Multipliers of AW*-Algebras

Gert K. Pedersen

Mathematics Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

Given a unital C*-algebra B, when is it true that for each (non-unital, nondegenerate) C*-subalgebra A of B, the idealizer of A in B coincides with the set of double centralizers of A? To formulate the problem more precisely, recall from [3] (or [5, 3.12]) that a double centralizer is a pair (ρ_r, ρ_l) of (necessarily) bounded linear operators on A such that

Mathematische

C Springer-Verlag 1984

$$\rho_r(x y) = x \rho_r(y), \qquad \rho_l(x y) = \rho_l(x) y, \qquad \rho_r(x) y = x \rho_l(y)$$

for all x, y in A. Each element in the idealizer

$$M = \{b \in B \mid bA + Ab \subset A\}$$

determines a double centralizer (ρ_r, ρ_l) , viz. $\rho_r(x) = x b$, $\rho_l(x) = b x$, and we ask whether this map $b \rightarrow (\rho_r, \rho_l)$ is surjective. If *B* is a von Neumann algebra the affirmative answer is well-known, see e.g. [5, 3.12.3], and it can also easily be established for *C**-algebras that are monotone complete (in the sense that each bounded, monotone increasing net of self-adjoint elements has a least upper bound in the algebra). In [6] Reid noticed that an affirmative answer (for every $A \subset B$) implies that *B* is necessarily an *AW**-algebra (which by definition means that every maximal abelian *C**-subalgebra of *B* is monotone complete, see [1, §7]), and Johnson then proved in [4] that the *AW**-condition suffices. We present below a simple proof of Johnson's result. Since his theorem immediately gives the main result in [2], a revival of this circle of ideas may not be amiss. We shall use the monographs [1] and [5] as references for the theories of *AW**-algebras and *C**-algebras.

Theorem. Let A be a C*-subalgebra of an AW*-algebra B. Assume further that the annihilator of A in B is zero. Then the set M of (two-sided) multipliers of A in B is isometrically *-isomorphic to the set of double centralizers of A (i.e. the set M(A) of multipliers of A in its enveloping von Neumann algebra A") via an isomorphism that extends the identity map on A.

Proof. Identifying multipliers of A with double centralizers, cf. [5, 3.12.3], we obtain an isometric *-isomorphism π of M into M(A) that extends the identity map on A. It only remains to show that π is surjective.

Assume first that p is a projection in M(A). Thus L=pA and K=(1-p)Aare closed right ideals with $L^*K=0$ and L+K=A. Let (x_{λ}) and (y_{μ}) be approximate units for $L \cap L^*$ and $K \cap K^*$, respectively, [5, 1.4.2]. Thus $x_{\lambda}y_{\mu}=0$ for all λ and μ . Working now inside the AW^* -algebra B we note that the range projections $[x_{\lambda}]$ and $[y_{\mu}]$ exist in B and are pairwise orthogonal for all λ and μ . Since the projections in B form a complete lattice, we have $q = \bigvee [x_{\lambda}]$ and r $= \bigvee [y_{\mu}]$ in B, with qr=0. As $x_{\lambda} \leq q$ for every λ it follows that q is a left unit for L. Similarly r is a left unit for K. Since A=L+K, we see that 1-(q+r)annihilates A, whence q+r=1 by assumption. Furthermore, the decomposition A=L+K shows that q is a left multiplier of A. Since $q=q^*$ it follows that $q \in M$. Now qA=L and (1-q)A=K and we conclude that $\pi(q)=p$.

To handle the general case we consider the 2×2 -matrix algebras

$$\tilde{A} = A \otimes \mathbb{M}_2, \quad \tilde{M} = M \otimes \mathbb{M}_2, \quad \tilde{B} = B \otimes \mathbb{M}_2.$$

By a non-trivial result of Berberian, cf. [1, §62], \tilde{B} is an AW^* -algebra. Note that $M(\tilde{A}) = M(A) \otimes \mathbb{M}_2$ and that \tilde{M} is the set of multipliers of \tilde{A} in \tilde{B} . Furthermore, the map $\tilde{\pi}: \tilde{M} \to M(\tilde{A})$ given by $(\tilde{\pi}(x))_{ij} = \pi(x_{ij})$, for $1 \leq i, j \leq 2$, is the canonical isometry from \tilde{M} into $M(\tilde{A})$ mentioned before. For each x in M(A) with $0 \leq x \leq 1$ we define the projection p in M(A) by

$$p = \begin{pmatrix} x & (x - x^2)^{\frac{1}{2}} \\ (x - x^2)^{\frac{1}{2}} & 1 - x \end{pmatrix}.$$

As the first part of the proof showed, there is then a projection q in \tilde{M} such that $\tilde{\pi}(q) = p$. Thus with $y = q_{11}$ we have an element in M with $0 \le y \le 1$, such that $\pi(y) = x$. Consequently $\pi(M_+) = M(A)_+$, whence π is surjective as claimed.

Corollary 1. Let A be an essential, closed ideal in an AW^* -algebra M. Then M = M(A).

Corollary 2 [2]. Each isomorphism $\pi: A_1 \rightarrow A_2$ between closed essential ideals of AW^* -algebras M_1 and M_2 , respectively, extends to an isomorphism $\pi: M_1 \rightarrow M_2$.

References

- 1. Berberian, S.K.: Baer *-Rings. Grundlehren Math. Wiss. 195. Berlin-Heidelberg-New York: Springer 1972
- 2. Berberian, S.K.: Isomorphisms of large ideals of AW*-algebras. Math. Z. 182, 81-86 (1983)
- 3. Johnson, B.E.: An introduction to the theory of centralizers. Proc. London Math. Soc. 14, 299-320 (1964)
- 4. Johnson, B.E.: AW*-algebras are QW*-algebras. Pacific J. Math. 23, 97-99 (1967)
- 5. Pedersen, G.K.: C*-Algebras and their Automorphism Groups. London Math. Soc. Monographs 14. London-New York: Academic Press 1979
- 6. Reid, G.A.: A generalisation of W*-algebras. Pacific J. Math. 15, 1019-1026 (1965)

Received October 4, 1983; received in final form December 23, 1983