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1. Introduction 

In this paper we are concerned with linear oblique boundary value problems 
for the Hamilton-Jacobi-Bellman equations of stochastic control theory (Flem- 
ing-Rishel [10], Krylov [13]). To formulate these problems we let ~2 denote a 
bounded domain in Euclidean n space IR", and {Lk}, {fk} be sequences of 
linear elliptic operators and real functions on O, with L k given by 

(1.1) i~ i +bkD i LkU=a k Diju U+CkU 

where a kij, bk ,i ek ' i , j= 1, ..., n, k =  1 . . . .  , oo are real functions on (2, the matrices 
[dk j] being positive on ~. The Hamilton-Jacobi-Bellman equation correspond- 
ing to the family {Lk,fk}, namely 

(1.2) F [u] = inf (L k u - fk) = 0, 
k~N 

is uniformly elliptic in O provided there exist positive constants 2, A such that 

(1.3) 2 I~l 2 <aik j ~i ~j< A I~l 2 

for all ~ I R  ", xEO, k~N. A linear boundary operator 

(1.4) Mu=fi i  Diu+ yu, 

where/3 i, 7 i=  1 . . . .  ,n are real functions on the boundary ~f2 is called oblique if 
f l - v > 0  on ~O, where v denotes the unit inner normal to ~2, and regularly 
oblique if 

(1.5) fl- v => 2 

on 0~2, for some positive constant 2. We shall treat here boundary value 
problems of the form 

(1.6) G [ u ] = M u - g = O  on ~f2, 
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which agree with the classical Neumann problem when/3= v, 7 = 0. Concerning 
the coefficients of L~, M, we shall assume that v,/3, 7 and g have been extended 

i j  i to f2, with (1.5) preserved and moreover a k ,bk,ck,fk,fi, 7, gsCl" l (~)  with norms 
independent of k, that is 

(1.7) la~ j ,b~,ck, f  k . . . .  /3,7,gll,1;r?__<K, i , j = l  . . . .  ,n, k = l , .  0% 

for some fixed K, and 

(1.8) ck, 7 < 0 for all k = 1,..., oo. 

The Dirichlet problem for the uniformly elliptic Bellman equation has been 
treated by Brezis and Evans [4], Evans and Friedman [8], Lions and Menaldi 
[23], Lions [18] and Evans and Lions [9] with classical solvability under 
conditions (1.3), (1.7), (1.8) being established independently by Evans [7] and 
Krylov [14]. An existence result embracing global regularity is the following 
recent theorem of Krylov [15] (see also L. Caffarelli, J.J. Kohn, L. Nirenberg 
and J. Spruck [6]). 

Theoreml.1. Let f2 be a bounded domain in ]R" with boundary ~ ? E C  2"1 and 
~bs C 2' 1(~). The the classical Dirichlet problem, 

(1.9) F [u] = 0 on ~f2, u = 0 on OY2 

is uniquely solvable, with solution u~C2'~(~)Jor some c~>0 depending only on n 
and A /L  

For the boundary value problem (1.2), (1.6) we shall prove the (almost) 
corresponding result. 

Theorem l.2. Let ~2 be a bounded domain in IR ~ with boundary O~?eC 3'1 and 
suppose, in addition to (1.3), (1.5), (1.7), (1.8) we have 

(1.10) sup c k + sup ~ <0. 
k, f2 Of~ 

Then the classical boundary value problem, 

(1.11) F [ u ] = 0  in ~2, M u = g  on 0~2, 

is uniquely solvable with solution ue C 1'1(~)c~ C2'~(f2), Jbr some c~>0 depending 
only on n and A /L  

Boundary value problems of the type (1.9), (1.11) arise naturally in stochas- 
tic control theory and the reader is referred to the work of Lions [21, 22, 23] 
for a through treatment of the general control problem. 

The plan of this paper is as follows. The equations (1.2) will be approxi- 
mated by smooth equations of the general form 

(1.12) F [ u ] = F ( x , u ,  Du, D2u)=O in ~2 

and the approximating boundary value problems (1.11) solved in the H61der 
spaces C2,~(~) by the method of continuity. In Sect. 2, we derive the necessary 
first and second derivative bounds while in Sect. 3 we establish second de- 



Oblique Derivative Problems for the Bellman Equation 3 

rivative H61der bounds. Theorem 1.2 is subsequently proved in Sect. 4 where 
we also indicate how its proof may be alternatively effected by the system 
approximation of [20]. We remark here that our second derivative bounds 
may be extended to equations (1.12) satisfying the natural structure conditions 
of [29]. An extension of this work to general nonlinear boundary value prob- 
lems has been developed by Lieberman and Trudinger [16]. In a sequel [27] 
to this paper we shall treat Cl((2)nCl'l(t?) solutions of Bellman-Signorini 
obstacle problems with application to the optimal stopping of reflected dif- 
fusion processes. In the final section of this paper we treat the case of degenerate 
operators, by combining the bounds of Sects. 2, 3 and the method of Lions 
[23], and indicate briefly the stochastic control interpretation of the results 
obtained here. 

To conclude this introduction we remark that all notation in Sects. 2-4, 
unless otherwise indicated, follows the book [11]. 

2. Global Derivative Bounds 

In this section we derive global first and second derivative bounds for solutions 
of the boundary value problems (1.11) where the operators F are modelled on 
smooth approximations to the Bellman operator (1.2). Specifically we assume 
that the function F~C2(F) where F = t 2 x R x I R " x $ " ,  (here $" denotes the 
space of symmetric n x n real matrices), and that F satisfies the following 
structure conditions: 

(2.1) 2I < F~(x,z,p,r); ]F(x,z,p,r)l<__#o(l +lr[); 

(2.2) [Fx(x, z, p, r)l <#1 {(1 + [rt)[X'[ + IX"l} ; 

(2.3) Fxx(X, z, p, r)~-~]g2 {(1 Jl-[rl)IX'[ + IX"l} IX'l, 

for all x~f2, Izl+lPl<M1, r~$" and XEIR"xlRxlR"x$" ,  where 2,#0,#1,#2 , 
and M 1 are positive constants and X', X" are given by 

X ' = ( X  1 ... . .  X,,O, ...,0), X " = X - X ' .  

F x and Fxx denote the first and second derivatives respectively of F with 
respect to the vector X. Observe that (2.3) implies the concavity of F with 
respect to z, p, r. 

Global and interior bounds for second derivatives of solutions of the 
Dirichlet problem for Eq. (1.10), under conditions similar to (2.1), (2.2), (2.3) are 
derived in [9], [7] (using the method of [15]) and by different methods in [14] 
and [29]. For the boundary condition (1.6), we shall adapt a key idea from 
[14] which involves treating pure second order directional derivatives of so- 
lutions as functions on t2xlR". A similar application of this idea in [11, 
Second Edition] yielded one-sided third derivative estimates at the boundary 
for solutions of the Dirichlet problem; (see also [6]). 

Accordingly let us now suppose that ue C4(g1) satisfies (1.12) in t'l, with 

lull;e= sup ]u] + sup IDul < = M  1 , 
f~ f~ 
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and differentiate (1.10) twice with respect to a vector ~ I R  ", 141__< 1. We obtain 
thus 

(2.4) FijDij r u + Fp, Die u+ F~ De u + f r =0, 

(2.5) FijDijr162 + Fp Dir162 + F~Dr162 + Fxx=O, 

where Fij=F~, j and X=(r DD~u, DZDcu). Using the structure conditions 
(2.2), (2.3), we can then estimate 

(2.6) 152 Dijr u l <= C(1 + IO 2 u I), 

(2.7) l~}j Dijr u >= - C(1 + ID 2 ul + ]D 2 De uI), 

where C depends on n, M~,#~ and #z. For local boundary estimates we first fix 
a point ys~f2, which we can take as the origin, and flatten c3f2 near y by means 
of a C 3'1 diffeomorphism ~. The equation (1.10) and boundary condition (1.6) 
are transformed accordingly, the form of conditions (2.1), (2.2) and (2.3) being 
preserved with new constants ),#a,#2 depending in addition on ~. Indeed, 
letting ~=(~1, . . . ,~ , ) ,  fi=uoO-1, the transformed equation is given by P[fi] 
=0, where 

P(x, z, p, r) = V(~, ~, ~, ~) 

and 

~=O-l(x), ~=z, ~i=0~pk, 
l E k 

Using the linearity of the above transformation with respect to z,p, r we obtain 
corresponding structure conditions with constants 2=)~(2, 0), fi0 =/~o(~t0,0, M0, 
01 =fi~(#l, 0 ,M0,  fi2 =P2(#1,#2,0, M1) �9 

It therefore suffices to consider (1.12) in a half-ball 

B 2 = (xeB~(O) lx,>O}, 

with boundary condition (1.6) holding on the flat boundary portion, 

T= {xeBa(O)lx, =0}. 

For x~B{ ,  r .-. ,~,-1,0) elR~-l, I~.1 <1, we now consider the function 
w given by 

(2.8) w(x, ~) = ~ (x, 4) (z(x, ~) + A v') 

where t/ is a smooth cut-off function to be later specified, z(x, 4)=Dr162 
n - 1  

=Diju(x)~i4 j, A is a constant and v'= y, ID~ul 2, To get a suitable differential 
i = 1  

inequality for w, we first observe that, by means of (2.6), (2.1) and the equation 
(1.12) itself, we may eliminate the derivatives D,,~u and D,,u from (2.7), 
thereby obtaining an inequality 

(2.9) Fij D~j z + C~j Dij r u > - C(1 + ID 2 u]') 
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with coefficients Cij satisfying Ci, = 0, I Cijl < c where C = C(n, 2, go, # l ,#a ,  M1) 

and IDZu['--( ~" IDijulZ) r Using the relations 
i+j<--,2n 

Di~sz=2Du~,u, D~,~ jz=2Duu,  

we then have for constants C o and C, 

2 n - I  n - - 1  

(2.10) P, Z z 
i , j=l  j ~ l  

> - C(1 +lD 2 ul'), 

the extended matrix [ ~ ]  being uniformly elliptic, (with minimum eigenvalue 
)~>2/2). Next by (2.6), we obtain 

n - - 1  

(2.11) 2 F~j D,k u Djk u +�89 D u v '> - C(1 + ID 2 uJ') 
k = l  

so that combining (2.10), (2.11) we arrive at the following differential inequality 
for w, 

(2.12) t l e~3D~3w-2~3Di~2D~w>=2K2([D2uI ' )2 t l~ -6(~ jD~t IDj t l )w  

+ 2t/(/~o DU tl) w -  C(1 + K)~4(1 +ID 2 ul')>=A2w 2 - C A 

where C A depends on n, ;~,/~o,/~1, #2, M~ and 1~t2- By differentiating the bound- 
ary condition (1.6) twice, with respect to tangential directions, we obtain (fixing 
A) a corresponding inequality for w on T, namely 

fl~Di w + ( 7 -  2 fliD~rl/rl) w > - Ctl 2 

where C depends on [[3[2, 1712, [g[2 and M~. At this point it is convenient to fix 
i/by setting 

(2.13) t? (x, ~) = {1 - 4 [Ix[ 'z + (x, - ~ a )2 ] / a  2 - [ ~ l  2 } + 

where e=~:/] / l+rc z, ~:=suplfi[/ f l ,<C, and set .X={(x,r  It 
r 

then follows that 13. Dr/>0 on Tc~aJV and hence 

(2.14) f i iDiw+ Tw>= - C 

on Tc~0W~ {w>=0}. An upper bound for w in JV may now be deduced from 
(2.12) and (2.14) by applying the maximum principle to the function w+ C xJ2.  
Consequently we obtain the one-sided tangential second derivative bound 

(2.15) D< u (0) < C 

for any ~=(r . . . . .  {,_1,0), I{[=1, where C depends on t/, 2,/~o, #1,/~2, Mr, Q 
and K o =  fl J,>a+lYll,1;~+lgl,,1;a. 

To estimate the remaining second derivatives we first observe from the 
inequality (2.5) that the function 

G(x) = M u ( x ) -  g(x) 
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satisfies a differential inequality 

{2,16) IF~jDoGI<= C(I + M2), (M2=suplD2ul), 
f2 

where C depends on n, M t , &  and Ko, and moreover by (I.7), G vanishes on 
gO. Accordingly from [15~ 111,2], G satisfies at 0 a bondary gradient estimate 
of the form 

(2.17) IDG(0)I ~ C]/1 + M  2. 

We remark here that such an estimate may also be seen by inspection of the 
constant dependence in the standard barrier argument [9, Theorem 14.1] or 

through a coordinate transformation of the form x - - . x / l / l + M  2. Using 
( q , . , , ,  e,_ 1, fi(0)) as a basis in IR", instead of the canonical basis, (e 1 .. . .  , e,), we 
thus ex~end the estimate (2.15) ~o arb~tr,~ry ~ER'. Firmlly by letting ~ range 
over the eigenvectors (~t . . . . .  ~,) of the coefficient matrix A 
=[Fij(O,u(O),Du(O),O)] and using the Eq. (1.10) itself, together with (2.1) and 
the concavity of F with respect to r (2.3) we obtain 

/i 

2 i Dr162 u = A .  D 2 u 

__> - •(o, u (o), D u (0), 0) 

where 21, . . . ,2,  are the eigenvalues of A. Hence we conclude, in the usual way, 
the full second 

(2.181 

where 
global 
global 

(2.19) 

sc tp  [O 2 U[ =< C 

C depends on the same quantities as in (2.15). Coupling (2.18) with the 
Dirichlet problem bound, (see [8], [12] or [24]), now establishes a 

bound 

sup I Dg ul ~ C 
t2 

where again C depends on the same quantities as in (2.15), We note here that 
the global and interior Dirichlet problem bounds are really implicit in the 
precediag considerations as is easily seen by letting B a be art arbitrary ball in 
IR", {~IR" and e=0  in (2,t3). This is essentially the approach of Krylov [14] 
and it yields for any solution ueC4(f2)c~ C2(~) of (1.10), the estimate 

(2.20) ]D 2u(y)[__< C(1 + sup ID 2ul) 
Bo (y) ~ O-Q 

for any y~f2, c5>0, where C depends on n, A/2, #o, #1, #2, 6 and M 1. 
For first derivative bounds the conditions (2.1), (2.2), (2,3) should be refined 

so that they resemble the Bellman operator with respect to p dependence. 
Accordingly we replace (2.11), (2.2), (2.3) by 
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(2.1)' )~I<Fr(x,z,p,r); IF(x,z,p,r)l<~o(l +lpl+lrl); 

(2.2)' IFx(x, z, p, r)l < ~1 {(1 + IPl + Ir[)IX'I + IX'l}; 

(2.3)' Fxx(X, z, p, r) < 1~2 {(1 + Ipl + Irl)IS'l + IX"l} IX'l, 

for all x~f2, ]zl<Mo, r~$". Setting Ml=]U]l;~ and replacing u by u/M 1 we 
reduce to (2.1), (2.2), (2.3) with M 1 = 1 so that by (2.19) we have 

sup [D 2 u] ~ C(1 -+- sup ID ul) 

where now C depends on the same quantities as in (2.19) but with M 1 replaced 
by Mo=lUlo;r ~. But then by interpolation (see [11, Lemma 6.35]), we deduce a 
bound for D u. Alternatively, we may proceed directly, using only conditions 
(2.1)', (2.2)' and a function w of the form 

(2.21) w(x) = tl 2 (x, O) (v' + B u2), 

in the half ball B~ where t/is again given by (2.13), (see also [-19]). Let us now 
formulate the  resultant second derivative estimates. 

Theorem2.1. Let u~C4((2)c> C3(~) be a solution of the boundary value problem 
(1.10), (1.7) where OOEC 3'1 and F satisfies the structure conditions (2.1)', (2.2)', 
(2.3)'. Then we have the estimate 

(2.22) lul2;e< C 

where C depends on n, 2, A, #o,/~l,/~2, [Ulo;o, f2 and K o. 

To conclude this section we make the observation, which is important for 
our obstacle considerations in [27], that the one sided estimate (2.15) continues 
to be valid for non-linear boundary conditions of the form 

(2.23) G[u]=G(x,u, Du)=O on 0f2 

where G~ C2(~Q x IR x IR") satisfies 

(2.24) Gp. v > 2 

(2.25) IOGI <,ul 

(2.26) Gxx--< ~2 ISl 2 

for all x~f2, Iz[ + IPl <M1, X~ lRn• IR x ~n. We also point out that by appropri- 
ate modification of the function w, for example by taking 

(2.27) w = t/z {1 + A [v'(x) - v'(0)] } z(x, ~), 

together with a reflection to all of Ba, we may obtain the estimate (2.19) with 

X ' = ( X  I . . . . .  X2,+1,0 . . . .  ,0) 

in (2.2), (2.3). As a result (2.22) will hold under the natural conditions, F1-F5 
of [29]. 
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3. Second Derivative HiJlder Estimates 

We come now to H61der estimates for the second derivatives of solutions of 
the boundary value problem (1.11), where the function F is sufficiently smooth 
and concave with respect to the r variables. The corresponding interior es- 
timates are due to Evans [7] and Krylov [13] and we shall make some use of 
the approach to them given in [11] and [27]. However the methods developed 
to handle the interior situation do not extend fully to our situation at the 
boundary and we invoke a divergence structure approach to overcome a 
crucial obstacle. To quantify our hypotheses we assume that F satisfies 

(3.1) ;~ I __< F r (x, z, p, r) < A I, (Uniform ellipticity); 

(3.2) IDF(x,z,p,r)l, IDaF(x,z,p,r)l<=#2; 

(3.3) Frr (x, z, p, r) < 0, (Concavity), 

for all xs~?, Izl+lpl+lr]<=M2 where 2, A and # are positive constants. As in 
the preceding section, it suffices, by virtue of the interior estimates [7], [13], 
[11], and the usual flattening of 0~, to confine our attention to the equation 
(1.10) in the half-ball B; ~ with the boundary condition (1.7) holding on the flat 
boundary portion T c { x , = 0 } .  Again we consider the tangential pure second 
order derivatives 

z(x, 4 )=D~u 

for 4elR "-1 but where now 141 = 1 and u is normalized so that 

0<z(x,~)_<_l, for all 141=1, 

Following [11, Sect. 17.4], we introduce the functions 

N 

(3.4) w = w e = z + e  Y, (D~ke u) 2, 0 < 5 < 1 ,  
k=l 

where 41 . . . .  ,45  range through a set of directions including the directions % (e i 
+_ej)/l/~, i , j = l  . . . .  , n - l ,  where e 1 .. . .  ,e, denotes the canonical basis in N n. 
Using the once differentiated equation (2.4) to control third order derivatives of 
the form Dn,r together with the twice differentiated equation (2.5) and the 
concavity of F (3.3), we then obtain, as in [11, Sect. 17.4], differential inequali- 
ties of the form 

(3.5) - e21D3 ula + FijDij w > - C~ 

p r o v i d e d  lUlz~m2, where C, depends on n, #2 and K. Also by differentiation 
of the boundary condition (1.6) we obtain on T, 

(3.6) Ifi~ D , wl < C1 

where C1 depends on n, Me and Ko = I fll 1,1 + 17[ 1, 1 + I gl 1,1. Under hypotheses 
(1.5), we may further simplify (3.5) and (3.6) by setting 

# = w +  C1 x,/~ + Cx2,/2, 
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SO that we have then 

(3.7) -RelD3ul2+F~jDijfv>=O in B +, fliD~fv>O on T. 

To convert (3.7) to a conormal divergence structure inequality (cf. [17], [181) 
we first redefine [F~j] so that its symmetric part remains the same but now 

(3.8) F~, = fi~ F,,/fl,, i = 1 , . . . ,  n. 

By integration, we then obtain from (3.7), 

Re ~ [D3ul2qS+ y F~sD~fvDsd~< ~ (DjFis)d)D~# 
R 2 ~ B~ 

for all qS>0, eCI(B~), so that using the Schwartz inequality, 

(3.9) ~ FijDI~vDj~9<=C ~ [D#12~b 
8; B~ 

where C depends on n, R,#, e and M 2. Divergence structure results, such as the 
weak Harnack inequality [28, Theorem 2], may now be applied to ~ but for 
our purposes here we need the following projected weak Harnack inequality in 
the boundary T, (cf. [31]). 

Lemma 3.1. Let v > O, e W I'2 ( Bd ) c~ L~176 B + ) satisfy the inequality, 

(3.10) ~ aiSDivDj4)>=-#o Y ~blDvl 2 
Bj B~ 

for all qb>0, ~C~(B6), where [a ij] satisfies 

R lr 2<aisr 2 

for all ~ IR" ,  and where #, R, A are positive constants. Then we have the estimate 

(3.11) (5 ~-" ~ v < C  inf v 
T c~ B~5/2 T c~ B6/2 

where C depends on n, R, A, and exp(#o sup v). 
B; 

Proof We observe first of all that the conormal inequality (3.10) behaves with 
respect to test function arguments as an inequality in the full ball B0, with v 
extended as an even function of x,. It follows then from the proof of the weak 
Harnack inequality [28, Theorem 2-1 that for any pc(0,�89 

{(5 -~ ~ vZP+c52]DvP12}~P<C inf v 

where C depends on the same quantities as in (3.11) as well as p. By the trace 
Sobolev inequality [1, Theorem 5.4] we thus have (for n >2) 

(61 -" ~ VZ) 1/z < C inf v 
T c~ Bel/2 B+/z 

for X = 2 p ( n - 1 ) / ( n - 2 )  and hence (3.11) follows. 
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To use (3.10), we set TR=TC~B R for R__<cS, and write for R<__6/4, 

W 1 = sup w, W 2 = sup w, !2~ 2 = sup #. 
T~ T2R B~R 

Applying (3.10) to the functions 17V 2 - #  and using the estimate 

G-G==_CR; 
(see the proof of Theorem 17.26 in [9]), we thus obtain 

(3.12) R 1 " S ( W z - w ) < C ( W z - W 1  + R + R 2 )  
TR 

where C depends on n, 2, A, #, K0, M 2 and e. 
Next we may use Krylov's boundary gradient H61der estimate [15, 

Theorem4.1] to extend (3.12) to arbitrary directions ~ " .  To see this we 
apply the Krylov estimate to the differential inequality (2.16) to get an es- 
timate, for any R < 3/2 

osc DG <= CR ~ 
TR 

where c~>0 depends only on n,2,A and C depends also on # ,Ko,6  and M 2. 
Consequently by virtue of the H61der continuity of Gp = fi, we obtain 

o s c  D(fi (O). D u) <-_ CR ~ 
TR 

and hence using (el .... ,e,_l,fi(O)) as a basis in IR", as in Sect.2, we obtain 
from (3.12) the estimate 

(3.13) R ~-" ~ (W2-w)<=C(W2-W~ + R  ~) 
TR 

where w is given by (3.4) for arbitrary ~MR", ]~]=1 and C depends on n, 2, A, 
#, Ko, M2, 6 and e. With e chosen sufficiently small, (for example e = l / l O n  2 
suffices), the argument of [11, Sect. 17.4] now applies in the n -  1 dimensional 
balls T R and we deduce finally, for any R < 3, 

oscD 2 u < _ C R  c' 

TR 

where C and c~ are positive constants depending on n, 2, A, #, Ko, M 2 and 3. A 
similar estimate then follows with T R replaced by B~; (see the proof of [11, 
Theorem 17.26]). 

We therefore have the following global H61der estimate for second deriva- 
tives. 

Theorem3.2. Let u~C4(~) (~  C3(~~) be a solution of the boundary value problem 
(1.10), (1.7) where 0(2~C 3'1 and F satisfies the structure conditions (3.1), (3.2), 
(3.3) with M 2 = lul2;r~. Then Jor any ~ ( 0 ,  1) we have the estimate 

(3.14) [D = u]~;~< C 

where C depends on n, 2, A, #, Ko, lu]2;~, f2 and cc 
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We remark that the arbitrariness of the HSlder exponent c~ follows from the 
linear L p theory [2]. Also the proof of Theorem3.1 clearly embraces the 
general nonlinear boundary conditions of the form (2.23), provided we adjoin 
to (3.1), (3.2), (3.3), the conditions 

(3.15) G,. v>;4  IDGI, ID2GI<=Ko. 

4. Existence Theorems 

Theorem 1.2 may be established by the method of continuity and the estimates 
of the preceding sections. Assuming the hypotheses of Theorem 1.2 we approx- 
imate the Hamilton-Jacobi-Bellman operator (1.2) by mollification as in the 
case of the Dirichlet problem [9, Sect. 17.5]. Let p>O, ~C~(IR s) be a mollifier 
on lR N, N = I  with ~ p = l ,  and set for ~>0, y d R  N, 

h~(y)=e_n ~ p ~ z )  inf zkdz. 
IRN k = l , . . . , N  

The operators F~, given by 

f~[u] =h~(L 1 u, ..:,LN u), 

will then satisfy the structure conditions (2.1)', (2.2)', (2.3)' uniformly in e, and 
the structure conditions (3.1), (3.2), (3.3) with #2 depending on e (through the 
lower bound on Frr!). Furthermore classical solutions of the boundary value 
problem, 

(4.1) F~[u]=0 in ~2, M u - g = 0  on ~g2 

will be uniformly bounded with respect to ~, by virtue of the condition (1.10). 
To see this we note that we can construct positive functions %,  w2~ C2(~) with 
w~=q-exp(c2x fl in s Dw2= -c3v on ~?~2 so that LkWl< = -Is in ~2, Mw2<= 
-Igl  on 0f2 for all k=l,~..,N. Maximizing the functions w~+_u over ~2, we 
obtain the bounds 

( 4 . 2 )  suplul<sup{lWll+lg-Mwll/7o} if 70 = - s u p 7 > 0 ,  
s 

(4 .3 )  suplul< sup {lW21+lfk--Lkw2l/Co} if Co=- - supc>0 .  
k = l , . . . , N  

It then follows from the method of continuity, as presented for example in [11, 
Theorem 17.28], that the boundary value problem (4.1) is uniquely solvable 
with solution u~C3(~2)c~ C2'~(O) for any ~>0. But since the global C z bounds 
(Theorem2.1) and the Evans-Krylov interior C2'~(f2) bounds for sufficiently 
small fi=fi(n,A/2), [11, Theorem 17.14] are independent of ~, we thus obtain 
by approximation, a solution ue C 1' 1 (~)c~ C 2, ~ of the boundary value problem, 

(4.4) inf (L k u - fk) = 0 in f2, M u = g on 0~2. 
k = l  ..... N 

Letting N--, o% yields the result asserted in Theorem 1.2. 
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As mentioned in the introduction, we could have alternatively proved 
Theorem 1.2 by approximation with a weakly coupled system of semi-linear 
equations, 

( 4 . 5 )  Lku=fk+fi~(Uk--Uk+l), K = I , . . . , N ,  (uN+l =ul), 

where fl~eC2(I() is a penalty function satisfying fi~(t)=0 for ~<0, fi~(t)-~ oo as 
~ 0 ,  for t>0 ,  fl',, fi;'>O. The methods of Sect. 2 readily extend to yield global 
C 2 bounds for the solutions u k which are independent of e and k and a C 1'~(~) 
solution of our  given problem (1.9) now results by the limit argument of [-8] 
and [20]. The interior C 2'~ estimates of Evans [-7] and Krylov [13] imply that 
such a solution ue C z" ~(f2) again for some [t = fl(n, A/2). 

Note that the above considerations also yield the existence of a unique 
solution ueCZ,~(~), 0 < e < l ,  of the boundary value problem (1.12), (1.6) when 
F~CZ(~)x lRx lR"x$  ") satisfies (2.1)', (2.2)', (2.3)' together with supF~<0. By 
virtue of our remark at the end of Sect. 2 these conditions extend to embrace 
the natural structure conditions of [29]. 

5. Applications to Optimal Stochastic Control 

We briefly sketch here the stochastic interpretation of Theorem 1.2. First we 
explain the control problem corresponding to (1.2), (1.6): let (H,P) be a proba- 
bility space endowed with a filtration (~,, ~ )  satisfying the usual assumptions 
and a continuous adapted Brownian motion B t in IR m. We suppose that the 
state of the system we wish to control is given through the solution X t of the 
following stochastic differential equation with reflecting boundary conditions 

(5.1) 

I dXt= a(Xt, at) dB, + b( Xt, c~t) dt + fl( X,) dLt, 

X o = x  , X , e ~  for all t>O, X , , L  t are continuous, 
adapted, L t is nondecreasing 

and L~ = ! lon(Xs) dL~; 

where o -~ b ~, fii (1 < i <  n, 1 __<j__< m) satisfy the conditions listed below. Here, a t is 
the control process that we assume to be some arbitrary progressively measur- 
able process with values in a given separable metric space d .  Problems of the 
type (5.1) are treated in Ikeda and Watanabe [-12], Bensoussan and Lions [3], 
Lions and Sznitman [26] .. . .  

We next consider the cost function 

(5.2) J(x, cQ=E S f (X t ,a t ) e - '~d t+E g(Xt)e-'~dL, 
0 0 

i t where r t= c(Xs, O:s) ds + S 7(X~) dL~, c, 7 are nonnegative given functions on 
0 0 

x d ,  ~ and f, g are given real functions on ~ x d ,  ~. We assume that q~ = o -u, 
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(5.6) 

where 

b i, fig, f, g, c, 7 (l<=i<=n,ls satisfy 

(5.3) IqS(', ~)la,~;~NK, c ~ r  qS(x, c0E C(~ x sO) 

(5.4) /~(x).v>=2>0 on 00, 

for some positive constant 2. 
Finally, we introduce the value function 

(5.5) u(x) = inf J(x, c~,) 
a t  

where the infimum is taken over all controls cq. 
Dynamic programming arguments indicate (cf. [10, 13, 22]) that u should 

"solve" 

inf (L~ u + f~) = 0 in f2 

_ i j  i L~-a~ D~j+b:D~-c~ 

i j  1 ik and ~b~(')=qS(',c 0 for (9=aiJ, bi,f~c, (l<i,j<-_n), and where a =~a a jk 
(1 __< i , j< n). Furthermore, u should satisfy the boundary condition 

(5.7) f i i ' D i u - T u + g = O  on ~312 

(at least if L, is uniformly elliptic near bf2). 
Observe that (5.6)-(5,7) is nothing but (1.2), (1.6) (choosing a dense family in 

d ) .  An immediate application of Theorem 1.2 yields the 

Corollary5.1. Let 0 be a bounded domain in ]R" with boundary Og2eC 3"~ and 
suppose (5.3), (5.4) and 

(5,8) infc~ + inf7 > 0  

(5.9) 2[~12<a~J~i~j<Al~l 2, for all ~eR", xef2, aEsg 

for some positive constants 2, A. Then ueCl ' l (O)~  C2'~ (for some 0e]0 ,1[  
depending only on n and 2/A) and u is the unique solution of (5.6)-(5.7). 

We skip the proof of Corollary 4.2 since, in view of Theorem 1.2, there 
exists a solution fi of (5.6)-(5.7) and one checks by an easy use of It6's formula 
that a - u  (see for similar proofs the verification theorems in [-24, 13, 10] ...). 

We finally conclude by considering the case of degenerate operators (L~),~ 
and we assume: 

(5.10) ~3f2=F+ w F  with F+,F_ closed, disjoint, possibly empty; 

(5.11) )~]~[2<=ai~J~i~j<=fl[~12 , for all ~IR",  x~F+, c~sur 

for some positive constants 2, A; 

(5.12) ~J ~ ij _<0 F a~ v~vj=O on F_, -b~v~-a~ Dijd - on 

for all ~ s J ,  where d(x)=dist(x,~g2); and 

(5.13) c ~ > c > 2  o 
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for some posi t ive  cons tan t  c, where  20 is a cons tan t  depend ing  only on 
D x a, Dx b (cf. [24, 26] for explici t  formula).  

In view of  (5.3), (5.11) holds for x~(9 (replacing poss ibly  2 by 2/2, A by 2A) 
where (9 is some smoo th  open set inc luded in f2, such that  F+ c 6(9. By easy 
a p p r o x i m a t i o n  arguments ,  one shows using the bounds  ob ta ined  in the preced-  
ing sect ions that  u~Cl'l(g)c~C2'~ (for some 0~(0,1)). Then,  using (5.12), 
(5.13), we follow the m e t h o d  of Lions  [20] and we ob ta in  the 

Theorem 5.2. We assume (5.10), (5.11), (5.12), (5.13). Then the value function u is 
the unique function in C O, 1(~) satisfying 

(5.14) ueC1'~(~)r176 f l iD iu - ~ u + g = O on F+, 

(5.15) u is semiconcave in f2 i.e, u - � 8 9  2 is concave, for some c > 0 ,  

(5.16) L~usE~ and suplL~ul~E~ 
c~e~ 

(5.17) i n f ( L , u + f ~ ) = 0  a.e. in f2. 

M o r e  general  s tochas t ic  con t ro l  p rob lems  involving op t ima l  s topp ing  and 
b o u n d a r y  cont ro ls  are cons idered  in [27]. Also  the funct ion u in Theorems  1.2, 
5.1 is shown in [30] to be long to C2'~ (see also [27] for a consequent  
a l ternat ive  der iva t ion  via in te rpo la t ion  of  the C t ' l ( ~ )  bounds).  
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