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We consider a retrial queueing model with collision arising from the specific
communication protocol CSMA/CD. Under the retrial control policy in which the retrial
rate is inversely proportional to the number of customers in the retrial group, we derive
the generating function of the limiting distribution of the number of customers in the
retrial group at the moment when the channel is free. Using the theory of Markov
regenerative processes, we also obtain the limiting distribution of the number of customers
in the system at arbitrary time points.
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1. Introduction and model description

We consider a single channel queueing system with customer conducting
retrials. Customers arrive from outside the system according to a Poisson process
with rate A. The service time of each customer consists of two consecutive phases.
The first phase of service time is constant time ¢ and the second phase of service
time is a random variable S with distribution function F(-) and its LST (Laplace—
Stieltjes transform F(-) defined by

oo

F(u) = fe‘”‘dF(t),

0
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finite mean § and finite second moment s2. An arriving customer, either from
outside the system or from the retrial group, to the service channel first checks the
channel state. On arrival to the channel, if the channel is free, the customer immediately
occupies it. On arrival to the channel, if the channel is busy with the first phase
of a customer’s service time, then a collision occurs. On the other hand, if the
channel is busy with the second phase of a customer’s service time, then a collision
does not occur and the arriving customer joins the retrial group. If a collision
occurs, then it takes a random time C, called the collision recovery time, for the
channel to be free. Let G(-) be the distribution function of C, let G(-) be the LST
of G(-), and let € be the mean of C and ¢2 the second moment of C. If a collision
takes place, then all the customers in the service channel remain in the channel
during the collision recovery time and then join the group at the end of collision
recovery time. If no one arrives within the first phase of service time of a customer,
then the customer in the service channel will be served successfully. In this case,
it takes service time S + « for the channel to be free. The access of input stream
to the channel is controlled by the retrial control policy described below. If the
number of customers in the retrial group is #, then each customer in the retrial group
independently attempts to occupy the channel after an exponential amount of time
with parameter 6/n.

A major motivation for this model comes from a specific communication
protocol CSMA/CD (carrier sense multiple access with collision detection). The
first phase of service time, the second phase of service time, the collision recovery
time, the customers in the retrial group and retrial control policy in the queueing
terminology correspond to the propagation delay, transmission time, the collision
recovery time, blocked terminals and retransmission control policy in CSMA/CD
protocol terminology, respectively [11]. For the detailed description of CSMA/CD
and other protocols in communication networks, see Tobagi and Hunt [12] or
Hammond and O’Reilly [7]. It is known that the slotted ALOHA [6] and slogted
CSMA/CD models [11] with infinite terminals are unstable in the absence of the
channel control disciplines. For stabilized channels, Fayolle et al. [6] examined two
classes of control policies: the retransmission control policy and the threshold
control policy, and they gave sufficient conditions for the system to be stable under
each control policy. Meditch and Lea [11] found a sufficient condition for the
slotted nonpersistent CSMA/CD to be stable under the retransmission control policy,
and they obtained the distribution of the number of blocked terminals for a stabilized
channel at successful departure points when the service time is deterministic.

In this paper, we derive a sufficient condition for the system with a retrial
control policy to be stable. Next, we obtain the generating function of the limiting
distribution of the number of customers in the retrial group at the moment when
the channel is free. We also obtain the limiting distribution of the number of
customers in the system at arbitrary time. We follow the same technique, using the
theory of Markov regenerative processes, as in Kulkarni and Choi [9]. As a related
work, Falin [4] analyzed the retrial queueing model with collision, called the queue
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with double connections, in which, if an arriving customer finds the channel busy,
then the channel becomes free immediately and both the arriving customer
and the served customer join the retrial group. The analysis for the retrial queue
with the same retrial control policy and o= 0 was given by Choi and Park [3] and
Farahmand [5].

The organization of this paper is as follows. In section 2, we investigate the
embedded Markov chain for our model which provides the basis for the main results
in the sequel. In section 3, we find the limiting distribution of the number of
customers in the system at arbitrary time points.

2. Distribution of system size

Let T, be the time when the channel is sensed idle for the nth time and Ty = 0.
We shall call (T, _, 7,] the nth cycle. Let Q(¢) be the number of customers in the
system at time ¢t and 0, = Q(T, + 0) (n 2 0). Since all customers in the system are
in the retrial group just after T,, Q, represents the number of customers in the retrial
group just after T,. Next, we shall study the limiting distribution of {Q,, n=0}.
First we note that the cycle (7,,_1, T,], n 21 is one of the six different types as
described below (fig. 1):

Type 1: An external arrival takes place before a retrial, a collision occurs by
another external arrival.

Type 2: An external arrival takes place before a retrial, a collision occurs by a
retrial.

Type 3: A retrial takes place before an external arrival, a collision occurs by an
external arrival.

Type 4: A retrial takes place before an external arrival, a collision occurs by
another retrial.

Type 5: Anexternal arrival takes place before a retrial, service is completed without
collision.

Type 6: A retrial takes place before an external arrival, service is completed without
collision.

Let 7, be the time when the first phase of service time ends in the cycles of
types S and 6 (see fig. 1). Let A.(n) be the number of external arrivals during the
period of a collision recovery time C in the nth cycle of types 1-4 and let A,(n)
be the number of external arrivals during the time interval (7, T,], which is the
same as the random variable S, in the nth cycle of types 5—6. Then {A.(n), n 21}
and {A(n), n 2 1} are sequences of i.i.d. random variables whose generic variables
are denoted by A, and A;, respectively. It is well known that

E(z%)=G(A-GAz), E(z%)=F(A-A2). 2.1
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Fig. 1. Types of cycle (vertical arrows in the A and 8 represent
external arrival times and retrial times to the channel, respectively).

Define I, = k if the nth cycle is of type k. From the above description of the
model, we obtain the following:

(0, +2+A(n+1), if I, =1,
O, +1+ A (n+1), if I, =2,
g o QAT AGED, I Ly =3, 22)
170 0+ Ac(nt), if I, =4, ‘
Oy +As(n+1), if Inq=35,
|0, —1+A(n+1), if L. =6.

From the independence of (A(n+ 1), A.(n+ 1)) and {Qy, 0 <k < n}, we sce that

{Qn, n 20} is an embedded Markov chain. Clearly, {Q,, n 20} is aperiodic and
irreducible. From the definition of type I, . of the (n + 1)st cycle, we have

A 0y A e

21— A >

PU,, =110, =j)={A+81 "¢ YZyer /2L

1-¢7*9, if j=0;
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P(lps1 =2|Qn = j) = 3

P(Ins1 =3|0n = j) = 1
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A+0
0,
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A+0

+
7]
A+6

0,

\

-

P(1n+1=4|Qn=j)=1l+9

P(ly1 =510 = J) =1

P(Ips1 =61Qn = )=y 55

(1-e™?®),

0
—a— A0y~
(I-e )A+9’

A

(1 _ e—(l+6)a) _n~

A+0’

7]
e~ A0y __ Y
(I-e )A+0’

it j>1,
if j=0;

it j22,

if j=1,

if j=0.

if j=1,
if j=0;

if j22,

if j=1,

if j=0;

if j22,
if j<1;
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2.3)

Now we find a sufficient condition for the system to be stable by applying

the following lemma [12].

PAKES’ LEMMA

Let {X,, n20} be an irreducible and aperiodic Markov chain whose state
space is the set of nonnegative integers. The following conditions are sufficient for

the chain to be ergodic:

(@ |EXp,1—-Xa|X,=1)|<e for all i;

(b) lim Sup E(Xp41— Xal X

{—yo0

=i)<0.
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Let ¢ = E(C) <= and § = E(S) <. We have from (2.2) and (2.3), forj 2 2,
E(Qni1 —0nlQn = 1))

6
= ZE(QnH = 0nlCn = jilnst = K)P(Lpy1 = k|Qp = J)
k=1

22 2A+0 e_(1+g)a

_ 1501 _ o~ (A+0)x - ~(A+8)x _
=Ac(l-e )+A5e +l+9 170

Let n=A+ 6 and

A2 =" +en(1-eT")+5ne1Y)
= " )

p

Then 7 is the total access rate to the channel, and for {Q,, n 20} to satisfy the
condition (b) in the lemma, we must have

p< 1. 2.4)

Thus, we have:

THEOREM 1
If (2.4) holds, then the embedded Markov chain {Q,, n 20} is ergodic.

Remark

When o = 0, our model becomes a retrial queue without collision, and with
a retrial control policy in which the retrial rate is proportional to the inverse of the
number of customers in the retrial group, condition (2.4) becomes As < 6/(A + 0),
which is the necessary and sufficient condition for the system to be stable (see Choi
and Park [3], Farahmand [5]).

In the remainder of this paper, we always assume that condition (2.4) holds.
Then the limiting distribution { nj}‘;;o of Markov chain {Q,, n 2 0} exists and all
m;'s are positive. Next, we will find the generating function of {;}. Using egs.
(2.1)-(2.3) and the formula

6
E(z%4)|Q, = j)= Y E(z%4|0, = j,lps1 = k)P(Ins1 = k|Qn = J),
k=1
we obtain that

2
E(z%1|Q, = j) = zj‘l[zé(l - lz)(’lz+ 9] (1-e A+0)ay

A+6

Az+ 0

+ ﬁ(l—lZ)m

e‘(“‘”“j, for j22, (2.5)
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~ A(Az+0) o 0 _
Oni1 — 1) — 52 _ (A+0)x P ¥4
E(z%1|Q, =1) = z*G(A JLz)(——(/l 57 (1- )+ p(l-e ))
+ F(A=22) 7 l 5 (AzeA+0)a 4 go-tay (2.6)
E(z%1|Q, =0) = 22G(A - Az) (1—e~**) + F(A - Az)e~*2. Q.7

Let ¢,(z) = E(z%%) and ¢(z) = X} om;z/. Then, under condition (2.4), ¢.(z) = ¢(2).
From egs. (2.5), (2.6) and (2.7), we have that

Oni1(z) = ZE(ZQ”‘|Qn = IP(Qn =)

Jj=0

= L(6:()- P = 0)-2P(0, = 1)

x[zG(/l /1)(}“”9] (1—e™+0ay 4 F( - Mi”g —<z+o>a)

A(Az+0)

- 0
— 2 —(JL+9)a a—AO
+ P(Q, = 1)[2 G(l—lz)( o 0)2 (1- )+ 0 +9(1 e ))

+ F(A-az) Jlr G ee"“"))
+ P(Q, = 0)(2G(A - Az2)(1—e72%) + F (A - Az)e™*). 2.8)
Letting n — < in (2.8), we obtain, after some algebraic manipulation,
¢(z) = moAp(2) + mA(2), 2.9)
where Ao(z) = ag(2)/d(z), A1(z) = a;(2)/d(z) and

A«Z'I'e AZ+9 —(7L+6)a

d(z)=zG(A - ,1)( )(1 e~(AH0)ay L () — /'Lz)

ap(z) = z2G(A - Az)(( Az+ 9) (1—e~(+0)ay _ zz(l_e—za)) '

+ FOL- A)().z+g _(z+e)a_ze—7m),
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6(Az+0) \_ —oroyay _ 02 1 _ -2
aroyr A7 - g

0
A+8

a(z) = 22G(A - /’Lz)(

+ zZF(A = Az) (e~C+0)a _ o-Aay

It remains to determine 7, and ;. Using the facts f(1) = 1 and ¢’(0) = ;, we have
from (2.9) a simultaneous linear equation:

1=Ay(Dmp+A(Dm,
m = Ay (0)mo + A{(0) ;.

This simultaneous linear equation yields

o = 1-A{(0)
0T A (0)A (1) + A4 (D (1- A{(0))
(2.10)
o= A5(0)
T A 0AM + 41 A-A0)
Substituting my and #; into (2.9), we obtain
b(2) = (1- A{(0)) Ao (2) + A5(0) A (2) 2.11)

T AN0)A (1) + A (1) (1- A{(0))
Thus, we have the following theorem after a simple calculation:

THEOREM 2

Under condition (2.4), the Markov chain {Q,, n 2 0} is ergodic and the generating
function ¢(z) of the limiting distribution of {Q,, n 20} is given by (2.11), where

amAap
H0=—g——
2+0 ° F&)
’ —1_ 0 — a(')(l) _ all(l)
A =1-c", ()= Fs and A= G,

20 _ 24+0
A+0 A+8

a(')(l) - —A«(E— Z:)(e-ld _ e—(ﬂ.+9)(x) - e—(l+9)a + 2e—ﬂ.a,
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(e—-llx - e—(l+9)a) + A6 (1- e—(2.+9)a)

a(1)=-AGF-7) G107

0
A+0

+

T 3 5 (ze-la _l_e—(l+9)a)’

24 2A+0
’ = 17(] — a—(4+0)x = ~(1+8)x -(l+9)a
d()=Act(1-¢ )+ ATSe +,,{+0 T30 .

COROLLARY 3

The mean number ¢’(1) of customers in the system at embedding time is
given by
d’(1) 1 A3(0)ai(1)+(1-A{(0))a5(1)

YD=770) T 7 BOEDOTA=AONGD)

where

” 22 —(A+0)ay , 12732 —(A+0)ax A _(+6)a
a )= ZAC(I-*-_A« )(1 ¢ Y+ Ac“(d-e )+ 245 150 e

23 -~ | 4A 242 _ —(+0)
+ A°s%e +(l+9 + G107 (1-¢ )

701y — = _ 20 —/'La_?’l"'e -(A+6)x
ao(l)-ZAC( l+6+3e T e

+ Az"ci(e-/la_e-(1+9)a)+2(1_e—(1+9)a) 24 N RS
A+6 A+6

- 6(1- e‘“‘) + 215(——1— e

5 ~(A+8)a _ e—laj _ Azsz(e—m _ e—(k+6)a),

ah ;»90 (Z(e"'“ — A0y 4 %(]—e“(“")“)—(l—e"'“))
+ 2202 o5 (e gty | l+0 (e—la e~ (A0
L 246 (1-e-(-+0)a) _ —‘i(l—e"‘“)
(A+0)° A+0
- QAT+ RSPy (7 - RO,
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3. Limiting distribution of the {Q(¢), £ = 0} process

We define the idle period as the time period between the epoch when the
channel is free and the epoch when the channel is occupied by one customer. Let
X(t) denote the state of the channel at time ¢ as defined below (see. fig. 2).

(0 if the channel is in the idle period.

1  if the channel is in the period between the first arrival and
the second arrival in the case of collision.

X(1) =1
2  if the channel is in the collision recovery period.
3 if the channel is in the period of service time in the case
| of no collision.

1 1 i 1 1
T fg; T T f T T
Tn-l f Tn ‘tb Tn+l

Xt)=0 X({t)=1 X(©)=2 X(®)=0 X(t)=3

Fig. 2. The states of the channel.

In this section, we shall obtain the generating function of the limiting
probabilities Fj ¢ = lim, _, . P(Q (1) = j, X(t) = k]| Q(0) = i, X(0) = 0) of the (Q(#), X(1))
process. Then, we easily obtain the generating function of the limiting probabilities
P;=1im, _, .P(Q(t) =j| Q(0) = i) of the Q(¢) process by the relation P; = P; ) + P 1)
+ Fijoy + B3,

It is easily seen that {(Q,, T,), n 2 0} is a regular Markov renewal sequence
and all conditional finite-dimensional distributions of {Q(t+ T,), t=0} given
{Qu),0<u<T, Q(T,) =i} are the same as those of {Q(z), =0} given Q(0) = i.
This shows that {Q(), =20} is a Markov regenerative process with embedded
Markov renewal sequence {(Q,, T,), n 2 0}. Let {x;} be the limiting distribution of
{Qn, n20}. Let T(;4 be the time spent by the (Q(z), X(¢)) process in state (j, k)
during [0, T7). It is known from the property of Markov regenerative processes that
the limiting probability of (Q(z), X(¢)) as t — oo exists and is given by
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Bju= MZnE(T(,kﬂQm) i, j=012...,k=0123  @3I

i=0

where M is a normalizing constant.

Let P(Z)—-Z, OPzJ and Pk(z)—ZJ_OP(]k)zf k=0,1,2,3. Then P(2)

= Ti-0Pe(2).
THEOREM 4
The generating functions P(z), k=0, 1, 2, 3, are given by
1 1 0
Ry(z) = ¢(Z)M 5o T 7 A0 (3.2)
P(Z)—¢(Z) 1 lz+9 (1 __(l_'_o)a) 2_2‘ ae_z’a _e ae-—oa
: M (A+6)? 1-e~*@ 1—e 92
L[ Az+0 (1000 5 A oe e o oe
"M\ (A+6)? —et T1-et

iy 1 e
2(1-¢ )[a —

1 0z ae_la ae—9a
e~ (t0)ay [ o _ _
1M((ﬂ» o7 )[2 Moo el—e"’“]
0z (1 oaete _
‘W[T‘WJU-C m)]’ (3.3)

h@D=5 —7 7 T8
Az+6 Y
o [( A{Z:g ) (1 —(/'l+9)(1) z (1 e—-la )]

- —“‘)D, (3.4)

and
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_L l—ﬁ(A—AZ) lz+0 -(A+0)a
P“”'M[‘” 71— Az )(4’()“0

Az+0 0z
( —(l+6)a —la) m
A+

o 5 (e-(/'l.+9)a _ e—la )),(35)

where the normalizing constant M will be given by (3.19).

Proof

(1) Since the sample path of Q(¢) is independent of i during the time period
{X(r) = 0} of the cycle under Q(0) = i, we have

r

0 if j#i,

1 e :
E(Tij,O)|Q(0)=i)=T 140 if j=iz],

+
11- if j=i=0.

-

Thus, from (3.1) we obtain

1 1

-_— ——— H f >
 [srrmen e
0 =
o 11, if j=0

ML J=5

and so we have (3.2).
(2) For simplicity of computation, let

Fin = EmE(T(, p1Q(0) = i, I = k)P(I = k|Q(0) = 1)) (3.6)
and B*(z)=X7.0Pk 2/, 1=1,2,3. Then for /=1,2,3 we have

6
R(z)= Y Bk(2). (3.7)

k=1

For Pi(z), we will compute Pl"(z) for each k. In the case of type 1, an external
arrival takes place before a retrial so that there are i + 1 customers in the system
when the channel starts service, and a collision has occurred by another external
arrival. Thus, we have
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~-Aa
E(AlA< Q)= 71: - e

if j=i+1,
E(TplQ0)=i, I1=1)=

0 if j#i+l,

where A is the interarrival time. Hence, from (3.6) we obtain that

. 1 aete ,
Fin =37 iy P(I=10(0)=j-Dmjy

(1(1 ae* Y 4 2 .
7\7(7_ l—e'w](l+0) (1-e™®*ONm;y  if j22,

=2 1(1 oet o
_M(T‘_l_ee-m](l‘e'm)ﬂo if j=1,
0 if j=0,
and so
-Aa 2
1, _. 2|1 o€ A —(A+0)a
PI(Z)_MZ)M[A l—e‘}"")(l’fe) (I-e¢ )
21 ae™ AN o iy
_”"T/I{I_ 1-{’*“][(1-&-6) (1-¢ )-1+¢ . (3.8)

In a like manner, one obtains

> (1—e #+0)ay, (3.9)

—6a
B ()= (9() - m) | & = 22 ) 29

\6 T 1-¢% (A +0)

~Ao
B ()= (9(2)= 7o) 37| 7 - ae-m](lﬁ,)

" > (l_e—(l+9)a)
ad

—m] - ac ™ A9 -(A+8)a 0 oy
ﬂlM(l 1—e‘“]((l+e)2 (I-e )= a3t (.10

-0 2
1’14(2)=(¢(Z)—ﬂo—ﬂ12)%(%— o j( 139) (1- e 3+0). 3.11)

1 _ e—ea
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In the case of types 5 and 6, a collision does not occur and hence
E(T1y1 Q) =i, I =k), k=5, 6. Combining the results (3.8)—(3.11) and using (3.7),
we have the result (3.3).

(3) Let 7, be the time when a collision occurs in the cycle of types 1-4 (see
fig. 2). In the case of type 1, there are i + 2 customers in the system at the moment
when a collision occurs, so we have

oo t

E(T2100) =i, I=1)=E j_fKQoa+u)=jnmd60nQ0n>=t+2
[{ Y}

/]

N oo ¢ . .
1 &2 J (Au)i=2
0

(lu)f 2+

=35 '}""dudG(t)l( jZi+2). (3.12)

&._\‘-.

Thus, from (3.6) we have that

E—j_—_—z—_-me"“‘du dG()P(I =110(0) = i) =;

o
r j=2
1 f Q) iy 4G (1) (1 - o= )01 2 2)
0

J (J=2)!
0

“dudG(z)( A )(1 e~ W0y (j > 3y,

) ]&: tf’ j_2”' (lu)j—z_'
) &G
0

2 r e i-2 '
Pl(z)= z f fz (();uz)?i)‘ e MdudG(t)(1-e*%)m,
0

i—2—i 2
’1“)} ‘“dudG(r)( A )(1 e~ (A+0)ay

/-
O;—‘
‘™M
N\
1

1-G(A=Az) 1( Az V. .o
= 9(2)—- (l+9)(1—e o)

l—é(l—lz) 1 Az 2 —Aa _ ~(A+8)a
TRTI R _(ue) (e -e > -
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In a like manner, one obtains

P2 = ($(0)-my ZG A = (-2, (3.14)
R ()= 0@-r 2 GA R £ S0 o

_alo c;(zhaz) 22 ((1100)2 (1= -Gty % (l_e_w)), (3.15)
P (2D = (8()— g - i) =S (1o 9)2(1—e'<“">“>. (3.16)

In the case of types 5 and 6, a collision does not occur, so we have E(T¢; 2| Q(0) = i,
I=k)=0 for k=5,6. Combining the results (3.12)—(3.15), we have the
result (3.4).

(4) The successful service completion can happen only in a cycle of types
5 and 6. Hence, we have E(T(;3|0(0)=i,1=k)=0 for k=1,2,3,4. Let 7, be
the time when the first phase of service time ends in the cycles of types 5 and 6
(see fig. 2). In the case of type 5, an external arrival takes place before a retrial
so that there are i + 1 customers in the system at the moment when the period of
propagation delay ends, and a collision does not occur. Thus, we have the following:

E(T;»100) =i, I=5)

= a8, +E| [ 10, +1)= eudFOI0@) =141
0 0

j-1-i
= 08,4 f f ((j)“_‘f)l e MAudF(OI(j 2 i +1),

where &, is the Kronecker delta,

1 oo
Foay =97 2 BET;n10(0) =i, I =5)P(I =5|Q(0) =)
i=0

1 C( Gw'™ _ _ .
=37 ad; ; +f ((j—)l)! e MdudF(t) e Mn'ol(j 21)
0
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Similarly, we obtain
1-F(A-2z))1 @
Pf(z)=(¢<z)—no>[a+ A Z)Jﬁ TGl
_ ﬂl(a-l- l‘i(fz;lz)) _]% lie(e—(l+e)a_e—la). (3.18)

Combining the results (3.17) and (3.18), we have the required result (3.5). Now we
determine the normalizing constant M. Since ¢(1) = P(1) = 1, we have

[y

M=

5 tK+2(1=e M%) 4 (g 4 5)e~HrO

+7 +-e oy L _ e +(a+5-T)(e % -0y _ g
0 A(,1+e) A7 1o
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9 1 ae—la -Ao
+”‘(A+0(7 - 1_e-m)(1_e )

= = 0 o -a_ o-(H0)a 0
+ (0 +5 c)/“_e(e )— K1+9 (3.19)
where
1 ae ae %
- (1_e—(AtO)ay| H _ _ )
K /1+0(1 e )(2 ll—e‘“‘ el—e“’“]
The proof of the theorem is complete. O

By noting lim P(X(t) = k) = P, (1), k=0, 1, 2, 3, we have the limiting distri-
bution of X(¢). =

COROLLARY 5

The limiting distribution of X(¢) as ¢ — < is given by

1[ 1 (7]
P(X=°)=ﬁ_/1+e+”°z(a+e)]’

1 [ " 1 ae"m
P(X=1)=ﬁ K-m K-(1-e¢ a)-I_l—e—_m

0 0 a1 ae™®
"‘I[Km'm“'e )(I‘H—-Mm'
oy L2y am(A4B)ay 0 e-(A+0)

P(X—2)-M c(l—e )-T ﬂ°+l+6m (e~* IR

P(X=3)= %[(a+§)e‘(“9)“ +(7r0 +* T m](a+s)(e-’“1 -<1+9>“)],

where K and M are given in the proof of theorem 4.

COROLLARY 6

The mean number P/(1) of customers in the system at channel state i is given

1 :
M are?

by
R(l)=
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4, Numerical examples

In this section, we present some numerical results for probability &, of system
size being zero, mean ¢’(1) of system size at embedding point, mean P’(1) of
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Table 1

Exponential service time with mean 1.0 (5= 1.0, 8= 2.0).

A a ¢ p ¢’(1) P/(1) g Xo x X X
0.30000 0.0020 0.1 0.43178 0.531 0.498 0.6533 0.6993 0.0001 0.0000 0.3006
0.5 0.43233 0.532 0.374 0.6531 0.6992 0.0001 0.0002 0.3006
0.0100 0.1 0.43720 0.549 0.507 0.6464 0.6966 0.0003 0.0002 0.3029
0.5 0.43999 0.553 0.387 0.6456 0.6959 0.0003 0.0009 0.3029
0.0500 0.1 0.46588 0.649 0.556 0.6102 0.6827 0.0017 0.0010 0.3145
0.5 0.48051 0.676 0.459 0.6050 0.6785 0.0017 0.0052 0.3145
0.50000 0.0020 0.1 0.70226 1.687 1.668 0.3719 0.4988 0.0001 0.0001 0.5010
0.5 0.70326 1.695 1.619 0.3712 0.4983 0.0001 0.0007 0.5010
0.0100 0.1 0.71139 1.774 1.733 0.3592 0.4940 0.0005 0.0007 0.5048
0.5 0.71645 1.816 1.719 0.3555 0.4912 0.0005 0.0036 0.5048
0.0500 0.1 0.75992 2.328 2.168 0.2929 0.4690 0.0030 0.0041 0.5239
0.5 0.78655 2.702 2.470 0.2711 0.4517 0.0029 0.0213 0.5240
0.642688 0.0020 0.1 0.88880 5.799 5792 0.1467 0.3557 0.0001 0.0003 0.6439
0.5 0.89016 5.882 5.880 0.1452 0.3546 0.0001 0.0014 0.6439
0.0100 0.1 0.90063 6.572 6.531 0.1302 0.3493 0.0003 0.0014 0.6489
0.5 0.90751 7.126 7.083 0.1226 0.3435 0.0003 0.0073 0.6489
0.0500 0.1 0.96367 18.954 18.715 0.0459 0.3144 0.0026 0.0085 0.6744
0.5 0.99998 46839.480 46839.160 2.1E-5 0.2776 0.0022 0.0454 0.6748
0.64270 0.0020 0.1 0.88882 5.800 5.793 0.1467 0.3557 0.0001 0.0003 0.6439
0.5 0.89018 5.882 5.881 0.1452 0.3546 0.0001 0.0014 0.6439
0.0100 0.1 0.90064 6.573 6.532 0.1302 0.3493 0.0003 0.0014 0.6489
0.5 0.90753 7.127 7.084 0.1226 03435 0.0003 0.0073 0.6490
0.0500 0.1 0.96369 18.963 18.725 0.0459 03144 0.0026 0.0085 0.6745
0.5 1.000003 -289155.4 -289155.7 -3.3E-06
0.65000 0.0020 0.1 0.89824 6.408 6.401 0.1346 0.3484 0.0001 0.0003 0.6513
0.5 0.89962 6.508 6.508 0.1331 0.3472 0.0001 0.0014 0.6513
0.0100 0.1 0.91020 7.352 7.310 0.1180 0.3419 0.0003 0.0015 0.6563
0.5 0.91718 8.046 8.003 0.1101 0.3358 0.0003 0.0075 0.6563
0.0500 0.1 0.97400 26.710 26.466 0.0329 0.3065 0.0026 0.0088 0.6822
0.5 1.01083 -67.214 -67-536 -0.0146

system size at arbitrary time point and the probability x;= P(X=1i),i=0, 1,2, 3 of
the channel states. In table 1, the numerical results are presented for the case of an
exponential server with unit mean. The numerical results for hyperexponential
service time with

~ 1.5 0.75
Flu)= O-S(mﬂ“"s(m]
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Table 2

Hyperexponential service time with mean 1.0 (5= 1.0, 8=2.0).

A o 4 P ¢l(1) P'(l) K3 X0 X X3 X3
0.30000 0.0020 0.1 043178 0.549 0.515 0.6533  0.6993 0.0001 0.0000 0.3006
0.5 0.43233 0.550 0.391 0.6531 0.6992 0.0001 0.0002 0.3006
0.0100 0.1 0.43720 0.567 0.524 0.6467  0.6966 0.0003 0.0002 0.3029
0.5 0.43999 0.571 0.404 0.6455  0.6959 0.0003 0.0009 0.3029
0.0500 0.1 0.46588 0.669 0.575 0.6098  0.6827 0.0017 0.0010 0.3146
0.5 0.48051 0.698 0.478 0.6045  0.6785 0.0017 0.0053 0.3146
0.50000 0.0020 0.1 0.70226 1.781 1.761 0.3718  0.4988 0.0001 0.0001 0.5010
0.5 0.70326 1.789 1.707 03711 0.4983 0.0001 0.0007 0.5010
0.0100 0.1 0.71139 1.871 1.829 0.3591 0.4940 0.0005 0.0007 0.5048
0.5 0.71645 1.916 1.813 0.3554  0.4911 0.0005 0.0036 0.5048
0.0500 0.1 0.75992 2.449 2.284 0.2925  0.4689 0.0029 0.0041 0.5240
0.5 0.78655 2.838 2.598 0.2706  0.4516 0.0029 0.0215 0.5241
0.642688 0.0020 0.1 0.88880 6.212 6.204 0.1467 0.3557 0.0001 0.0003 0.6439
0.5 0.89016 6.300 6.294 0.1452  0.3546 0.0001 0.0014 0.6439
0.0100 0.1 0.90063 7.036 6.992 0.1302  0.3493 0.0003 0.0014 0.6489
0.5 0.90751 7.624 71.575 0.1225  0.3434 0.0003 0.0073 0.6490
0.0500 0.1 0.96367 20.226 19.980 0.0458 03144 0.0026 0.0085 0.6745
0.5 0.99998 49820.210 49819.900 21E~5 02776 0.0022 0.0454 0.6748
0.64270 0.0020 0.1 0.88832 6.213 6.205 0.1467  0.3557 0.0001 0.0003 0.6439
0.5 0.89018 6.301 6.295 0.1452  0.3546 0.0001 0.0014 0.6439
0.0100 0.1 0.90064 7.037 6.993 0.1302  0.3493 0.0003 0.0014 0.6490
0.5 0.90753 7.626 1.571 0.1225  0.3434 0.0003 0.0073 0.6490
0.0500 0.1 0.96369 20.236 19.990 0.0458  0.3144 0.0026 0.0085 0.6745
0.5 1.000003 -307556.8 -307557.1 -3.3E-06
0.65000 0.0020 0.1 0.89824 6.869 6.862 0.1346  0.3484 0.0001 0.0003 0.6513
0.5 0.89962 6.976 6.972 0.1331 0.3472 0.0001 0.0014 0.6513
0.0100 0.1 0.91020 7.876 7.832 0.1179 0.3419 0.0003 0.0015 0.6563
0.5 091718 8.615 8.567 0.1100  0.3358 0.0003 0.0075 0.6564
0.0500 0.1 0.97400 28.524 28.272 0.0329  0.3064 0.0025 0.0088 0.6822
0.5 1.01083 -71.536 -71.865 -0.0145

are given in table 2. Finally, in table 3, we have the results for constant service time
with unit mean. In tables 1-3, collision recovery time C is deterministic. As p
increases to 1, we see that the mean of system size increases and n, decreases, as
we expected. Also, when p is slightly greater than 1, m, is negative. This fact
suggests that the condition p < 1 is also a necessary condition, which we could not

prove.
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Table 3
Deterministic service time with mean 1.0 (5= 1.0, 8= 2.0).
A a < p #'(1) P(1) 4 X x x )

0.30000 0.0020 0.1 043178 0.452 0.420 0.6534 0.6993 0.0001 0.0000 0.3006
0.5 0.43233 0.452 0.301 0.6533  0.6992 0.0001 0.0002 0.3006
0.0100 0.1 0.43720 0.467 0.428 0.6470  0.6966 0.0003 0.0002 0.3029
0.5 0.43999 0.471 0.313 0.6462 0.6959 0.0003 0.0008 0.3029
0.0500 0.1 0.46588 0.554 0.472 0.6129  0.6827 0.0019 0.0009 0.3145
0.5 0.48051 0.578 0.377 0.6082  0.6789 0.0019 0.0047 0.3145
0.50000 0.0020 0.1 0.70226 1.266 1.255 0.3720  0.4988 0.0001 0.0001 0.5009
0.5 0.70326 1.272 1.232 03714  0.4983 0.0001 0.0006 0.5009
0.0100 0.1 0.71139 1.335 1.306 0.3599  0.4940 0.0006 0.0007 0.5047
0.5 0.71645 1.369 1.309 03566  0.4914 0.0006 0.0033 0.5047
0.0500 0.1 0.75992 1.779 1.648 0.2960 0.4690 0.0035 0.0038 0.5236
0.5 0.78655 2.080 1.898 0.2753  0.4528 0.0034 0.0200 0.5237
0.642688 0.0020 0.1 0.88880 3.940 3.948 0.1468  0.3557 0.0001 0.0003 0.6439
0.5 0.89016 3.999 4.040 0.1454 0.3546 0.0001 0.0013 0.6439
0.0100 0.1 0.90063 4.485 4.458 0.1306  0.3493 0.0005 0.0014 0.6489
0.5 0.90751 4.881 4.880 0.1232  0.3436 0.0004 0.0070 0.6489
0.0500 0.1 0.96367 13.225 13.019 0.0466 0.3145 0.0028 0.0084 0.6743
0.5 0.99998 33426.140 33425.850 21E-5 02776 0.0022 0.0454 0.6748
0.64270 0.0020 0.1 0.88882 3.940 3.943 0.1468 0.3557 0.0001 0.0003 0.6439
0.5 0.89018 3.999 4.041 0.1453  0.3546 0.0001 0.0013 0.6439
0.0100 0.1 0.90064 4.485 4.458 0.1306 0.3493 0.0005 0.0014 0.6489
0.5 0.90753 4.882 4.881 0.1231 03436 0.0004 0.0070 0.6489
0.0500 0.1 0.96369 13.231 13.025 0.0466 0.3145 0.0028 0.0084 0.6743

0.5 1.000003 -206349.1 -206349.4 -3.4E-06
0.65000 0.0020 0.1 0.89824 4.330 4.333 0.1347 0.3484 0.0001 0.0003 0.6512
05 0.89962 4.401 4.443 0.1332  0.3473 0.0001 0.0014 0.6512
0.0100 0.1 0.91020 4.990 4.962 0.1183 0.3419 0.0004 0.0014 0.6563
0.5 091718 5.483 5.480 0.1106  0.3360 0.0004 0.0073 0.6563
0.0500 0.1 0.97400 18.541 18.329 0.0334 0.3065 0.0027 0.0087 0.6821

0.5 1.01083 -47.715 —-48-076 ~0.0149

Remark

In this paper, we have studied the idealized retrial queueing model with
collision, which is motivated by the communication protocol CSMA/CD. Thus, we
have not dealt with the issue of implementing the control policy in the retrial group.
Each customer in the retrial group needs to know the exact number »n of customers
in the retrial group to implement exponential retrial time with parameters 6/n. In
a practical situation such as satellite communication, it is impossible for each
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blocked terminal (customer in the retrial group in queueing terminology) to know
the total number of blocked terminals. However, statistical algorithms for the estimation
of the number of blocked terminals of slotted CSMA protocol with deterministic
transmission time were proposed (for example [1, p. 218]).
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