PROOF OF THE VAN DER WAERDEN CONJECTURE REGARDING THE PERMANENT OF A DOUBLY STOCHASTIC MATRIX

D. I. Falikman

In 1926 van der Waerden formulated the following conjecture [1-3]: the permanent of every double stochastic (n \times n) matrix is not less than n!/nⁿ.

Since then various results have been obtained regarding the van der Waerden conjecture. In particular, it has been proved for $n \leqslant 5$. In [2] one has proved the following: if on the set of all doubly stochastic (n × n) matrices, the permanent attains its least value at a matrix without zero elements, then its permanent is equal to n!/nn.

The field of real numbers will be denoted by R. Let $X = (x_{ij})$ be a matrix of dimension $(n \times n)$ with elements from R. If the conditions

$$x_{ij} \geqslant 0 \quad (1 \leq i, j \leqslant n),$$
 $x_{i1} + \ldots + x_{in} = 1 \quad (1 \leqslant i \leqslant n),$
 $x_{1j} + \ldots + x_{nj} = 1 \quad (1 \leqslant j \leqslant n),$

hold, then the matrix X is said to be doubly stochastic. The set of all doubly stochastic matrices of order n will be denoted by Ω_n . This is a closed subset of \mathbb{R}^n . Moreover, it is bounded: if $X=(x_{ij})=\Omega_n$, then $0< x_{ij}\leqslant 1$ for $1\leqslant i,j\leqslant n$. Consequently, Ω_n is compact. We consider now the set

$$\Omega_n^* = \{X = (x_{ij}) \in \Omega_n \mid x_{ij} \neq 0 \text{ for } 1 \leqslant i, j \leqslant n\}.$$

If $X=(x_{ij}) \subset \Omega_n$ and $\delta > 0$, then

$$X_{\delta} = \left(\frac{x_{ij} + \delta}{1 + n\delta}\right) \subset \Omega_n^*.$$

Since $X_\delta \to X$ for $\delta \to 0$, it follows that Ω_n^* is dense in Ω_n .

On the set of all $(n \times n)$ matrices with elements from R we define two numerical functions: the product and the permanent. Namely, let $X = (x_{ij})$ be an $(n \times n)$ matrix with elements from R. Then

$$\Pi(X) = \prod_{1 \le i, j \le n} x_{ij}$$
 and $\operatorname{per}(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i\sigma(i)}$,

where S_n is the set of all n! permutations of the set $\{1, \ldots, n\}$. One can verify that the permanent is a symmetric semilinear function of the rows (columns).

THEOREM 1. If $X \subset \Omega_n$, then per $(X) \gg n!/n^n$.

In other words, the van der Waerden conjecture is true. The proof is based on a series of lemmas. First we define a certain family of functions.

We take $\varepsilon \in \mathbb{R}$. Let X = (x_{ij}) be an $(n \times n)$ matrix with elements from \mathbb{R} such that $x_{ij} \neq 0$ for $1 \leqslant i, j \leqslant n$. We set

$$F_{\varepsilon}(X) = \operatorname{per}(X) + \varepsilon/\Pi(X).$$

Thus, the function F_{ε} is defined on the open set $(R-0)^{n} \subset R^{n}$, and on this set it is continuous and differentiable. Since $(1/x)' = -1/x^2$ for $x \neq 0$, we have

$$\frac{\partial F_{\varepsilon}}{\partial x_{ij}} = \operatorname{per}\left(X_{ij}\right) - \frac{\varepsilon}{x_{ij} \prod (X)} , \qquad (1)$$

Scientific-Research Institute of Automatized Systems of Planning and Control in Construction, Gosstroya, Ukrainian SSR. Translated from Matematicheskie Zametki, Vol. 29, No. 6, pp. 931-938, June, 1981. Original article submitted May 14, 1979.

where X_{ij} is the matrix obtained from the matrix X by deleting the i-th row and the j-th column.

LEMMA 1. Let ϵ > 0. Then there exists a point of minimum of the function F_ϵ in the set $\Omega_{\bf n}^{\frac{x}{N}}$.

<u>Proof.</u> We set $F=F_{\varepsilon}$. Since $\varepsilon>0$, for all $X\subset\Omega_n^*$ we have F(X)>0. Therefore, there exists the infimum

$$a = \inf_{X \in \Omega_n^*} F(X), \quad a \geqslant 0.$$

We select a sequence $(A_m)_{m\geqslant 1}$ of elements of the set Ω_n^* , for which $F(A_m)\to a$ for $m\to +\infty$. Since $A_m \in \Omega_n^* \subset \Omega_n$, and the set Ω_n is compact, it follows, switching to a subsequence, that one can assume that $A_m \to A \subset \Omega_n$ for $m\to +\infty$. If $A \not\subset \Omega_n^*$, then II (A)=0 and II $(A_m)\to 0$. Then from the inequality

$$F(A_m) > \varepsilon/\Pi(A_m)$$

and from the condition $\varepsilon > 0$ we obtain the contradiction $F(A_m) \to +\infty$. Consequently, $A \in \Omega_n^*$, $F(A_m) \to F(A)$, a = F(A). The lemma is proved.

LEMMA 2. Let $\epsilon > 0$ and let $A = (a_{ij}) \in \Omega_n^*$ be a point of minimum of the function F_{ϵ} in the set Ω_n^* . Then A = (1/n).

<u>Proof.</u> We set $p = \operatorname{per}(A)$, $c = \varepsilon/\Pi(A)$; $p_{ij} = \operatorname{per}(A_{ij})$, $d_{ij} = \frac{\partial I_{\varepsilon}}{\partial x_{ij}}\Big|_{\lambda=A}$ $(1 \leqslant i, j \leqslant n)$. We fix $1 < i, j \leqslant n$ and we consider the matrix

$$A_h = \begin{pmatrix} a_{11} + h & \dots & a_{1j} - h & \dots \\ \dots & \dots & \dots & \dots \\ a_{i1} - h & \dots & a_{ij} + h & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix},$$

where $h \in \mathbb{R}$, which differs from the matrix A only by the elements with the indices (1, 1), (1, j), (i, 1), (i, j). We take $\rho = \min (a_{11}, a_{1j}, a_{i1}, a_{ij}) > 0$. If $|h| < \rho$, then $A_h \in \Omega_n^*$, so that

$$F_{\varepsilon}\left(A_{n}\right) = F_{\varepsilon}\left(A\right) + \left(d_{11} - d_{1j} - d_{i1} + d_{ij}\right)h + o\left(h\right) \geqslant F_{\varepsilon}\left(A\right).$$

Consequently, $d_{11}-d_{1j}-d_{i1}+d_{ij}=0$ for 1 < i, $j \leqslant n$. If i = 1 or j = 1, then the last equality is automatically satisfied so that it is valid for all $1 \leqslant i$, $j \leqslant n$. Thus,

$$d_{ij} = d_{i1} + d_{1j} - d_{11}$$
 $(1 \leqslant i, j \leqslant n)$.

We set $\lambda_i=d_{i1}-d_{11}$ for $1\leqslant i\leqslant n$, $\mu_j=d_{1j}$ for $1\leqslant j\leqslant n$. Then $d_{ij}=\lambda_i+\mu_j$ for $1\leqslant i,\,j\leqslant n$. We have obtained the Lagrange condition of the relative minimum.

Then, from (1) it follows that

$$p_{ij}-c/a_{ij}=\lambda_i+\mu_j \quad (1\leqslant i,\ j\leqslant n). \tag{2}$$

We prove that $\lambda_1 = \ldots = \lambda_n$ and $\mu_1 = \ldots = \mu_n$, i.e., the right-hand side in (2) is a constant. We multiply both sides of (2) by α_{ij} :

$$a_{ij}p_{ij}-c=\lambda_ia_{ij}+\mu_ja_{ij} \quad (1\leqslant i,\ j\leqslant n). \tag{3}$$

We consider i (1 \leq $i \leq$ n) fixed and we sum (3) with respect to j. Making use of the expansion of the permanent of the matrix A relative to the i-th row and taking into account the equality $\sum_{i=1}^{n} a_{ij} = 1$, we obtain

$$\sum_{j=1}^{n} a_{ij} p_{ij} - nc = p - nc = \lambda_i \sum_{j=1}^{n} a_{ij} + \sum_{j=1}^{n} \mu_j a_{ij} = \lambda_i + \sum_{j=1}^{n} \mu_j a_{ij}.$$

Setting b = p - nc, we have

$$\lambda_i = b - \sum_{i=1}^n \mu_i a_{ij} \quad (1 \leqslant i \leqslant n). \tag{4}$$

Similarly, we consider j ($1 \le j \le n$) fixed and we sum (3) relative to i. Making use of the expansion of the permanent of the matrix A relative to the j-th column and taking into account the equality $\sum_{i=1}^{n} a_{ij} = 1$, we obtain

$$\sum_{i=1}^{n} a_{ij} p_{ij} - nc = p - nc = \sum_{i=1}^{n} \lambda_{i} a_{ij} + \mu_{j} \sum_{i=1}^{n} a_{ij} = \sum_{i=1}^{n} \lambda_{i} a_{ij} + \mu_{j}.$$

From here

$$\mu_j = b - \sum_{i=1}^n \lambda_i a_{ij} \quad (1 \leqslant j \leqslant n). \tag{5}$$

Now we express λ_i $(1 \leqslant i \leqslant n)$ in terms of $\lambda_1, \ldots, \lambda_n$. To this end, in the equality (4) we insert (5): $\lambda_i = b - (a_{i1}\mu_1 + \ldots + a_{in}\mu_n)$

$$\lambda_{i} = b - (a_{i1}\mu_{1} + \dots + a_{in}\mu_{n})
= b - [a_{i1} (b - a_{i1}\lambda_{1} - \dots - a_{n1}\lambda_{n}) + \dots + a_{in} (b - a_{in}\lambda_{1} - \dots - a_{nn}\lambda_{n})] =$$

$$= (a_{i1}a_{11} + \ldots + a_{in}a_{1n}) \lambda_1 + \ldots + (a_{i1}a_{n1} + \ldots + a_{in}a_{nn}) \lambda_n.$$

Thus, $\lambda_i = b_{i1}\lambda_1 + \ldots + b_{in}\lambda_n$, and $b_{i1}, \ldots, b_{in} > 0$ and $b_{i1} + \ldots + b_{in} = 1$. Then, taking $\lambda = \min(\lambda_1, \ldots, \lambda_n)$, we have $\lambda_1 \geqslant \lambda, \ldots, \lambda_n \geqslant \lambda$ and for some i we have $\lambda_i = \lambda$. For this i we write:

$$\lambda_{i} - \lambda = b_{i1} (\lambda_{1} - \lambda) + \ldots + b_{in} (\lambda_{n} - \lambda) = 0,$$

and therefore $\lambda_1=\lambda,\ldots,\lambda_n=\lambda$. Inserting these values into (5), we see that $\mu_j=b-\lambda$ for $1\leqslant j\leqslant n$. Thus, (2) leads to the equality

$$p_{ij} = b + c/a_{ij} \ (1 \leqslant i, j \leqslant n).$$

We have not used yet the condition $\varepsilon \geqslant 0$. From it we obtain that c > 0. Thus, in order to conclude the proof of Lemma 2, it is sufficient to show that we have

LEMMA 3. Assume that for the matrix $A=(a_{ij}) \subset \Omega_n^*$ we have

per
$$(A_{ij}) = b + c/a_{ij}$$
 $(1 \leqslant i, j \leqslant n),$ (6)

where $b, c \in \mathbb{R}, c > 0$. Then A = (1/n).

In turn, for the proof of Lemma 3 it is necessary to introduce and to investigate some symmetric bilinear forms on \mathbb{R}^n . This is done in the following two lemmas.

LEMMA 4. Let E be a vector space over R and let $f(x) \in E \times E \to R$ be a symmetric bilinear form. We assume that there exists a vector $a \in E$ for which f(a, a) = 0 and, if $x \in E, x \notin Ra$, f(x, a) = 0, then f(x, x) < 0. In this case, if $f(x) \in E$, $f(x) \in E$, f

<u>Proof.</u> We note that if $x \in E$, f(x, a) = 0, then $f(x, x) \leq 0$. Indeed, either $x \notin Ra$, when f(x, x) < 0, or $x \in Ra$, when f(x, x) = 0. In particular, $f(s, a) \neq 0$.

We select a number $\eta \in \mathbb{R}$ for which $f(t+\eta s,a)=f(t,a)+\eta f(s,a)=0$. Therefore $f(t+\eta s,t+\eta s)=f(t,t)+\eta^2 f(s,s)\leqslant 0$. If $\eta\neq 0$, then we obtain $f(t,t)\leqslant -\eta^2 f(s,s)\leqslant 0$. Let $\eta=0$; consequently, f(t,a)=0. If $t\not\in \mathbb{R}a$, then f(t,t)<0. We show that the inclusion $t\in \mathbb{R}a$ is not possible. Indeed, let $t=\tau a,\tau\in \mathbb{R}$. Then $f(t,s)=\tau f(a,s)=0$, whence $\tau=0$, t=0, which is a contradiction. Thus, f(t,t)<0. Lemma 4 is proved.

LEMMA 5. Let C = (c_{ij}) be an $(n-2) \times n$ matrix with elements from R and such that $c_{ij} > 0$ for $1 \leqslant i \leqslant n-2$, $1 \leqslant j \leqslant n$. We define a symmetric bilinear form $f: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ in the following manner:

$$f(x,y) = \operatorname{per} \begin{pmatrix} x_1 & \dots & x_n \\ y_1 & \dots & y_n \\ \dots & \dots & \dots \\ c_{i_1} & \dots & c_{i_n} \\ \dots & \dots & \dots \end{pmatrix}$$

for all $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$. In this case, if $t, s \in \mathbb{R}^n$, $t \neq 0$, f(t, s) = 0, f(s, s) > 0, then f(t, t) < 0.

<u>Proof.</u> We use induction on $n \ge 2$. For n=2 we write $t=(t_1,\ t_2),\ s=(s_1,\ s_2)$. We have $f(t,s)=t_1s_2+t_2s_1=0,\ f(s,s)=2s_1s_2>0$. In particular, $s_1\ne 0,\ s_2\ne 0$. If $t_1=0$, then $t_2s_1=0$, $t_2=0$, t=0, which is a contradiction. Thus, $t_1\ne 0$. We multiply both sides of the equality $t_2s_1=-t_1s_2$ by t_1s_2 . Then $t_1t_2s_1s_2=-t_1^2s_2^2<0$, and, consequently, $t_1t_2<0$. Thus, $f(t,t)=2t_1t_2<0$, so that for n=2 the lemma is proved.

Assume now that n > 2 and assume that for n - 1 the lemma holds. We select the vector $e_n = (0, \ldots, 0, 1) \in \mathbb{R}^n$. Then $f(e_n, e_n) = 0$. Let $x = (x_1, \ldots, x_{n-1}, x_n) \in \mathbb{R}^n$ and also $x \notin \mathbb{R}e_n$, $f(x, e_n) = 0$. We consider the vector $x' = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$. Since $x \notin \mathbb{R}e_n$, we have $x' \neq 0$, and since $f(x, e_n) = 0$, we have

$$\operatorname{per}\begin{pmatrix} x_{1} & \dots & x_{n-1} & x_{n} \\ 0 & \dots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ c_{i_{1}} & \dots & c_{i, n-1} & c_{i_{n}} \end{pmatrix} = \operatorname{per}\begin{pmatrix} x_{1} & \dots & x_{n-1} \\ \vdots & \ddots & \ddots & \vdots \\ c_{i_{1}} & \dots & c_{i, n-1} \\ \vdots & \ddots & \ddots & \vdots \end{pmatrix} = 0.$$

$$(7)$$

We write

$$f(x,x) = \operatorname{per}\begin{pmatrix} x_1 & \dots & x_{n-1} & x_n \\ x_1 & \dots & x_{n-1} & x_n \\ \dots & \dots & \dots & \dots \\ c_{i_1} & \dots & c_{i_n-1} & c_{i_n} \\ \dots & \dots & \dots & \dots \end{pmatrix}$$

and we expand the permanent with respect to the last column. Taking into account (7), we have

$$f(x,x) = \sum_{i=1}^{n-2} c_{in} f_i(x',x'), \tag{8}$$

where $f_i: \mathbf{R}^{n-1} \times \mathbf{R}^{n-1} \to \mathbf{R}$ is a form constructed over the matrix \mathbf{C}_{in} obtained from the matrix \mathbf{C} by the deletion of the i-th row and the n-th column. We consider the vector $c_i' = (c_{i1}, \ldots, c_{i,(n-1)}) \in \mathbf{R}^{n-1}$. Equality (7) can be written as: $f_i: (x', c_i') = 0$. In addition, $f_i: (c_i', c_i') > 0$, $x' \neq 0$. Therefore, by the inductive hypothesis, $f_i: (x', x') < 0$ for $1 \le i \le n-2$. Now, from expansion (8) it follows that f(x, x) < 0.

Thus, the form $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ satisfies the conditions of Lemma 4 (for $\alpha = e_n$). Consequently, if $t, s \in \mathbb{R}^n$, $t \neq 0, f(t, s) = 0, f(s, s) > 0$, then f(t, t) < 0. Lemma 5 is proved.

 $\underbrace{\text{Proof of Lemma 3.}}_{v_n} \text{ We select in the matrix A two rows } u = (u_1, \ldots, u_n) \in \mathbb{R}^n, \ v = (v_1, \ldots, v_n) \in \mathbb{R}^n$

$$A = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ u_1 & \vdots & \vdots & u_n \\ \vdots & \vdots & \ddots & \vdots \\ v_1 & \vdots & \vdots & v_n \end{pmatrix}.$$

Since $A \in \mathcal{Q}_n^*$, we have $u_i > 0$, $v_i > 0$ for $1 \leqslant i \leqslant n$, $\sum_{i=1}^n u_i = 1$, $\sum_{i=1}^n v_i = 1$. We show that u = v.

In matrix A we consider all the remaining rows fixed and we define a symmetric bilinear form $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ in the following manner:

$$f(x,y) = \operatorname{per} \begin{pmatrix} \vdots & \vdots & \ddots & \vdots \\ x_1 & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ y_1 & \vdots & \ddots & y_n \end{pmatrix}$$

for all $x = (x_1, \ldots, x_n) \subset \mathbb{R}^n$, $y = (y_1, \ldots, y_n) \subset \mathbb{R}^n$.

Thus, in the last matrix and in matrix A, the selected rows occupy the same places and all the remaining rows coincide.

Assume, as usual, that e_1 , . . ., e_n is the standard basis of the space R^n so that for every vector $x = (x_1, \ldots, x_n) \in R^n$ we have $x = \sum_{i=1}^n x_i e_i$.

From conditions (6) it follows that

$$f(e_i, v) = b + c/u_i, f(u, e_i) = b + c/v_i (1 \le i \le n).$$

We consider the vector $t=(t_1,\ldots,t_n) \in \mathbf{R}^n$, where $\mathbf{t_i}=\mathbf{u_i}-\mathbf{v_i}$ for $1\leqslant i\leqslant n$. Then $\mathbf{t}=\mathbf{u}-\mathbf{v}$ and

$$f(t, e_i) = f(u, e_i) - f(v, e_i) = c\left(\frac{1}{v_i} - \frac{1}{u_i}\right) = \frac{c}{u_i v_i} t_i \ (1 \le i \le n).$$

Therefore

$$f(t,t) = \sum_{i=1}^{n} f(t,e_i) t_i = c \sum_{i=1}^{n} \frac{t_i^2}{u_i v_i} \geqslant 0.$$

We consider the vector $s=(s_1,\ldots,s_n) \in \mathbb{R}^n$, where $s_i=u_iv_i>0$ for $1\leqslant i\leqslant n$. We have

$$f(t, s) = \sum_{i=1}^{n} f(t, e_i) s_i = c \sum_{i=1}^{n} t_i = 0.$$

In addition, f(s,s)>0. Since Lemma 5 can be applied to the form f, from the conditions $f(t,t) \ge 0$, f(t,s)=0, f(s,s)>0 there follows that t=0, u=v.

Thus, all the rows of matrix A are mutually equal. Since their sum is the row (1, ..., 1), we have A = (1/n). Lemma 3 and, simultaneously, Lemma 2 are proved.

Proof of Theorem 1. We select $\varepsilon > 0$. From Lemmas 1 and 2 it follows that the matrix $(1/n) \in \Omega_n^*$ is a point of minimum of the function F_{ε} in the set Ω_n^* . Thus, if $X \in \Omega_n^*$, then

per
$$(X) + \varepsilon / \Pi (X) \gg n! / n^n + \varepsilon n^{n^2}$$

for any $\varepsilon > 0$. From here for $\varepsilon \to 0$ we obtain that

per
$$(X) \gg n!/n^n$$

for all $X \subseteq \Omega_n^*$. Since Ω_n^* is dense in Ω_n , the continuity of the permanent implies that the last inequality holds for all $X \subseteq \Omega_n$. Theorem 1 is proved.

THEOREM 2. Let $A \subseteq \Omega_n^*$ and per $(A) = n!/n^n$. Then A = (1/n).

<u>Proof.</u> By virtue of Theorem 1, the point $A \subseteq \Omega_n^*$ is a point of minimum of per in Ω_n^* . Therefore, from Lemma 2 for $\varepsilon = 0$ it follows that A = (1/n). Theorem 2 is proved.

LITERATURE CITED

- 1. B. L. van der Waerden, "Aufgabe 45," Jber. Deutsch. Math. Verein., 35, 117 (1926).
- 2. M. Marcus and M. Newman, "On the minimum of the permanent of a doubly stochastic matrix," Duke Math. J., 26, 61-72 (1959).
- 3. H. J. Ryser, Combinatorial Mathematics, Math. Assoc. Am. (1963).

OBSTRUCTIONS TO LOCAL EQUIVALENCE OF DISTRIBUTIONS

A. N. Varchenko

An n-dimensional distribution on the space \mathbf{R}^{n+k} is a smooth field σ of n-dimensional tangential directions, i.e., a function that associates with each point $x \in \mathbf{R}^{n+k}$ an n-dimensional linear subspace $\sigma_{\mathbf{X}}$ of the tangent space $T_{\mathbf{x}}\mathbf{R}^{n+k}$ [1]. Two n-dimensional distributions on \mathbf{R}^{n+k} are said to be equivalent if there exists a diffeomorphism of the space \mathbf{R}^{n+k} that transforms one of the distributions into the other one. In this note we indicate a natural local invariant of a distribution. It is proved that this invariant takes different values at different points for a quite general germ of an eight-dimensional distribution on \mathbf{R}^{11} .

1. Definitions. Let there be given an n-dimensional distribution σ on \mathbb{R}^{n+k} . Define a skew-symmetric bilinear function $\varphi_{\sigma,\,x}$ at each point $x \in \mathbb{R}^{n+k}$ on the linear space $\sigma_{\mathbb{X}}$ with values in $T_x\mathbb{R}^{n+k}/\sigma_x$. Let $u,v \in \sigma_x$ and suppose that U and V are arbitrary vector fields with the following properties: The values of these fields at each point of a certain neighborhood of x belong to a plane of the distribution $\sigma,\,U\,(x)=u,\,V\,(x)=v$. Let $\pi_x\colon T_x\mathbb{R}^{n+k}\to T_x\mathbb{R}^{n+k}/\sigma_x$ denote the quotient mapping. Set $\varphi_{\sigma,\,x}\,(u,\,v)=\pi_x\,([U,\,V]\,(x))$, where $[\cdot\,,\,\cdot]$ is the commutator of vector fields. The independence of this expression from the choice of the fields U and V is proved by the following obvious lemma.

<u>LEMMA 1.</u> Let σ be an n-dimensional distribution on \mathbf{R}^{n+k} , and U and V be vector fields on \mathbf{R}^{n+k} whose values belong to the planes of the distribution σ . Suppose that $\mathbf{U}(\mathbf{x}) = 0$ at a certain point $x \in \mathbf{R}^{n+k}$. Then $[U, V](x) \in \sigma_x$.

<u>Proof.</u> We call a collection of n vector fields, whose values at each point in a certain neighborhood of a point x form a basis of a plane of the distribution σ , the basic

M. V. Lomonosov Moscow State University. Translated from Matematicheskie Zametki, Vol. 29, No. 6, pp. 939-947, June, 1981. Original article submitted September 8, 1978.