PROOF OF THE VAN DER WAERDEN CONJECTURE REGARDING THE PERMANENT
OF A DOUBLY STOCHASTIC MATRIX

D. I. Falikman

In 1926 wvan der Waerden formulated the following conjecture [1-3]: the permanent
of every double stochastic (n x n) matrix is not less than n!/nB.

Since then various results have been obtained regarding the van der Waerden conjecture,
In particular, it has been proved for ” < 9. In [2] one has proved the following: if on
the set of all doubly stochastic (n X n) matrices, the permanent attains its least value at
a matrix without zero elements, then its permanent is equal to n!/nm.

The field of real numbers will be denoted by R. Let X = (Xij) be a matrix of dimension
(n x n) with elements from R. If the conditions

‘Z’LJ/)O (1Sl7 ]<TL),

xil+-'-+$in:1 ( N

Ty Fayy =1 (LT n),
hold, then the matrix X is said to be doubly stochastic. The set of all doubly stochastic
matrices of order n will be denoted by €£,. This is a closed subset of R™. Moreover, it is
bounded: if X = (z;;) = Q,, then 0+« z;; {1for 1< i,j< n Consequently, 2, is compact.
We consider now the set

QfF = {X = (@) = Rp | 2550 for 1< i, j n)

If X = (z;;)=Q, and § > 0, then

_( Ey T *
Xo= (W) Sie

Since X;-— X for §— 0, it follows that Q* is dense in Q,.

On the set of all (n x n) matrices with elements from R we define two numerical func-
tions: the product and the permanent. Namely, let X = (xij) be an (n x n) matrix with ele-
ments from R. Then

I (X)=

n
H1<i,j<n Z;; and per (X) = Zaesn Hi:l Tig(i)

where S, is the set of all n! permutations of the set {1, ..., n}. One can verify that the
permanent is a symmetric semilinear function of the rows (columns).

THEOREM 1. If X & Q,, then per (X) > n!/n".

In other words, the van der Waerden conjecture is true. The proof is based on a ser-
ies of lemmas. First we define a certain family of functions.

We take e =R. Let X = (xij) be an (n x n) matrix with elements from R such that z;; £ 0
for 1 i, j<{ n. We set

Fe (X) = per (X) + &/II (X).

Thus, the function F; is defined on the open set (R — 0)* C R™, and on this set it is

continuous and differentiable. Since (1/z)) = —1/2* for z 540, we have
oF, e
5'.!,“ == per (Xij) — zy; X)) (1
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where Xij is the matrix obtained from the matrix X by deleting the i-th row and the j~th
column.

LEMMA 1. Let € > 0. Then there exists a point of minimum of the function Fe in the
set Q¥.
n

Proof, We set J =F,. Since € > 0, for all X < QF we have F(X) > 0. Therefore,
there exists the infimum

a= inf F(X), a>0.
XEQ?;
We select a sequence (Ap)m>1 of elements of the set Q., for which Fd,)—a for m — + oo.
Since A4, = Q,C 2, and the set Q, is compact, it follows, switching to a subsequence,
that one can assume that A4, — A4 =Q, for m-» -~ oo, If A& Q* then II (A) =0 and IT (4,,) — 0.
Then from the inequality

F(dy) > e/ft (4y)

-

and from the condition ¢ > 0 we obtain the contradiction F (A,) — -+ 0. Consequently, 4 = QF,
F(A,)—>F(4), a=F(4). The lemma is proved.

LEMMA 2. Let ¢ ~0 and let A = (¢;;) Q) be a point of minimum of the function Fe in
the set ). Then A = (1/n).

or
Proof. We set p = per(4), ¢ = &/I1 (4); ps; = per (Ay;), dij= 7= (1 <<i, j < n). We fix
— 235 (A=A
1 <Ci,j<n and we consider the matrix
dy + . uyj h
Ay ay—h a;th ?

where h & R, which differs from the matrix A only by the elements with the indices (1, 1),
(1, 7, @ 1), G 7) We take p = min (ay, a5, @1, a;;) > 0. If [ h]|<<p, then A4, = Q¥ so that
Fo(4y) = Fo (A) + (duy — diyy — din + dig) h + o (h) = Fe (4).
1,
n.

Consequently, dyy —dj; —djy +d;; =0 for 1<i, j<n If i =10r j =
ity is automatically satisfied so that it is valid for all 1 (i, j<

dij = diy + dy; — dﬁ A< j< ).

then the last equal-
Thus,

We set Ay =djy —dy for 1 CiC{n, uy=d; for 1 j<n Then d;; =4 -+ pj for 1< i, j<n.
We have obtained the Lagrange condition of the relative minimum.

Then, from (1) it follows that

piy—ca; =k +p; (A<E T <n) (2)
We prove that A =...=A,and p; =...=p,, i.e., the right-hand side in (2) is a constant.

We multiply both sides of (2) by ajq:
aiPij — ¢ = Mgy -+ way (1< 4 7 < n). (3)

We consider i (1 <{i<(n) fixed and we sum (3) with respect to j. Making use of the expansion
of the permanent of the matrix A relative to the i-th row and taking into account the equal-
ity :\:‘?___1 a;;=1, we obtain

n n n 7
D s — N L = s s
2']'=1 Qijpi;—ne=p-—nc==X; 2 o1 %G T EJ‘:I Wiy = ki + Zj:l Wid;;-

Setting b = p — nc, we have
h=0b— 2wy (1<i<n). (4)

Similarly, we consider j(1<(j<{n) fixed and we sum (3) relative to i. Making use of the
expansion of the permanent of the matrix A relative to the j-th column and taking into ac-

count the equality ZLI a;; =1, we obtain
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From here

— 7

p‘jzb—zi=1 ?\ia,-]- (1<]\/§ n). (5)
Now we express A; (1 <(i<(n) in terms of A, ..., A,. To this end, in the equality (4)
we insert (5): R o= b — (@ - - A Giapn)
= b—lay (b—aph —. . .—apiky) +. . .+
+ ain (b - aln}"l— e T ann}"n)] =
= (@au+ . . .+ @Gna) M+ (a-'ilanl—}~ © vt Giplan) Ay
Thus, A; = byM+ . - .-F binhn, and by, . . ., by, >0and by + . . .+ b =1, Then, taking A = min
(M» - - .2 Ay), we have A; > A, ..., A, > A and for some i1 we have A; = A. For this i we write:
hi—A =byh — M+ .. b (A —1) =0,
and therefore A, =AM, .. ., Ay = A Inserting these values into (5), we see that pu; = b — A

for 1 <(j<n. Thus, (2) leads to the equality
pij = b+ day; (L<i, j<n)

We have not used yet the condition & > (0. From it we obtain that ¢ > 0. Thus, in order
to conclude the proof of Lemma 2, it is sufficient to show that we have

LEMMA 3. Assume that for the matrix 4 = (¢;)) = QF we have

per (4;;) = b+ clay; (A< i, j< n) (6)
where b,ce=R,c¢>>0. Then A = (1/n).

In turn, for the proof of Lemma 3 it is necessary to introduce and to investigate some
symmetric bilinear forms on R". This is done in the following two lemmas.

LEMMA 4, Let E be a vector space over R and let /: £ X F — R be a symmetric bilinear
form. We assume that there exists a vector a&< £ for which [f(a,a) =0 and, if z&= E,z£Ra,
f(r,a)=0, then /[(s, 2)<C0. In this case, if ¢, s= E, t=0, f(t, s) =0, /(s, s) >0, then it t)<O.

Proof, We note that if z = E, [ (»,a) =0, then [f(z, z) <{0. Indeed, either =z & Ra, when
/(z, 2} << 0, or 2z Ra, when f£(x, x) = 0, In particular, f (s, a)+% 0.

We select a number M & R for which f(f - ms, @) = [ (f, a) + nf (s, a) = 0. Therefore f(f +
ns. t+ms) = F(t, 1) + ¥ (s, 8)<L0. If n==0,then we obtain (! ) < — ¥ (s, 8) <<O0. Let =103
consequently, 7 ({, a) =0. If ¢t Rgq, then f (¢ t)< 0. We show that the inclusion t&=Ra is
not possible. Indeed, let /= 1a, T&=R. Then f (¢t s) = 1f (a, s) == 0, whence 1 =0, t = 0, which
is a contradiction. Thus, 7 {/ ) <C0. Lemma 4 is proved.

LEMMA 5, Let C = (Cij) be an (n — 2) x n matrix with elements from R and such that
e; >0 for 1 Lt ln—2, 1<jn We define a symmetric bilinear form f: R* x R* - R in
the following manner:

n . Zn
YooYy,
flx,y)y=per} . . . ...
ci,l PPN Cin
for all z=(2.. . o) ER", ¥y = (y.. . ,y)ER. In this case, if ¢, s=R", t5£ 0, [ (¢t s) =0,
f(s,5)>0, then f (¢ t)<<O.
Proof. We use induction on n=2. For n = 2 we write ¢ = (;, %), s = (85, ). We have
F (2t 8)= 48 + L5y = 0, f (s, 8) = 2835, > 0. In particular, s;5=9, s,==0. If t; = 0, then tgs; =
0, t2 = 0, t =0, which is a contradiction. Thus, ¢ 0. We multiply both sides of the
equality f,s; = —1t;5, by tis2. Then tt,ss, = — tjs; <0, and, consequently, &4t,<<0. Thus, f(t,

t) = 241, << 0,s0 that for n = 2 the lemma is proved.

Assume now that n > 2 and assume that for n — 1 the lemma holds. We select the vector

en =(0,. . ,0,)&R". Then [(e,, e.)=0. Let £ = (T, . . ., Tpg, Tn) E_B“ and also z&£Re,, 7
f(z, 23) = 0. We consider the vector z' = (x4, ....%n—1) &= R™1L Since z # Re,, we have 2 =0,
and since f(x, e,) = 0, we have
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z = -1371‘1 Zn 11 -Tn‘l
0 .0 1
erf -« . . ... = per ’ = 0. 7
p ¢ p 011 C‘7',,71—1 ( )
71 T I7.—1 in
We write
-1 ZTn-y *p
1 Ty %,
J(@x)y=per] .. ... ... ..
% i.n-1 Cin

and we expand the permanent with respect to the last column., Taking into account (7), we
have

fz,2) =0 culi (2, 2), (8)

where f:R"' X R™!— R is a form constructed over the matrix Cip obtained from the matrix
C by the deletion of the i-th row and the n-th column. We consider the vector ¢ = (¢, ...,
¢, u-1) & R™L Equality (7) can be written as: [ (z/,¢:)=0. 1In addition, f; (¢, ¢i') > 0, 2" = 0.
Therefore, by the inductive hypothesis, f, (x', 2') << 0 for 1 <i<n —2. Now, from expansion
(8) it follows that f(z, x)<0.

Thus, the form f: R" v R" —> R satisfies the conditions of Lemma & (for g = en). Conse-
quently, if ¢ s&R*, =0,f (t, s) =0,f (s, 5 >0, then /(4 t) <<(. Lemma 5 is proved.

Proof of Lemma 3. We select in the matrix A two rows u = (uy, .. ., u,) & R", » =(v,,..
Un) = R

.oy

A . “ R n Tl
Since AEQF we have u; >0, »; >0 for {<{i<n, ‘5‘(.:1 U = /l,}]i:l v;==1. We show that u = v.

Py

In matrix A we consider all the remaining rows fixed and we define a symmetric bilinear
form f: R"x R”" — R in the following manner:

flo,y)=peri - . ...
for all z =(xy,. . ,2) ER Yy = (Y, . - ., yn) E R

Thus, in the last matrix and in matrix A, the selected rows occupy the same places and
all the remaining rows coincide.

Assume, as usual, that e;, . . ., e is the standard basis of the space R" so that for
every vector z — (z5,. . ., ;) & R" we have = . me;
From conditions (6) it follows that
fle v) =b 4 cluy, flu,e) =10+ clo, <L i n).

We consider the vector t = (4, .. ., t,) ER", where t{ = ui —vq{ for 1 <{i<{n Then t = u—v
and

) oo iy, L
f(t: e-i):f(u’ei)’_f‘\v:ei): (‘(T_ T\):TZ{,TILI (1é<32<\\77)'

Therefore

, n " n i
fiet) :Zi=1f<t’ ei)ty=rc Ei::] .o, > 0.

478



-

We ‘consider the vector s= (s, . - ., &) & R", where s; = uw,>0 for 1 <{ i<n. We have
n
F ) =D Tt e)si=c 3 t;=0.
In addition, f (s,s)>0. Since Lemma 5 can be applied to the form f, from the conditions f (¢,
>0,f(¢ s) =0, f(s, 8§ >0 there follows that t = 0, u = v,

Thus, all the rows of matrix A are mutually equal. Since their sum is the row (1,
. « «» 1), we have A = (1/n). Lemma 3 and, simultaneously, Lemma 2 are proved.

Proof of Theorem 1. We select ¢ > 0. From Lemmas 1 and 2 it follows that the matrix
(1/n) € Q, is a point of minimum of the function F¢ in the set ©F. Thus, if X =QJ, then

per (X) 4+ & /11 (X) >= nl/n" + en™

for any ¢ > 0. From here for ¢ + 0 we obtain that
per (X) = nl/n"

%

for all X & Q). Since Q; is dense in &,, the continuity of the permanent implies that the
last inequality holds for all X & Q,. Theorem 1 is proved.
THEOREM 2. Let 4 = QF and per (4) = n!/n™. Then A = (1/n).

Proof. By virtue of Theorem 1, the point A Q) is a point of minimum of per in QF.
Therefore, from Lemma 2 for ¢ = 0 it follows that A = (1/n). Theorem 2 is proved.
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OBSTRUCTIONS TO LOCAL EQUIVALENCE OF DISTRIBUTIONS

A. N. Varchenko

An n-dimensional distribution on the space R™* is a smooth field o of n-dimensional
tangential directions, i.e., a function that associates with each point z = R"* an n-dimen-—
sional linear subspace ox of the tangent space 7 ,R™" [1]. Two n-dimensional distributions
on R™* are said to be equivalent if there exists a diffeomorphism of the space R™* that
transforms one of the distributions into the other one. 1In this note we indicate a natural
local invariant of a distribution. It is proved that this invariant takes different values
at different points for a quite general germ of an eight-dimensional distribution on R!!,

1. Definitions. Let there be given an n-dimensional distribution ¢ on R™*, Define
a skew-symmetric bilinear function ¢, . at each point z e R™¥ on the linear space ox with
values in T,R™/o,. Let u,v < o, and suppose that U and V are arbitrary vector fields with
the following properties: The values of these fields at each point of a certain neighbor-
hood of x belong to a plane of the distribution o, U(2) =u, V() =v. Letmn,; I R™ _, T R/
0. denote the quotient mapping. Set @ = (4, V) = n, (U, V] (z)), where l-, -1 is the commutator of
vector fields. The independence of this expression from the choice of the fields U and V
is proved by the following obvious lemma.

LEMMA 1, Let o be an n-dimensional distribution on R™¥, and U and V be vector fields
on R™"* whose values belong to the planes of the distribution o. Suppose that U(x) = 0 at
a certain point z =R™* . Then [U, V](z) € 0.

Proof. We call a collection of n vector fields, whose values at each point in a cer-
tain neighborhood of a point x form a basis of a plane of the distribution o, the basic
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