
PROOF OF THE VAN DER WAERDEN CONJECTURE REGARDING THE PERMANENT 

OF A DOUBLY STOCHASTIC MATRIX 

D. I. Falikman 

In 1926 van der Waerden formulated the following conjecture [1-3]: the permanent 
of every double stochastic (n • n) matrix is not less than n!/n n. 

Since then various results have been obtained regarding the van der Waerden conjecture. 
In particular, it has been proved for n~5. In [2] one has proved the following: if on 
the set of all doubly stochastic (n • n) matrices, the permanent attains its least value at 
a matrix without zero elements, then its permanent is equal to nl/n n. 

The field of real numbers will be denoted by R. Let X = (xij) be a matrix of dimension 
(n • n) with elements from R. If the conditions 

x~j ~ O (t ~ i, ] ~ n), 

xil + . . .  +x~n = t (l ~ i~< n), 

x ~ + . . . + x ~ j  = t  (t ~ ] ~ 7 ) ,  

hold, then the matrix X is said to be doubly stochastic. The set of all doubly stochastic 
matrices of order n will be denoted by ~. This is a closed subset of R ~: Moreover, it is 
bounded: if X = (x~j) ~ ~, then O~ x~j ~i for I ~i,]~n. Consequently, ~)n is compact. 

We consider now the set 

~ = { x  = ( x ~ j ) ~ l x ~ j v a O  ~r t < i ,  ] ~,~}. 

If X = ( x ~ j ) ~  n and 6 > 0, then 

( z i J + 6 )  * 
X~-~ ~ + n ~  ~ '  

Since X~-~X for 6-+0, it follows that ~ is dense in ~n. 

On the set of all (n • n) matrices with elements from R we define two numerical func- 
tions: the product and the permanent. Namely, let X = (xij) be an (n • n) matrix with ele- 
ments from R. Then 

x \ 
where S n is the set of all n! permutations of the set {I,..., n}. One can verify that the 
permanent is a symmetric semilinear function of the rows (columns). 

THEOREM i. If X ~ ,  then per(X)~n!/n n 

In other words, the van der Waerden conjecture is true. The proof is based on a ser- 
ies of lemmas. First we define a certain family of functions. 

We take e f~_R. Let X = (xij) be an (n • n) matrix with elements from R such that xij~0 
for l ~ i , ] ~  n. We set 

Fe(X) = p e r ( X ) +  e/H (X). 

Thus, the function F E is defined on the open set (R--0)n'cR n', and on this set it is 
continuous and differentiable. Since (I/x)' = --I/x 2 for x~0, we have 

__. 8 , (i) o,~-{j 0'~ - -pe r  (Xi/) xijlI (y) 
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where Xij is the matrix obtained from the matrix X by deleting the i-th row and the j-th 

column. 

LEMMA i. Let ~ > 0. Then there exists a point of minimum of the function F e in the 
set ~. 

Proof~ We set F = F~. Since ~ > 0, for all X ~  we have F(X) > 0. Therefore, 
there exists the infimum 

We select a sequence 

Since A m ~ ~,*~n, 
t h a t  o n e  c a n  a s s u m e  t h a t  A m - >  A ,'~ ~,~ f o r  m - ~ - ~  ,~.  I f  
T h e n  f r o m  t h e  i n e q u a l i t y  

F ( A ~ ) '  e/ l [  (A~) 

a n d  f r o m  t h e  c o n d i t i o n  ~ > 0 we o b t a i n  t h e  c o n t r a d i c t i o n  
F (Am) --> F (A),  a = F (A). The l emma i s  p r o v e d .  

a - -  inf F(X), a > 0 .  
X~ti* n 

(Am)m> A of elements of the set ~ ~z, for which F (Am)-+a for m -+ ~- oo. 
and the set ~n is compact, it follows, switching to a subsequence, 

A ~!~, then II (A) = 0 and II (Am)-->O. 

F (A~) --> -~ ~ .  Consequently, A e~_ ~,~, 

LEMMA 2. Let e ?~:- 0 and let A = (a~i) ~ ~ be a point of minimum of the function Fs in 

the set ~i=~. Then A = (i/n). 

0i.~1 ( i  ~ i, ] , ~  n). We fix P r o o f r  We s e t  p = per  (A), c = e/[I  (A); pi~ = per  (A~j), d~j -~  Oxi----~lA= A 

l < i , ] <  n a n d  we c o n s i d e r  t h e  m a t r i x  

t777 ? :': ) 
Ah = ~ai~-- h . . . ai~ -~- h . . . ' 

where h ~ R,  which differs from the matrix A only by the elements with the indices (I, I), 

(I, ]), (i, i), (i, ]). We take p = rain (an, eli ,ail , aij ) ~ O. If lhl < 9, then AI~ ~ ~7~, so that 

Fe (An) = Fe (A) + (dn -- dlj  -- di~ + dij) h + o (h) ~ f e  (A).  

Consequently, d n --dlj- d~-~ dii = 0 for I < i, ] ~ n. If i = i or j = I, then the last equal- 
ity is automatically satisfied so that it is valid for all i ~ i, ] ~ n. Thus, 

dij  = dil -I- dl~ - -  d n  (i J .:~ ~, j ~ ~). 

We s e t  %i = di l  - -  d n  f o r  I ~ i ~ n, ~x.p = dl j  f o r  t ~ ] ~ n. T h e n  dij  = L i -~- [xj f o r  I <~ i, ] ~ n. 
We have obtained the Lagrange condition of the relative minimum. 

Then, from (i) it follows that 

p ~ - - c / a ~ j  = ) ~ i - ~  ~j (i~ i, ]~ . .  n).  (2 )  

We prove that L~ =...= Ln and ~i =- . .= ~n, i.e., the right-hand side in (2) is a constant. 
We multiply both sides of (2) by aij: 

aijpi  i - - c  = Eiai7-]- ~tTaii ( 1 - ~  i, ] <~ n). (3) 

We consider i (I ~ i ~ n) fixed and we sum (3) with respect to j. Making use of the expansion 
of the permanent of the matrix A relative to the i-th row and taking into account the equal- 

ity \~ ~, we obtain 
Lj=I ~ij = 

n i ~n 
Yg=~ aijp~j - -  nc = p - -  nc -= ~ v ~  ~i ~'~ ~ba~j i- j=1 aiJ -~- "--j=l ~tJ(liJ ~ -~  �9 j = l  

Setting b = p- nc, we have 

n 

Similarly, we consider ] (I ~ ] ~ n) fixed and we sum (3) relative to i. Making use of the 
expansion of the permanent of the matrix A relative to the j-th column and taking into ac- 

count the equality ~n a~j ~ I, we obtain 

476 



Y ' i = ~  a . ~  . - -  n c  = p - -  n c  ~ i = l  "~iaiJ ~-  " \ '  _ _  ~,.,n n . . . . . .  ~ " - i = ~  a i j  - -  z . i =  a )~iai~  q -  ~t~. 

From here 

Now we express 
we insert (5): 

hi ( i  ~ i ~  n) i n  t e r m s  o f  ~ . . . . .  ~ .  To t h i s  e n d ,  

~ i  = b - -  ( a ~  § . . . + a ~ )  

-~- b - -  [ai~ ( b - -  a ~ E 1 - - .  �9 . - -  an~ .n )  -~- �9 �9 .-4- 

@ a i n  ( b  - -  a ~ % ~ - -  . . . - -  an,~)~,~)] = 

= ( a i ~ a n +  �9 �9 . @  ai,~a~,~) ~ - } -  �9 �9 . +  (a i~a ,~@ . . . -t- a i~ann )  )~n. 

(5) 

in the equality (4) 

T h u s ,  )~i = bi~X~+ �9 �9 �9 + b i , , ~ ,  a n d  bi,,  �9 � 9  bi ,  ~ 0 a n d  bi~ + �9 �9 - +  bi,~ = t .  
(%~ . . . . .  %~), we h a v e  % ~  . . . . .  %~ 7 > ~  a n d  f o r  some  i we h a v e  )~i = %. 

~--;~ = b ~ ( ~ - - ~ ) + . . . +  b ~ ( ~ - - ~ )  = 0 ,  

a n d  t h e r e f o r e  
for 1 ~ 7 " ~  n.  

LEMMA 5. Let C = (cij) be an 
cii/O for 1 % i  % n - - 2 ,  l ~ ] ~ n .  
t h e  f o l l o w i n g  m a n n e r :  

Then, taking % = min 

For this i we write: 

%~ = %, �9 �9 ,, %m = ~. Inserting these values into (5), we see that 
Thus, (2) leads to the equality 

pi~  = b + c / a ~  ( i ~  i, / ~  n). 

~ = b - - ~  

We have not used yet the condition ~: ~ 0. From it we obtain that c -~ 0. Thus, in order 
to conclude the proof of Lemma 2, it is sufficient to show that we have 

LEMMA 3. Assume that for the matrix A ~ (a~j)~ f2* we have 

per  ( A i j )  = b + c / a i j  ( l  ~ i, ]~  n), (6 )  

w h e r e  b, c c ~ R ,  c ~ 0 .  T h e n  A = ( i / n ) .  

In turn, for the proof of Lemma 3 it is necessary to introduce and to investigate some 
symmetric bilinear forms on R n. This is done in the following two lemmas. 

LEM~iA 4. Let E be a vector space over R and let/: E X E--> R be a symmetric bilinear 
form. We assume that there exists a vector a~E for which /(a, a)=0 and, if x~E,x~Ra, 

[ ( x , a ) ~ O ,  t h e n  / ( x ,  x ) < 0 .  I n  t h i s  c a s e ,  i f  t,  s ~ E ,  t=/=O,  f ( t ,  s ) ~ 0 ,  / ( s ,  s ) ' ~ O ,  t h e n / ( t ,  t ) < 0 .  

Proof~ We note that if x~E, / (x, a) = 0, then f(x, x) ~ 0. Indeed, either x~ Ra, when 
/ (x,x) <0, or x~Ra, when f(x, x) = 0. In particular, / (s, a) ~0. 

We select a number N ~ R for which / (t ~ Ns, a) = /(t, a) @ N/(s, a) = 0. Therefore / (t @ 
~s, t @ ~s) == ] ( t ,  t) @ ~2/ (s ,  s)-%/ 0. I f  ~ @ 0 ,  t h e n  we o b t a i n  / ( t ,  t) ~.~ _ ~ 2 / ( s ,  s) < 0 .  L e t  ~ ---- 0 ;  
c o n s e q u e n t l y ,  / ([, a) = 0. I f  t ~_ Ra ,  t h e n  ] (t, t) <~ 0. We s h o w  t h a t  t h e  i n c l u s i o n  t ~ R a  i s  
n o t  p o s s i b l e .  I n d e e d ,  l e t  t =- ra ,  x ~ R .  T h e n  ] ( t ,  s) = T ] ( a ,  s) = 0, w h e n c e  T = 0, t = O, w h i c h  
i s  a c o n t r a d i c t i o n .  T h u s ,  / ( t ,  t ) <  0. Lemma 4 i s  p r o v e d .  

(n  - -  2)  • n m a t r i x  w i t h  e l e m e n t s  f r o m  R a n d  s u c h  t h a t  
We d e f i n e  a s y m m e t r i c  b i l i n e a r  f o r m  ]: tU ~ X R~---> R i n  

(x, y) = per 

for all x = (x I ..... x,) ~R n, g 

/ (s,s)>0, then /(t, t) <0. 

\ ?  ? 
(Yl . . . . .  y , , ) ~ R " .  I n  t h i s  c a s e ,  i f  t, s ~ l l  '~, t = ~  O, / ( t ,  s) = O, 

Proof. We use induction on n~>2. For n = 2 we write t = (tl, t2), s = (sl, s2). We have 
] (t,s)= tls 2 @ t2s I =: 0,/(s, s) = 2sls 2 ~ O. In particular, s,:#q, s 2 ,=~0. If tl = 0, then t2sl = 
0, t= = 0, t --0, which is a contradiction. Thus, ta ~ 0. We multiply both sides of the 
equality t2s I = --tls 2 by tlsa. Then tlt2sls ~ = -- t~s~ <0, and, consequently, tlt= < O. Thus, ] (t, 
t) = 2tlt 2 <0, so that for n = 2 the lemma is proved. 

Assume now that n > 2 and assume that for n- 1 the lemma holds. We select the vector 
en ~: (0 ..... 0, i) ~ R'q Then ](e,, e,~)=0. Let x = (x I ..... xn_1, x~) ~-R n and also X~Re~, 

f (x, e,) 0. We consider the vector x' = (xl .... IX~-~) ~ 11 ~-I. Since x :~ Ren, we have x' ~= 0, 
and since f(x, en) = 0, we have 
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We write 

/ ' X l  �9 �9 , X~%_l X 

! . . . . . . . . .  | 
d ' i l  ' * " C i , n - I  C i ~  

\ . . . . . . . .  / 

/ (x, x) = per  

o = p e r  ~ c ~  . . . q ,n : t  = (7 )  

t 
Xl  . . . X n _  1 X n 

X! . . . .  ~n-I X 

! 
C i l  " " " C l . n - 1  C i n J  

and we expand the permanent with respect to the last column. Taking into account (7), we 
have 

I (x, x) = (x', x'), ( s )  

where /~:R"-' X R~-I--> R is a form constructed over the matrix Cin obtained from the matrix 
C by the deletion of the i-th row and the n-th column. We consider the vector c~ = (c~I ...... 
ci .... ~) ~ II n-*. Equality (7) can be written as: f~ (x', c'~)=0. In addition, ]i (ci, c() ~ 0, x' ~: 0. 
Therefore, by the inductive hypothesis, /~ (x', x') < 0 for "I <-i~<n-- 2. Now, from expansion 
(8) it follows that ] (x, x)<0. 

Thus, the form f: ll" "< II '~-~ R satisfies the conditions of Lemma 4 (for a = en). Conse- 
quently, if t, ~II ~, ~=0,] (t, s) = 0,/(s, s) ~0, then / (t, t) <0. Lemma 5 is proved. 

Proof of Lemma 3. We select in the matrix A two rows u = (u~, . .., un) ~R n, v =(v~,...., 
v~) ~ R ; ' :  

A = 

/ . . . . . .  t I 
Ul �9 �9 �9 l l T t  

i 

l i 77:, 

J J ~Tt  . L-~.II 
S i n c e  A ~ ) *  we h a v e  u i ' 2 -  O, v~ ~ 0 f o r  t <.~ i ~ i ~ ,  ~ ' i . = ~ u i =  1 . ~ = ~ v ~  1. We s h o w  t h a t  u = v 

I n  m a t r i x  A we c o n s i d e r  a l l  t h e  r e m a i n i n g  r o w s  f i x e d  a n d  we d e f i n e  a s y m m e t r i c  b i l i n e a r  
f o r m  ]: W ~X W ~ R  i n  t h e  f o l l o w i n g  m a n n e r :  

\ . . . . . .  / 

f o r  a l l  x = (x 1 . . . . .  x,~) ~ 1 {  '~ ,g  = ( g t , .  �9 . , Y n )  ~ R ' ~ .  

Thus, in the last matrix and in matrix A, the selected rows occupy the same places and 
all the remaining rows coincide. 

Assume, as usual, that e~, . ., e n is the standard basis of the space II '~ so that for 

every vector x = (x 1 . . . . .  x,,) ~ R ~ we have x = - : - i = 1  xiei" 

F r o m  c o n d i t i o n s  ( 6 )  i t  f o l l o w s  t h a t  

f (ei, v) = b + c/u~, f (u, e~) = b + c/v~ ( t~<i~<n) .  

We consider the vector t = (t I, . .., t,,) ~PJI, where t i = ui-- v i for I ~ i ~ J~. Then t = u -- v 
and 

[ ( t ' e i ) ~ f ( a , e ~ ) - - f ( u , e ~ )  = c  q ~q,  . 

T h e r e f o r e  

] ( t , t ) - ~ -  ~ = l / ( t ,  e d t i ~ - c  - > 0 .  
i:=l ztiv i 
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We c o n s i d e r  t h e  v e c t o r  s =  (sl, s~) ~ R ~, w h e r e  s i = u~v~>O f o r  t -J  i~n,. We h a v e  

/ (t, s) = ~ = ~  ! (t, ei) s~ = c Z~=~ t~ = O. 

I n  a d d i t i o n ,  / (s, s )>O.  S i n c e  Lemma 5 c a n  b e  a p p l i e d  t o  t h e  f o r m  f ,  f r o m  t h e  c o n d i t i o n s  / (t, 
t)~O, /(t, s) = O, /(s, s)~/ 0 there follows that t = 0, u = v. 

Thus, all the rows of matrix A are mutually equal. Since their sum is the row (i, 
�9 i), we have A = (i/n). Lemma 3 and, simultaneously, Lemma 2 are proved. 

Proof of Theorem i. We select ~ > 0. From Lemmas 1 and 2 it follows that the matrix 

(I/n)~ is a point of minimum of the function F~ in the set ~. Thus, if X~*~, then 

p e r ( X )  + e / l I ( X ) ~ n ! / n  ~ + en  "~ 

f o r  a n y  ~ > 0.  F rom h e r e  f o r  ~ § 0 we o b t a i n  t h a t  

per (X) ~ n ! / n  ~ 

f o r  a l l  X ~ f l ~ .  S i n c e  fl~ i s  d e n s e  i n  fl~, t h e  c o n t i n u i t y  o f  t h e  p e r m a n e n t  i m p l i e s  t h a t  t h e  
l a s t  i n e q u a l i t y  h o l d s  f o r  a l l  X ~ f l ~ .  T h e o r e m  i i s  p r o v e d .  

TItEOREM 2 .  L e t  A ~ f l ~  a n d  p e r ( A )  = n! /n  n. Then  A = ( l / n ) .  

P r o o f � 9  By v i r t u e  o f  T h e o r e m  l ,  t h e  p o i n t  A ~ f l ~  i s  a p o i n t  o f  min imum o f  p e r  i n  fl~. 
T h e r e f o r e ,  f r o m  Lemma 2 f o r  ~ = 0 i t  f o l l o w s  t h a t  A = ( l / n ) .  T h e o r e m  2 i s  p r o v e d .  

LITERATURE CITED 

i. B.L. van der Waerden, "Aufgabe 45," Jber. Deutsch. Math. Verein., 35, 117 (1926). 
2. M. Marcus and M. Newman, "On the minimum of the permanent of a doubly stochastic ma- 

trix," Duke Math. J., 26, 61-72 (1959). 
3. H.J. Ryser, Combinatorial Mathematics, Math. Assoc. Am. (1963). 

OBSTRUCTIONS TO LOCAL EQUIVALENCE OF DISTRIBUTIONS 

A. N. Varchenko 

An n-dimensional distribution on the space R ~+~ is a smooth field ~ of n-dimensional 
tangential directions, i.e., a function that associates with each point x~R "+~ an n-dimen- 
sional linear subspace o x of the tangent space TxR ~§ [i]. Two n-dimensional distributions 
on R ~§ are said to be equivalent if there exists a diffeomorphism of the space R n+k that 

transforms one of the distributions into the other one. In this note we indicate a natural 
local invariant of a distribution. It is proved that this invariant takes different values 
at different points for a quite general germ of an eight-dimensional distribution on R tl 

i. Definitions. Let there be given an n-dimensional distribution ~ on R n+~ . Define 
a skew-symmetric bilinear function ~o,x at each point x~R n+~ on the linear space ~x with 
values in TxB~+~/~ x. Let u,V~Ox and suppose that U and V are arbitrary vector fields with 
the following properties: The values of these fields at each point of a certain neighbor- 
hood of x belong to a plane of the distribution ~, U(x) ~ u, V(x) =9. Let ~: TxB~+~-+T~Rn+~ / 
ox denote the quotient mapping. Set ~o x(u,v) = ~x([U, V](x)), where [., .] is the commutator of 
vector fields. The independence of this expression from the choice of the fields U and V 
is proved by the following obvious lemma. 

LEMMA i. Let o be an n-dimensional distribution on R n+~, and U and V be vector fields 
on R ~§ whose values belong to the planes of the distribution ~. Suppose that U(x) = 0 at 
a certain point x~R n+~. Then [U, V](x) ~x. 

Proof. We call a collection of n vector fields, whose values at each point in a cer- 
tain neighborhood of a point x form a basis of a plane of the distribution ~, the basic 
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