PROOF OF THE VAN DER WAERDEN CONJECTURE REGARDING THE PERMANENT OF A DOUBLY STOCHASTIC MATRIX

D. I. Falikman

In 1926 van der Waerden formulated the following conjecture [1-3]: the permanent of every double stochastic $(n \times n)$ matrix is not less than $n!/n^n$.

Since then various results have been obtained regarding the van der Waerden conjecture. In particular, it has been proved for $n \leqslant 5$. In [2] one has proved the following: if on the set of all doubly stochastic $(n \times n)$ matrices, the permanent attains its least value at a matrix without zero elements, then its permanent is equal to $n!/n^n$.

The field of real numbers will be denoted by R. Let $X = (x_{i,j})$ be a matrix of dimension $(n \times n)$ with elements from R. If the conditions

$$
x_{ij} \geqslant 0 \quad (1 \leqslant i, j \leqslant n),
$$

\n
$$
x_{i1} + \ldots + x_{in} = 1 \quad (1 \leqslant i \leqslant n),
$$

\n
$$
x_{1j} + \ldots + x_{nj} = 1 \quad (1 \leqslant j \leqslant n),
$$

hold, then the matrix X is said to be doubly stochastic. The set of all doubly stochastic matrices of order n will be denoted by $~\Omega_n.$ This is a closed subset of R^n . Moreover, it is bounded: if $X = (x_{ij}) = \Omega_n$, then $0 \le x_{ij} \leqslant 1$ for $1 \leqslant i, j \leqslant n$. Consequently, Ω_n is compact. We consider now the set

$$
\Omega_n^* = \{ X = (x_{ij}) \in \Omega_n \mid x_{ij} \neq 0 \text{ for } 1 \leqslant i, j \leqslant n \}.
$$

If $X = (x_{ij}) \in \Omega_n$ and $\delta > 0$, then

$$
X_{\delta} = \left(\frac{x_{ij} + \delta}{1 + n\delta}\right) \in \Omega_n^*.
$$

Since $X_{\delta} \to X$ for $\delta \to 0$, it follows that Ω_n^* is dense in Ω_n .

On the set of all (n \times n) matrices with elements from ${\tt R}$ we define two numerical functions: the product and the permanent. Namely, let X = (x_{ii}) be an (n × n) matrix with elements from R. Then

$$
\Pi\left(X\right) = \prod\nolimits_{1 \leq i,j \leq n} x_{ij} \text{ and } \text{per}\left(X\right) = \sum_{\sigma \in S_n} \prod\nolimits_{i=1}^n x_{i\sigma(i)},
$$

where S_n is the set of all n! permutations of the set $\{1, \ldots, n\}$. One can verify that the permanent is a symmetric semilinear function of the rows (columns).

THEOREM 1. If $X \in \Omega_n$, then *per* $(X) \geqslant n!/n^n$.

In other words, the van der Waerden conjecture is true. The proof is based on a series of lemmas. First we define a certain family of functions.

We take $\varepsilon \in \mathbb{R}$. Let $X = (x_{1i})$ be an $(n \times n)$ matrix with elements from R such that $x_{ij} \neq 0$ for $1\leqslant i, j\leqslant n$. We set

$$
F_{\varepsilon}(X) = \text{per}(X) + \varepsilon/\Pi(X).
$$

Thus, the function F_{ε} is defined on the open set $(R-0)^{n} \subset R^{n'}$, and on this set it is continuous and differentiable. Since $(1/x)' = -1/x^2$ for $x \neq 0$, we have

$$
\frac{\partial F_{\epsilon}}{\partial x_{ij}} = \text{per}(X_{ij}) - \frac{\epsilon}{x_{ij} \prod(X)} \tag{1}
$$

Scientific-Research Institute of Automatized Systems of Planning and Control in Construction, Gosstroya, Ukrainian SSR. Translated from Matematicheskie Zametki, Vol. 29, No. 6, pp. 931-938, June, 1981. Original article submitted May 14, 1979.

where $X_{i,j}$ is the matrix obtained from the matrix X by deleting the i-th row and the j-th column.

LEMMA 1. Let $\epsilon > 0$. Then there exists a point of minimum of the function F_{ϵ} in the set Ω_n^* .

Proof. We set $F = F_{\varepsilon}$. Since $\varepsilon > 0$, for all $X \in \Omega_n^*$ we have $F(X) > 0$. Therefore, there exists the infimum

$$
a=\inf_{X\in\Omega_{n}^*}F(X), \quad a\geqslant 0.
$$

We select a sequence $(A_m)_{m\geqslant 1}$ of elements of the set Ω_n , for which F $(A_m)\to$ a for $m\to +\infty.$ Since $A_m\oplus\Omega_n\subset\Omega_n,$ and the set Ω_n is compact, it follows, switching to a subsequence, that one can assume that $A_m \to A \rightleftharpoons \Omega_n$ for $m \to +\infty$. If $A \not\in \Omega_n^\pi$, then II $(A) = 0$ and II $(A_m) \to 0$. Then from the inequality

$$
F(A_m) > \varepsilon / \mathrm{H}(A_m)
$$

and from the condition $\varepsilon~\ge~0$ we obtain the contradiction $~F~(A_{~m}) \to +~\infty.$ Consequently, $A \in \Omega_{n}^{s},$ $F(A_m) \to F(A), a = F(A).$ The lemma is proved.

LEMMA 2. Let $\varepsilon > 0$ and let $A = (a_{ij}) \in \Omega_n^*$ be a point of minimum of the function F_{ε} in the set Ω_n^* . Then A = $(1/n)$.

Proof. We set $p = \text{per}(A)$, $c = \varepsilon / \Pi(A)$; $p_{ij} = \text{per}(A_{ij})$, $d_{ij} = \frac{\partial F_{\varepsilon}}{\partial x_{ij}}\Big|_{\lambda = A}$ $(1 \leqslant i, j \leqslant n)$. We fix $1 < i, j \leqslant n$ and we consider the matrix

$$
A_h = \begin{pmatrix} a_{11} + h & \dots & a_{1j} - h & \dots \\ \dots & \dots & \dots & \dots \\ a_{i1} - h & \dots & a_{ij} + h & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix},
$$

where $h \in \mathbb{R}$, which differs from the matrix A only by the elements with the indices (1, 1). (1, j), (i, 1), (i, j). We take $\rho = \min(a_{11}, a_{1j}, a_{i1}, a_{i2}) > 0$. If $|h| < \rho$, then $A_h \in \Omega_h^*$, so that

$$
F_{\varepsilon} (A_n) = F_{\varepsilon} (A) + (d_{11} - d_{1j} - d_{i1} + d_{ij}) h + o(h) \geq F_{\varepsilon} (A).
$$

Consequently, $d_{11}-d_{1j}-d_{i1}+d_{ij}=0$ for $1 < i$, $j \leqslant n$. If $i = 1$ or $j = 1$, then the last equality is automatically satisfied so that it is valid for all $1\leqslant i,j\leqslant n.$ Thus,

$$
d_{ij} = d_{i1} + d_{1j} - d_{11} \quad (1 \leqslant i, j \leqslant n).
$$

We set $\lambda_i = d_{i1} - d_{i1}$ for $1 \leqslant i \leqslant n$, $\mu_j = d_{1j}$ for $1 \leqslant j \leqslant n$. Then $d_{ij} = \lambda_i + \mu_j$ for $1 \leqslant i, j \leqslant n$. We have obtained the Lagrange condition of the relative minimum.

Then, from (i) it follows that

$$
p_{ij} - c/a_{ij} = \lambda_i + \mu_j \quad (1 \leqslant i, j \leqslant n). \tag{2}
$$

We prove that $\lambda_1 = \ldots = \lambda_n$ and $\mu_1 = \ldots = \mu_n$, i.e., the right-hand side in (2) is a constant. We multiply both sides of (2) by a_{11} :

$$
a_{ij}p_{ij}-c=\lambda_i a_{ij}+\mu_j a_{ij} \quad (1\leqslant i,\,j\leqslant n).
$$
 (3)

We consider i ($1 \leqslant i \leqslant n$) fixed and we sum (3) with respect to j. Making use of the expansion of the permanent of the matrix A relative to the i-th row and taking into account the equality $\sum_{j=1}^{\ } a_{ij} = 1,$ we obtain

$$
\sum_{j=1}^{n} a_{ij} p_{ij} - n c = p - n c = \lambda_i \sum_{j=1}^{n} a_{ij} + \sum_{j=1}^{n} \mu_j a_{ij} = \lambda_i + \sum_{j=1}^{n} \mu_j a_{ij}.
$$

Setting $b = p - nc$, we have

$$
\lambda_i = b - \sum_{j=1}^n \mu_j a_{ij} \quad (1 \leqslant i \leqslant n). \tag{4}
$$

Similarly, we consider j ($1 \leqslant j \leqslant n$) fixed and we sum (3) relative to i. Making use of the expansion of the permanent of the matrix A relative to the j-th column and taking into account the equality $\sum_{i=1}^{n} a_{ij} = 1$, we obtain

$$
\sum_{i=1}^{n} a_{ij} p_{ij} - n c = p - n c = \sum_{i=1}^{n} \lambda_i a_{ij} + \mu_j \sum_{i=1}^{n} a_{ij} = \sum_{i=1}^{n} \lambda_i a_{ij} + \mu_j.
$$

From here

$$
\mu_j = b - \sum_{i=1}^n \lambda_i a_{ij} \quad (1 \leqslant j \leqslant n). \tag{5}
$$

Now we express λ_i ($1\leqslant i\leqslant n)$ in terms of $\lambda_1,$..., $\lambda_n.$ To this end, in the equality (4) we insert (5): $\lambda_i = b - (a_{i1} \mu_1 + \ldots + a_{in} \mu_n)$

$$
= b - [a_{i1} (b - a_{11}\lambda_1 - \ldots - a_{n1}\lambda_n) + \ldots ++ a_{in} (b - a_{1n}\lambda_1 - \ldots - a_{nn}\lambda_n)] == (a_{i1}a_{11} + \ldots + a_{in}a_{1n}) \lambda_1 + \ldots + (a_{i1}a_{n1} + \ldots + a_{in}a_{nn}) \lambda_n.
$$

Thus, $\lambda_i\,=\,b_{i1}\lambda_1+\ldots+b_{i n}\lambda_n,$ and $b_{i1},\,\ldots\,,\,b_{i n}>0$ and $b_{i1}+\ldots+b_{i n}=1.$ Then, taking $\,\wedge\,=\,\min\,$ $(\lambda_1, \ldots, \lambda_n),$ we have $\lambda_1 \geqslant \lambda, \ldots, \lambda_n \geqslant \lambda$ and for some i we have $\lambda_i = \lambda$. For this i we write:

$$
\lambda_i - \lambda = b_{i1} (\lambda_1 - \lambda) + \ldots + b_{in} (\lambda_n - \lambda) = 0,
$$

and therefore $\lambda_1=\lambda,\;\ldots,\;\lambda_n=\lambda.$ Inserting these values into (5), we see that $\mu_j=b$ for $1\leqslant j\leqslant n.$ Thus, (2) leads to the equality

$$
p_{ij} = b + c/a_{ij} \quad (1 \leqslant i, j \leqslant n).
$$

We have not used yet the condition $\kappa\geqslant 0.$ From it we obtain that $c\,>0.$ Thus, in order to conclude the proof of Lemma 2, it is sufficient to show that we have

LEMMA 3. Assume that for the matrix $A = (a_{ij}) \in \Omega_n^*$ we have

$$
per (A_{ij}) = b + c/a_{ij} \quad (1 \leqslant i, j \leqslant n), \tag{6}
$$

where $b, c \in \mathbb{R}, c \geqslant 0$. Then $A = (1/n)$.

In turn, for the proof of Lemma 3 it is necessary to introduce and to investigate some symmetric bilinear forms on \mathbb{R}^n . This is done in the following two lemmas.

LEMMA 4. Let E be a vector space over R and let $f: E \times E \to \mathbb{R}$ be a symmetric bilinear form. We assume that there exists a vector $a \in E$ for which $/(a, a) = 0$ and, if $x \in E, x \notin \mathbf{R}$ a, $f(x, a) = 0$, then $f(x, x) < 0$. In this case, if $t, s \in E$, $t \neq 0$, $f(t, s) = 0$, $f(s, s) > 0$, then $f(t, t) < 0$.

Proof. We note that if $x\in E$, $f(x, a) = 0$, then $f(x, x) \leqslant 0$. Indeed, either $x \neq \mathbf{R}a$, when $f(x, x) < 0$, or $x \in \mathbb{R}a$, when $f(x, x) = 0$. In particular, $f(s, a) \neq 0$.

We select a number $\eta \in \mathbb{R}$ for which $f(t + \eta s, a) = f(t, a) + \eta f(s, a) = 0$. Therefore $f(t + a)$ $\eta s, t + \eta s) = f(t, t) + \eta^2 f(s, s) \leqslant 0.$ If $\eta \neq 0$, then we obtain $f(t, t) \leqslant -\eta^2 f(s, s) < 0.$ Let $\eta = 0$; consequently, $f(t, a) = 0$. If $t \neq \mathbf{R}a$, then $f(t, t) < 0$. We show that the inclusion $t \in \mathbf{R}a$ is not possible. Indeed, let $t = \tau a$, $\tau \in \mathbb{R}$. Then $f(t, s) = \tau f(a, s) = 0$, whence $\tau = 0$, $t = 0$, which is a contradiction. Thus, $f(t, t) < 0$. Lemma 4 is proved.

 $c_{ij}>0$ <u>LEMMA 5</u>. Let C = (c_{ij}) be an (n -- 2) × n matrix with elements from **R** and such that $c_{ij}>0$ for $1\leqslant i\leqslant n-2,~1\leqslant j\leqslant n.$ We define a symmetric bilinear form $f\colon \mathbf{R}^n\times \mathbf{R}^n\to \mathbf{R}$: the following manner: We define a symmetric bilinear form $f\colon\thinspace\mathbf{R}^n\to\mathbf{R}$ in

 $(x, y) = \text{per}$ $\begin{cases} \ldots & \ldots \\ c_{i1} & \ldots & c_{i_i} \end{cases}$

for all $x=(x_1,\ldots,x_n)\in \mathbf{R}^n,$ $y_-= (y_1,\ldots,y_n)\in \mathbf{R}^n.$ In this case, if $t,$ $s\in \mathbf{R}^n,$ $t\neq 0,$ $f(t, s)=0,$ $f(s, s) > 0$, then $f(t, t) < 0$.

Proof. We use induction on $n\geqslant 2$. For $n=2$ we write $t=(t_1, t_2),\ s=(s_1, s_2).$ We have j_l $(t, s) = t_1 s_2 + t_2 s_1 = 0, j(s, s) = 2s_1 s_2 > 0.$ In particular, $s_1 \neq 0$, If $t_1 = 0$, then $t_2 s_1 = 0$ 0 , t $_{2}$ = 0 , t = 0 , which is a contradiction. Thus, $t_{1}\neq 0$. We multiply both sides of the equality $t_2s_1 = -t_1s_2$ by t_1s_2 . Then $t_1t_2s_1s_2 = -t_1^*s_2^* \leq 0$, and, consequently, $t_1t_2 \leq 0$. Thus, $f(t, t_1)$ t) $=$ $2t_1t_2$ $\,$ \lt 0 , so that for n = 2 the lemma is proved.

Assume now that $n > 2$ and assume that for $n-1$ the lemma holds. We select the vector $e_n \stackrel{\text{def}}{=} (0, \ldots, 0, 1) \oplus K^n$. Then $f(e_n, e_n)=0$. Let $x = (x_1, \ldots, x_{n-1}, x_n) \oplus K^n$ and also $x \oplus K e_n$. $f(x, e_n) = 0$. We consider the vector $x' = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$. Since $x \neq \mathbb{R}e_n$, we have $x' \neq 0$, and since $f(x, e_n) = 0$, we have

$$
\text{per}\begin{pmatrix} x_1 & \cdots & x_{n-1} & x_n \\ 0 & \cdots & 0 & 1 \\ \vdots & \ddots & \ddots & \vdots \\ c_{i_1} & \cdots & c_{i,n-1} & c_{in} \end{pmatrix} = \text{per}\begin{pmatrix} x_1 & \cdots & x_{n-1} \\ \vdots & \ddots & \vdots \\ c_{i_1} & \cdots & c_{i,n-1} \\ \vdots & \ddots & \vdots \end{pmatrix} = 0.
$$
 (7)

We write

$$
f(x, x) = \text{per}\begin{pmatrix} x_1 & \cdots & x_{n-1} & x_n \\ x_1 & \cdots & x_{n-1} & x_n \\ \vdots & \vdots & \ddots & \vdots \\ c_{i1} & \cdots & c_{i,n-1} & c_{in} \end{pmatrix}
$$

and we expand the permanent with respect to the last column. Taking into account (7) , we have

$$
f(x,x) = \sum_{i=1}^{n-2} c_{i n} f_i(x', x'),
$$
\n(8)

where $f_i: \mathbf{R}^{n-1} \times \mathbf{R}^{n-1} \to \mathbf{R}$ is a form constructed over the matrix C_{in} obtained from the matrix C by the deletion of the 1-th row and the n-th column. We consider the vector $c_i^{\prime} = (c_{i1}, \ldots, c_{i_1}, \ldots, c_{i_n})$ $c_{i, n-1} \in \mathbf{R}^{n-1}$. Equality (7) can be written as: $f_i(x, c_i)=0$. In addition, $f_i(c_i', c_i') > 0, x' \neq 0.$ Therefore, by the inductive hypothesis, $f_i\left(x^{\prime},\,x^{\prime}\right) < 0$ for $1 \leqslant i \leqslant n-2.$ Now, from expansion (8) it follows that $f(x, x) < 0$.

Thus, the form $f\colon \mathbb{R}^n\to \mathbb{R}$ satisfies the conditions of Lemma 4 (for $a=\mathrm{e}_{\mathbf{n}})$. Consequently, if $t, ~s\!\!\!=\!\!{\bf k}^n, ~t\!\neq\!\!0,~\!f~(t,~s)~\equiv 0,~\!f~(s,~\!s)>\!\!0, \quad\!\!{\rm then}~~\!f~(t,~\!t)\!<\!\!0.$ Lemma 5 is proved.

Proof of Lemma 3. We select in the matrix A two rows $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$, $v = (v_1, \ldots, v_n)$ $v_n) \in \overline{\mathbb{R}^n}$:

$$
A = \begin{pmatrix} \cdots & \cdots & \cdots \\ u_1 & \cdots & \cdots & u_n \\ \vdots & \ddots & \ddots & \vdots \\ v_1 & \cdots & \cdots & v_n \end{pmatrix}.
$$

Since $A\in\mathbb{R}^*_n$, we have $u_i>0, v_i>0$ for $1\leqslant i\leqslant n$, $\sum_{i=1}^nu_i=1, \sum_{i=1}^nv_i=1$. We show that $u = v$.

In matrix A we consider all the remaining rows fixed and we define a symmetric bilinear form $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ in the following manner:

$$
f(x, y) = \text{per}\begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ x_1 & \cdots & \vdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & \cdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}
$$

for all $x = (x_1, \ldots, x_n) \in \mathbb{R}^n, y = (y_1, \ldots, y_n) \in \mathbb{R}^n$.

Thus, in the last matrix and in matrix A, the selected rows occupy the same places and all the remaining rows coincide.

Assume, as usual, that e₁, ..., e_n is the standard basis of the space \mathbb{R}^n so that for every vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ we have $x = \sum_{i=1}^n x_i e_i$.

From conditions (6) it follows that

$$
f(e_i, v) = b + c/u_i, f(u, e_i) = b + c/v_i \ (1 \leq i \leq n).
$$

We consider the vector $t = (t_1, \ldots, t_n) \in \mathbb{R}^n$, where $t_i = u_i - v_i$ for $1 \leqslant i \leqslant n$. Then $t = u - v_i$ and

$$
f(t, e_i) = f(u, e_i) - f(v, e_i) = c\left(\frac{1}{e_i} - \frac{1}{u_i}\right) = \frac{c}{u_i v_i} t_i \ (1 \leq i \leq n).
$$

Therefore

$$
f(t,t) = \sum_{i=1}^{n} f(t, e_i) t_i = c \sum_{i=1}^{n} \frac{t_i^2}{u_i v_i} \geq 0.
$$

We consider the vector $s=(s_1, \ldots, s_n) \in \mathbb{R}^n$, where $s_i = u_iv_i>0$ for $1 \leqslant i \leqslant n$. We have

$$
f(t, s) = \sum_{i=1}^{n} f(t, e_i) s_i = c \sum_{i=1}^{n} t_i = 0.
$$

In addition, $f(s, s) > 0$. Since Lemma 5 can be applied to the form f, from the conditions $f(t, t)$ $t) \geq 0, f(t, s) = 0, f(s, s) > 0$ there follows that $t = 0$, $u = v$.

Thus, all the rows of matrix A are mutually equal. Since their sum is the row $(1, 1)$ \bullet ..., 1), we have A = (1/n). Lemma 3 and, simultaneously, Lemma 2 are proved.

Proof of Theorem 1. We select $\varepsilon > 0$. From Lemmas 1 and 2 it follows that the matrix $(1/n)~\mathfrak{S}^*_{n}$ is a point of minimum of the function F_{ε} in the set Ω_n^* . Thus, if $X\in\Omega_n^*$, then

$$
\mathrm{per}(X) + \varepsilon / \mathrm{H}(X) \geqslant n! / n^n + \varepsilon n^{n^2}
$$

for any $\epsilon > 0$. From here for $\epsilon \to 0$ we obtain that

per $(X) \geqslant n!/n^n$

for all $X\in\Omega_{n}^{*}$. Since Ω_{n}^{*} is dense in Ω_{n} , the continuity of the permanent implies that the last inequality holds for all $X\in\Omega_n$. Theorem 1 is proved.

THEOREM 2. Let $A \in \Omega_n^*$ and per $(A) = n!/n^n$. Then A = $(1/n)$.

Proof. By virtue of Theorem 1, the point $A \in \Omega_n^*$ is a point of minimum of per in Ω_n^* . Therefore, from Lemma 2 for $\varepsilon = 0$ it follows that $A = (1/n)$. Theorem 2 is proved.

LITERATURE CITED

- i. B.L. van der Waerden, "Aufgabe 45," Jber. Deutsch. Math. Verein., 35, 117 (1926).
- 2. M. Marcus and M. Newman, "On the minimum of the permanent of a doubly stochastic matrix," Duke Math. J., 26, 61-72 (1959).
- 3. H.J. Ryser, Combinatorial Mathematics, Math. Assoc. Am. (1963).

OBSTRUCTIONS TO LOCAL EQUIVALENCE OF DISTRIBUTIONS

A. N. Varchenko

An n-dimensional distribution on the space \mathbf{R}^{n+k} is a smooth field σ of n-dimensional tangential directions, i.e., a function that associates with each point $x\in \mathbb{R}^{n+k}$ an n-dimensional linear subspace σ_X of the tangent space $T_x \mathbb{R}^{n+k}$ [1]. Two n-dimensional distributions on \mathbb{R}^{n+k} are said to be equivalent if there exists a diffeomorphism of the space \mathbb{R}^{n+k} that transforms one of the distributions into the other one. In this note we indicate a natural local invariant of a distribution. It is proved that this invariant takes different values at different points for a quite general germ of an eight-dimensional distribution on \mathbb{R}^{11} .

1. Definitions. Let there be given an n-dimensional distribution σ on \mathbf{R}^{n+k} . Define a skew-symmetric bilinear function $\varphi_{\sigma,x}$ at each point $x\in\mathbb{R}^{n+k}$ on the linear space σ_X with values in $T_x \mathbf{R}^{n+k}/\sigma_x$. Let $u, v \in \sigma_x$ and suppose that U and V are arbitrary vector fields with the following properties: The values of these fields at each point of a certain neighborhood of x belong to a plane of the distribution σ , $U(x) = u$, $V(x) = v$. Let π_x : $T_x \mathbb{R}^{n+k} \to T_x \mathbb{R}^{n+k}$ σ_x denote the quotient mapping. Set $\varphi_{\sigma,x}(u,v) = \pi_x([U, V](x))$, where $[\cdot, \cdot]$ is the commutator of vector fields. The independence of this expression from the choice of the fields U and V is proved by the following obvious lemma.

LEMMA 1. Let σ be an n-dimensional distribution on $\mathbf{R}^{n+k},$ and U and V be vector fields on R^{n+k} whose values belong to the planes of the distribution σ . Suppose that $U(x) = 0$ at a certain point $x \in \mathbb{R}^{n+k}$. Then $[U, V](x) \in \sigma_x$.

Proof. We call a collection of n vector fields, whose values at each point in a certain neighborhood of a point x form a basis of a plane of the distribution σ , the basic

M. V. Lomonosov Moscow State University. Translated from Matematicheskie Zametki, Vol. 29, No. 6, pp. 939-947, June, 1981. Original article submitted September 8, 1978.