  ) ~  z +o 

1 - F(~l, - ,~z) 
- 1to a +  A , - X z  

z (Z.e_(Z+o)~ e_Z~ ) 
~" ( ; t + v  - ' (3.17) 

Similarly, we obtain 

1 -  P(~, - ~,z)~ 1 
P36 (z)  "" ( r  - ~0)  Of+ ~" ~'~'Z ) M  0 0 e-(Z+~ ~,+ 

1 - F ( ; t - X z ) ~  z 0 (e_(Z+o)a_e_Za). 
- ~1 a +  ~ = ~ z  ") M ,71,+0 (3.18) 

Combining the results (3.17) and (3.18), we have the required result (3.5). Now we 
determine the normalizing constant M. Since ~(1) = P(1) = 1, we have 

1 
M = ~ + K + ~-(1 - e -(z+~ + (a + Y)e -(z+~ 

0 + (1 - e-~a) ( 1 
+ ~r~ :t(:t + O) :t 

oe') 
i _ e _ - ~  + (a  + g - E)(e -za - e -(z+~ - K 
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(o(, +~x 2 - ~  % a e -za "~ i_~J(1-e-Z% 
+ _ -(Z+o)a 0 

(c~ + ~ -  ~') ~- - -~  (e-Xa e ) - K  ~), 
where 

1 ( 
K = ~-~---ff(1-e -(~'+~ 2 - X  

a e -za  a e-o~ 
- 0  

1 -  e - z a  1 - e -~  
~ O 

(3.19) 

The proof  of  the theorem is complete. [] 

By noting lim P ( X ( t )  = k)  = Pk (1), k = 0, 1, 2, 3, we have the l imiting distri- 
bution of  X(t ) .  t--*** 

COROLLARY 5 

The limiting distribution of  X(t )  as t - ~  ~ is given by 

,[, o] 
P ( X  = O ) =  --~ ~ + zco X(,~ +O)  ' 

P ( X  = 1) = K - ~ro K - (1 - e -~'a ) ~1, 
1 - e -za  

( 0 0 (I ae -Z~  ill -~,K~+ o ~+O~-e-%~ i~o))]'  

( o l e,O ] P ( X = 2 ) =  ~ - ( 1 - e - ( Z + ~  - ZOo+ -~-~-0-Zrl ) , 

P ( X = 3 ) =  ( tx+~)e - (Z+~  7 r o + - ~ - ~ T r l  ( o ~ + g ) ( e - Z a - e - ( Z + ~  , 

where K and M are given in the proof  of  theorem 4. 

COROLLARY 6 

by 
The mean number  P/'(1) of  customers in the system at channel state i is given 

1 1 
P6(1)= M X + 0 O ' ( 1 ) '  
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pl,(1 ~ ' _ (~0'(1) - , - ~ 2 - - ~  + 

--/170 (/1, "b 0)  2 

_ ( l _ e  - z a )  ,�88 l _ e - Z a  

f ~ ( 1 ( A + O )  2 - ~r 1 -~- (1 - e -(A+~ 2 - A 

A ) 1 ( a e  -za a e  -~  ) 
(A +0) 2, M- (1 - e -(z+~ 2 - A 0 - -  1 - e -ha  1 - e -~  

ae-Za ae-Oa "] 
1 - e -za 0 1-- e -~ 

O~ e -ha  a e -~  

1 - e -ha - 0 1 - e -~ J 

1 
P~(1) = M 

o 
,;I,+O (1 . l_e_Za , 

1 ((  + 2A ] _e_(Z+o)a ) + ~ - :  0'(1) ZV-~)(1 

-n:o (A--~O (1- e-(Z+~ - 2(1-e -;ta)) 

(2AO + 0 2 0 33 - ' ~ i ~ + - ~  (1 e-(~+%-2 ~ (1-e -~)  , 

1 A ~':(e_(Z+o)a _ (zr ~ 0 
P3'(1) = M 2  + A'--i---O zq) (e-(z+~ - e-Za)) 

+ A 

--~70 ~I A .1_ 0 ,  v 

4. Numerica l  examples  

In this section, we present some numerical results for probability Zo of system 
size being zero, mean r of system size at embedding point, mean P'(1) of 
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Table 1 

Exponential service time with mean 1.0 (g= 1.0, 0= 2.0). 

~, ~z c p ~'(1) P'(1) g xo xl x2 x3 

0.30000 0.0020 0.1 0.43178 0.531 0.498 0.6533 0.6993 0.0001 0.0000 0.3006 
0.5 0.43233 0.532 0,374 0.6531 0.6992 0.0001 0.0002 0.3006 

0.0100 0.1 0.43720 0.549 0.507 0.6464 0.6966 0.0003 0.0002 0.3029 
0.5 0.43999 0.553 0.387 0.6456 0.6959 0.0003 0.0009 0.3029 

0.0500 0.1 0.46588 0.649 0,556 0.6102 0.6827 0.0017 0.0010 0.3145 
0.5 0.48051 0.676 0.459 0.6050 0.6785 0.0017 0.0052 0.3145 

0.50000 0.0020 0.1 0.70226 1.687 1.668 0.3719 0.4988 0.0001 0.0001 0.5010 
0.5 0.70326 1.695 1.619 0.3712 0.4983 0.0001 0.0007 0.5010 

0.0100 0.1 0.71139 1.774 1.733 0.3592 0.4940 0.0005 0.0007 0.5048 
0.5 0.71645 1.816 1.719 0.3555 0.4912 0.0005 0.0036 0.5048 

0.0500 0.1 0.75992 2.328 2.168 0,2929 0.4690 0.0030 0.0041 0.5239 
0.5 0.78655 2.702 2.470 0.2711 0.4517 0.0029 0.0213 0.5240 

0.642688 0.0020 0.1 0.88880 5.799 5.792 0.1467 0.3557 0.0001 0.0003 0.6439 
0.5 0.89016 5.882 5,880 0.1452 0.3546 0,0001 0.0014 0.6439 

0.0100 0.1 0.90063 6.572 6,531 0.1302 0.3493 0,0003 0.0014 0.6489 
0.5 0.90751 7.126 7.083 0.1226 0.3435 0,0003 0.0073 0.6489 

0.0500 0.1 0.96367 18,954 18.715 0,0459 0,3144 0,0026 0.0085 0.6744 
0.5 0.99998 46839.480 46839.160 2.1E- 5 0.2776 0.0022 0.0454 0.6748 

0.64270 0.0020 0.1 0.88882 5.800 5.793 0.1467 0.3557 0.0001 0.0003 0.6439 
0.5 0.89018 5.882 5.881 0.1452 0.3546 0.0001 0.0014 0.6439 

0.0100 0.1 0.90064 6.573 6.532 0.1302 0.3493 0.0003 0,0014 0.6489 
0.5 0.90753 7.127 7.084 0.1226 0.3435 0.0003 0,0073 0.6490 

0.0500 0.1 0.96369 18.963 18.725 0.0459 0.3144 0.0026 0,0085 0.6745 
0.5 1.000003 -289155.4 -289155.7 - 3 . 3 E - 0 6  

0.65000 0.0020 0.1 0.89824 6.408 6.401 0.1346 0.3484 0.0001 0.0003 0.6513 
0.5 0.89962 6,508 6.508 0.1331 0.3472 0.0001 0.0014 0.6513 

0.0100 0.I 0.91020 7.352 7.310 0.1180 0.3419 0.0003 0.0015 0.6563 
0.5 0.91718 8.046 8,003 0.1101 0.3358 0.0003 0.0075 0.6563 

0.0500 0.1 0.97400 26.710 26,466 0.0329 0.3065 0.0026 0.0088 0,6822 
0.5 1 .01083 -67.214 -67-536 -0.0146 

system size at arbitrary time point and the probability xl " P ( X  = i), i = 0, 1, 2, 3 of 
the channel states. In table 1, the numerical results are presented for the case of an 
exponential server with unit mean. The numerical results for hyperexponential 
service time with 

1.5 
. 7 5 + u )  
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Table 2 

Hypemxponential service time with mean 1.0 (~'= 1.0, 0= 2.0). 

tt c p r P'(1) ~ x0 xl x2 x3 

0.30000 0.0020 0.1 0.43178 0.549 0.515 0.6533 0.6993 0.0001 0.0000 0.3006 
0.5 0.43233 0.550 0.391 0.6531 0.6992 0.0001 0.0002 0.3006 

0.0100 0.1 0.43720 0.567 0.524 0.6467 0.6966 0.0003 0.0002 0.3029 
0.5 0.43999 0.571 0.404 0.6455 0.6959 0.0003 0.0009 0.3029 

0.0500 0.1 0.46588 0.669 0.575 0.6098 0.6827 0.0017 0.0010 0.3146 
0.5 0.48051 0.698 0.478 0.6045 0.6785 0.0017 0.0053 0.3146 

0.50000 0.0020 0.1 0.70226 1.781 1.761 0.3718 0.4988 0.0001 0.0001 0.5010 
0.5 0.70326 1.789 1.707 0.3711 0.4983 0.0001 0.0007 0.5010 

0,0100 0.1 0.71139 1.871 1.829 0.3591 0.4940 0.0005 0.0007 0.5048 
0.5 0.71645 1.916 1.813 0.3554 0.4911 0.0005 0.0036 0.5048 

0.0500 0.1 0.75992 2.449 2.284 0.2925 0.4689 0.0029 0.0041 0.5240 
0.5 0.78655 2.838 2.598 0.2706 0.4516 0.0029 0.0215 0.5241 

0.642688 0.0020 0.1 0.88880 6.212 6.204 0.1467 0.3557 0.0001 0.0003 0.6439 
0.5 0.89016 6.300 6.294 0.1452 0.3546 0.0001 0.0014 0.6439 

0.0100 0.1 0.90063 7.036 6.992 0.1302 0.3493 0.0003 0.0014 0.6489 
0.5 0.90751 7.624 7.575 0.1225 0.3434 0.0003 0.0073 0.6490 

0.0500 0.1 0.96367 20.226 19.980 0.0458 0.3144 0.0026 0.0085 0.6745 
0.5 0.99998 49820.210 49819.900 2 .1E-5  0.2776 0.0022 0.0454 0.6748 

0.64270 0.0020 0.1 0.88882 6.213 6.205 0.1467 0.3557 0.0001 0.0003 0.6439 
0.5 0.89018 6.301 6.295 0.1452 0.3546 0.0001 0.0014 0.6439 

0.0100 0.1 0.90064 7.037 6.993 0.1302 0.3493 0.0003 0.0014 0.6490 
0.5 0.90753 7.626 7.577 0.1225 0.3434 0.0003 0.0073 0.6490 

0.0500 0.I 0.96369 20.236 19.990 0.0458 0.3144 0.0026 0.0085 0.6745 
0.5 1.000003 -307556.8 -307557.1 - 3 . 3 E - 0 6  

0.65000 0.0020 0.1 0.89824 6.869 6.862 0.1346 0.3484 0.0001 0.0003 0.6513 
0.5 0.89962 6.976 6.972 0.1331 0.3472 0.0001 0.0014 0.6513 

0.0100 0.1 0.91020 7.876 7.832 0.1179 0.3419 0.0003 0.0015 0.6563 
0.5 0.91718 8.615 8.567 0.1100 0.3358 0.0003 0.0075 0.6564 

0.0500 0.1 0.97400 28.524 28.272 0.0329 0.3064 0.0025 0.0088 0.6822 
0.5 1 .01083 -71.536 -71.865 -0.0145 

are given in table 2. Finally, in table 3, we have the results for constant service time 
with unit mean. In tables 1 -3 ,  collision recovery time C is deterministic. As p 
increases to 1, we see that the mean of  system size increases and ~ decreases, as 
we expected. Also, when p is slightly greater than 1, ~ is negative. This fact 
suggests that the condition p < 1 is also a necessary condition, which we could not 
prove. 
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Table 3 

Deterministic service time with mean 1.0 (Y= 1.0, O= 2.0). 

a c p r P '(I)  ~ xo xl x2 x3 

0.30000 0.0020 0.1 0.43178 0.452 0.420 0.6534 0.6993 0.0001 0.0000 0.3006 
0.5 0.43233 0.452 0.301 0.6533 0.6992 0.0001 0.0002 0.3006 

0.0100 0.1 0.43720 0.467 0.428 0.6470 0.6966 0.0003 0.0002 0.3029 
0.5 0.43999 0.471 0.313 0.6462 0.6959 0.0003 0.0008 0.3029 

0.0500 0.1 0.46588 0.554 0.472 0.6129 0.6827 0.0019 0.0009 0.3145 
0.5 0.48051 0.578 0.377 0.6082 0.6789 0.0019 0.0047 0.3145 

0.50000 0.0020 0.1 0.70226 1.266 1.255 0.3720 0.4988 0.0001 0.0001 0.5009 
0.5 0.70326 1.272 1.232 0.3714 0.4983 0.0001 0.0006 0.5009 

0.0100 0.1 0.71139 1.335 1.306 0.3599 0.4940 0.0006 0.0007 0.5047 
0.5 0.71645 1.369 1.309 0.3566 0.4914 0.0006 0.0033 0.5047 

0.0500 0.1 0.75992 1.779 1.648 0.2960 0.4690 0.0035 0.0038 0.5236 
0.5 0.78655 2.080 1.898 0.2753 0.4528 0.0034 0.0200 0.5237 

0.642688 0.0020 0.1 0.88880 3.940 3.948 0.1468 0.3557 0.0001 0.0003 0.6439 
0.5 0.89016 3.999 4.040 0.1454 0.3546 0.0001 0.0013 0.6439 

0.0100 0.1 0.90063 4.485 4.458 0.1306 0.3493 0.0005 0.0014 0.6489 
0.5 0.90751 4.881 4.880 0.1232 0.3436 0.0004 0.0070 0.6489 

0.0500 0.1 0.96367 13.225 13.019 0.0466 0.3145 0.0028 0.0084 0.6743 
0.5 0.99998 33426.140 33425.850 2 .1E-5  0.2776 0.0022 0.0454 0.6748 

0.64270 0.0020 0.1 0.88882 3.940 3.943 0.1468 0.3557 0.0001 0.0003 0.6439 
0.5 0.89018 3.999 4.041 0.1453 0.3546 0.0001 0.0013 0.6439 

0.0100 0.1 0.90064 4.485 4.458 0.1306 0.3493 0.0005 0.0014 0.6489 
0.5 0.90753 4.882 4.881 0.1231 0.3436 0.0004 0.0070 0.6489 

0.0500 0.1 0.96369 13.231 13.025 0.0466 0.3145 0.0028 0.0084 0.6743 
0.5 1.000003 -206349.1 -206349.4 - 3 . 4 E - 0 6  

0.65000 0.0020 0.1 0.89824 4.330 4.333 0.1347 0.3484 0.0001 0.0003 0.6512 
0.5 0.89962 4.401 4.443 0.1332 0.3473 0.0001 0.0014 0.6512 

0.0100 0.1 0.91020 4.990 4.962 0.1183 0.3419 0.0004 0.0014 0.6563 
0.5 0.91718 5.483 5.480 0.1106 0.3360 0.0004 0.0073 0.6563 

0.0500 0.1 0.97400 18.541 18.329 0.0334 0.3065 0.0027 0.0087 0.6821 
0.5 1 .01083 -47.775 -48-076 -0.0149 

Remark 

In this paper, we have studied the idealized retrial queueing model with 
collision, which is motivated by the communication protocol CSMA/CD. Thus, we 
have not dealt with the issue of implementing the control policy in the retrial group. 
Each customer in the retrial group needs to know the exact number n of customers 
in the retrial group to implement exponential retrial time with parameters O/n. In 
a practical situation such as satellite communication, it is impossible for each 
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blocked terminal (customer in the retrial group in queueing terminology) to know 
the total number of blocked terminals. However, statistical algorithms for the estimation 
of the number of blocked terminals of slotted CSMA protocol with deterministic 
transmission time were proposed (for example [1, p. 218]). 
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