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T h e  O r d e r  o s  a S i n g u l a r i t y  in  F u c h s '  T h e o r y  

By 

JORGEN MOSER 

I. Introduction 
1. This  p a p e r  is concerned wi th  systems of o rd ina ry  differential" equat ions  

dy 
(t) dx A(x) y 

where y is a vec tor  wi th  n components  and  A(x) an n b y  n mat r ix .  The 
e lements  of A (x) are assumed to be ana ly t ic  funct ions of the  complex var iable  
x for O < l x l <  ~ wi th  a pole a t  x - - O :  

00 

(2) A ( x ) = x - P ~ . A , x "  ( A 0 ~ 0 )  
v = 0  

where p is an integer  and  the A ,  cons tant  matr ices .  The aim of Fuchs '  theory  
is to  s t u d y  the  na tu re  of the  solut ion vectors  y (x) near  the  s ingu la r i ty  x = 0. 

Ii~ most  t r e a t m e n t s  of th is  p roblem one rest r ic ts  the  a t t en t ion  to the  
case where A o is a m a t r i x  wi th  d i s t inc t  eigenvalues in which case one can 
descr ibe the  solut ion b y  a sympto t i c  series for p >  I. For  p = t one has  a 
regular  s ingular i ty ,  i.e. all  solut ions y(x)  of (t) grow a t  most  l ike a f ini te  
power of Ix[ 

(3) lyl -~ clxl ~ 
for smal l  x and  wi th  some norm ]y] 1). 

F o r  the  degenerate  case, however,  where A o has several  zero eigenvalues 
or even is n i lpo ten t  this  problem is ve ry  compl ica ted  and  has not  been t rea ted  
in this  genera l i ty .  I t  can happen,  for instance,  t h a t  even in the  case p >  i 
one  has  a regular  s ingula r i ty  (see example  below). On the o ther  hand  it 
was proven  b y  HoR~ [1] tha t  in case x = 0  is a regular  s ingula r i ty  one can. 
t ransform the sys tem (1) b y  

(4) y = T(x) z 

into a sys tem 

d,  = B ( x )  z B = T  - 1 A T - T  q d (5) -ax , a.,- T 

where B (x) has a pole of first  order  only.  Here T(x) is a ma t r i x  whose elements  
are ana ly t i c  in some neighborhood O <  Ix[ < p wi th  at  most  a pole at  . r=  O, 
and  which satisfies de t  T(x) ~ O. 

1) Since y(x) is multivalued in general one has to restrict the argument of .r to a 
fixed sector [argx] < const. 
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We'  will call systems (t) and (5) which are related by  such a transfor- 
mation (4) "equivalent",  since the behavior of the solutions near a singularity 
is essentially the same, namely up to functions which have a pole near the 
origin. Here we require only tha t  det T(x) is not  identically ze ro 'bu t  allow 
that  det T(0) vanishes 2). 

Thus H o r n ' s  theorem can be cxplessed as follows: A system (t) has a 
regular singularity at  x = 0  if and only if it is equivalent to a system (2) 
with a pole of first order. Even though this criterion gives a necessary and 
sufficient condition for a regular singularity it canriot be used to decide about  
the nature of the singularity for a preassigned system. There is no method 
of constructing the transformation T(x), and it is not  even clear, how m a n y  
terms of the transformation matr ix  

M 
T(x) = Z x'T, 

are necessary for the recluction. I t  is the purpose of this note to give a criterion 
which allows the decision of this question in a definite number  of steps. 

2. For  any  system of the form (t) we define the rational number  

(6) re(A) p - -  t +  r > 0  

as the order of A where r=r(Ao).~s the algebraic rank of A O, O<r<--n. If  

p - -  t + r__ < 0 we set m (A) = 0. For  every system (1) we introduce the number  
n 

(6') #(A) = M i n m ( T - 1 A T -  T -1 T') 
T " ' 

i.e. # (A) is the minimum value of the order of all systems which are equivalent 
to (t). One can c o n s i d e r / ~ ( A ) -  t as a generalization of "Poincard 's  rank"  
of a singularity. The matr ix  A(x) is called reducible, if m(A)>f (A) .  

Before stat ing the main results we illustrate the-siguificance of #(A) for 
.the nilpotent matr ix 

--=X - q  ] 

where q is a positive integer. Obviously m(A)~-2q--�89 but  this matr ix  is 
reducible. With  the transformation matr ix 

�84 I l" 

one computes B = T -1 A T - T -1 T ~ to 

:" B(x) ( 0 , - - x  -r 
\ - - q x  -~ -x  _ _ ( q + y )  x - I ] "  

" ~) A similar  concept  of equivalence was  in t roduced  .by G . D .  BIRKHO~F [2], who  
required t h a t  T(0) is t he  ident i ty  ma t r ix .  I n  th i s  case, A 0 is unchanged ,  and  the  order  p 
o f  the  pole is t he  same  for equ iva len t  s y s t e m s  ...... 

a! [x] s t ands  for t he  greates  in teger  ~ x. 
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One can show that B (x) is not reducible and one finds 

/~ (A) -- m (B) -- q + t 
2 

In particular, the minimum order of the po le .x=  0 is 

In this simple example the order m (A) can be reduced from 2 q -  ~ to �89 (q+ t). 

The regular singularity' is characterized .by the inequality 

/*_--<t 

according to Horn's theorem. In the following we will assume that 

re(A) > t 

~nd investigate under which conditions A (x) is reducible. 

The reason for the above refined definition of the order re(A) Of the 
singularity lies in the fact that it is possible to give a necessary and sufficient 
criterion for reducibility which involves the first two coefficients A o, A1 of 
A (x)'only: This statement is contained in 

THEOREM t. I f  r e (A)>  t the system (t) is reducible i] and only i] the poly- 
nomial 

(7) ~(~) ---- x 'de t  0 . I +  x~-l~l(x))[.=,, r = r(A,) 

vanishes identically in ~. 

The polynomial ~3 (;~) depends on A 0, Al only, since in 

xP_ lA(x )  = A~ + A  x +  x A  2 + . . -  
X 

Ao has the rank r. Hence in forming the determinant in (7) one has to take 
r columns from A o and the others from , ~ I + A l + x A 2 + . . . I , = o = ~ I + A l .  
Thus 

�9 n - - r  

(;t) = ~. ;~" ~3, ca o, Aa} 
V ~ 0  

where the coefficients ~,(A o, AI) are homogeneous polynomials in the coeffi- 
cients of Ao, A 1 of degree n -  v. Therefore the above criterion requires 

~,(Ao, AO-----O for v-----O ... . .  , n - - r .  

Since reducibility depends on the coefficients A o, A 1 one can expect tha t  
the reduction of m (A) can be achieved by  simple transformation matrices T(x). 
This is expressed by 
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TrlEOREM 2. I /  A(x)  is reducible and r e ( A ) > 1  then the retluction can be 
carried out with a.matrix T o! the ]orm 

T --  (Po + x P1) diag (t, t ,  . . . ,  t,  x, x . . . .  x) 

where Po, 191 are constant matrices and det  Po ~ 0 .  

REMARK. This theorem expresses only tha t  B =  T-1A T T -I T" satisfies 
m (B) < m (A), not  t h a t  m (B) equals # (A). 

Theo#em 2 limits the computa t ion  of T to two matrices.  After  this re- 
duction has been carried out one can apply  Theorem t to check whether  
a further reduction is possible. Here it is impor tan t  to observe tha t  ~ (2)  
will change from one step to the next  since B is not obta ined  by  a s imilar i ty  
t ransformat ion but  b y  B =  T-XA T -  T -x T'. If  the system possesses a regular 
singutar!ty one has to reduce the order from m (A) to b t - - t  which requires 
at  most  (p - -  2) n + r = n (m (A) - -  t)  steps. In  this sense one can consider 
Theorem t as a c:i terion for a regular singularity, a l though it is not given 
in' "closed f o r m " .  The same remark  refers more generally to the compu-  
ta t ion of /z  (A). After on.e has reached the last step for which m ( A ) = #  (A) 
one has ~ ( 2 ) ~ 0  .which is the characteristic p roper ty  of A o, .A 1 in the irre- 
ducible case. 

5. I t  is interesting to note tha t  for ordinary differential equat ion 

dnu dn- Xu d u 
(8) dx u + a l ( x )  ~ + " "  ~- an-l(X) -~x @ an(x) u "=- 0 

the i n v a r i a n t / ,  can be computed  explicit ly a n d  not only recursively. Here 
tl~e a~'(x) are assumed to be analyt ic  in 0 <  [x] < e  with at  most  a, pole at  
x =  0. The equation (8) can be rewrit ten as a first order sys tem (t) for which 
the n u m b e r / z = / ~  (A) has been defined. 

This number  can be computed  as follows : Let  2k >- 0 be the  smallest integer 
such tha t  

x ~'ka~(x) is regular  a t  x = O .  

THEOREM 3". With the above de/icdtion let p be the smallest integer with 

Then 

(9) ,u - -  p -- 1 -v- 
n 

is  the required invariant provided p > t. I !  p <-- t one has tt <_ t. 

This fheorem 0 can be considered as. a generalization of Fuchs '  theorem 
which states tha t  (8) has  a regular singularity if and only if 2k<_k, i.e. p <  t. 
Such ac~i te r ion  is not. known for systems (1). A similar s i tuat ion occurs 
in t hecomputa t io l r  0f "/z, which can be done explicit ly for differential equations 
(8) while for system~ only a "recursive"  criterion can be given. 
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The differential equations (8) can be chosen as models to exhibit all non- 
negative rational numbers with denominator n as possible values for #. For 
0 < #_--__ t one has a regular singularity and for tt = 0 a regular point. 

If  the matrix A (x) is real and symmetric or hermitean the computation 
o f  # can be given explicitly since only the reduced case occurs. 

4. The above question is closely related to the problem of invariants of 
A (x) under the equivalence 

(t0) A ~-. B = T-I A T -- T - 1 T '  

where T(x) is a matr ix  described under (4). One might expect similar normal 
forms as they are known under similarity transformations. That  the situation 
is quite different in both eases is seen from the fact that  the invariants under 
similarity consist of at least ~ power series (for instance the coefficients 0f 
the characteristic polynomial) while the equivalence (t0) admits only finitely 
many  numbers as invariants f o r  A. This follows from a theorem o f  G. D. 
BIRKHOI~F [2] who proved that  one can find a T(x )wi th  T(0)=  I such that  

# 
B = ~ Bp_=, x -"  

does not contain x in positive powers.�9 His method requires solving an integral 
equation and might be.called transcendental, since it requires the knowledge 
of infinitely many  terms in A. In contradistinction to Birkhoff's result t h i s  
paper is concerned with terms of negative exponents in x and an algebrcdc 
description of those t e rms .  While in Birkhoff's paper the term T -1 T' in (t0) 
is to be considered as the principal part  T~IA T is the main term in this 
note. 

The equivalence relation (t0) has been investigated in several papers, in 
particular, by  LoEwY [fi], where the question of decomposability of a matrix 
or a matr ix  complex is treated. However, these results are not used and not 
needed for the proof of the above results. 

In this paper we consider the coefficients of all analytic functions to�9 
complex numbers although it is clear that  the proofs can be generalized to 
commutative fields without zero divisors. 

II. 3 L e m m a t a  

The proof of the above theorem is based on 3 lemmata which are proven 
in this section. The first lemma Can he Considered as a generalization of t h e  
fact that  an analytic function /(z) ~ 0 which has a t  most a pole at z----0 can 
be written in the form ] (z)=z~g (z) where g (z) is analytic at z =  0 and g (0) &0. 
The number m will be replaced'by a diagonal matrices in the corresponding 
statement for matrices. 
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LEMMA t. Let 

be a sum with finitely many negative v and det T(x) ~ 0 .  Then T(x) ~an be 
represented in tl~ /orm , 

~, �9 T ( x ) =  P ( ~ )  : Q(x)  " 

where P(x) is a t~olynomial With d e t P ( x ) ~ t  and. Q(X). a power series with 
detQ (0) =l = 0 and 

x a = diag (x a~ ..... , x ~) 

where ott~ ~2<. . .  <= a. are integers. 

REMARK 1 . .P (x )  is a unit in the ring of polynomials since on account 
of det P(x)--= t the inverse p-1 (x) also is a polynomial. Q(x) is A unit in 
the ring Of power series while X a represents the essential1 �9 of T(x). 

REMARK 2. Like in Lemma t one can find a representation of the form 

TCx) = Q (x) : P(x) 

w i t h  t h e s a m e  properties specified for P, Q in Lemma 1. 

PROOF. We prefer to prove.the statement in the, form. of fem&rk 2 

TCx) = (? Cx) : p (x )  

considering the column vectors 6 (x) of T(x) instead of the rows. The matr ix  
P(x) will be built up b y  multiplication out of "elementary" matrices E(x), F:  

C*) E = I + EkzCx) (k # 0 

where Ekl has all elements equal to zero but one element in the k-th row 
and l-th column which is any polynomial pk~(x), k :t=l. Obviously det E ~ t .  
F stands for any permutation matrix 

F = ( +  e/,, +ej ;  . . . . .  +e/~) 

where e t is t he / - t h  unit vector and ~'x . . . . . .  1. is a permutation of t ,  2 . . . . .  n. 
The signs 4- are arbitrary excep t  for the condition det F =  t .  Thus F is 
independent of x. 

Multiplying a matr ix  

with E f r 0 m t h e  right results in replacing 6 by  t t+pk,(x)t  ~ while multipli- 
cation with F from the right permuts the column vectors ancl changes the 
signs. Let P denote any product of several such matrices E and F. Obviously 
these matrices form a group all elements of which are matrices of polynomials 
with det P - -  t. " 

To prove Lemma t we define the integers at, a~ . . . . .  a~ successively by 
the following maximM conditions: Let a~ be the greatest integer such that  
x -~, T(x) is a power series. The constant term of x -~, T(x) then is a nonzero 
matrix and applying a matrix F we can assume that  

T(~) F = ( : ,  s, (~), : ,  s~ (~) . . . . .  : ,  ~ (x)) 
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where s l(x) are power series and s 1 ( 0 ) 4 0 .  Obviously 0q remains Unctianged 
if T is replaced by  T P .  

~2 is chosen as the greatest integer under all choices of P such tha t  the 
representation 

r ( ~ )  P = ( ~ , ~ ( ~ ) ,  x~,,~(~),  ~ ,  ~ (~)  . . . .  , ~ ,  ~. (~)) 

holds where the r~(x) are power se r i e s .  Obviously 0~ i~x .  After having 
defined a q , . . . ,  ~1-1 we choose ,q to be the greatest integer for which a re- 
presenta t ion  

(2A) T(x) P(x) = (x~'qx(x), . . . ,  x~'q~(x), x~'q~+l(X) . . . . .  x~'q~(x)) 

holds. Again ~ l ~ X $ ~ ' ' ' ~ O ~ l  is an obvious consequence of the definition. 
The existence of ~z follows from the assumption tha t  det (T(x)  P(x))  
-----detT(x)~0, hence there is an integer  7 with T ( x ) = c x r +  .. .  , c=[=O. 
The estimate ~1 + ~ + " "  ~ , -  1 + (n - -  l+- l )  ~z ~-- ~ guarantees the existence of 
a maximal  r 

Now it follows by  induction tha t  in any maximal  representation . (2A) 

(2.2) rank (ql (0), q2 (0) . . . . .  q~ (0)) > I. 

For  l :  t this is obvious. Assume this has been proven for l - -  t.  I f  necessa13r 
one can achieve then tha t  ql(0), q~(0) . . . . .  ql-l(0) are linearly independent 
vectors by  applying a permutat ion matr ix  F to (2.t). If  the statement (2.2) 
were wrong then 

1--1 
q~ (o) = Y, ck~ q~(o) for h = l, . . . ,  ~*. 

).~1 

Applying a product  of matrices E we can achieve 

q k ( 0 ) : 0  for k = l  . . . . .  n 

which implies tha t  ~l can be increased. This contradiction proves (2.2). For 
l =  n we obtain 

T P = ( ~ ,  q~ (~) . . . . .  ~ q~ (~)) = Q (~) 
where 

Q(x) = (q~(x) . . . . .  q~(x)), ~ = d iag(~ , ,  . . : ,  ~ )  

is a power series with 

Thus 
de t  Q (0) :~ 0. 

T = Q (x) ~ p -1  

and since p-x also is a polynomial with det P - ~  t Lemma 1 is proven in the 
form of remark 2. Applying the argument  to the transposed of T one obtains 
the s ta tement  of the Lemma 1. 
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The representation of the Lemma I is not  unique, the numbers ~1, - . . ,  g , ,  
however, depend on T only. For, assume that  there is a second representation 

T = P  xP O =  P x~'Q. 

Then, from the maximal choice of the cr it follows 

and from 

one has 
det T = det 0 (0) x ~.a~ q- . . . .  det Q (0) x "xak q - . - .  

k = l  k = l  

These two relations imply flk = r162 

One can give an independent description for the :r Consider any  sub- 
determinant  dl of order I of T and let 

A =cx~'~+.. .  c ~ O  

be the expansion of A. Then 

~q + "'" -~- ~t = M i n  7l  

where the minimum is taken over all l by  I subdeterminants of T. This 
defines the ~k. The proof ol this s ta tement  follows immediately from Lemma 1. 

For  any matr ix  T(x) of the type occurring we define the span a(T) by 

a (T)  = ~ .  ~x = M a x  (~r - -  :q) 
k, l 

which is a non negative integer. The assumption a ( T ) = O ,  for example; 
amounts  to 

T(x) --- x ~', Q (x); det Q (o) ~ o. 

A n y  matr ix  T of span a > 0  can be written as the product  of a matrices of 
span t. For  this purpose observe tha t  x a can be  broken up into a matrices 
of span t by  constructing a sequences fl(')=(fl~)) ( k = t  . . . . .  n;  v = t  . . . . .  a) 
with 

and 
P(F = 

7",-~Px a('~P-1 for v = l , 2 , . . . , a  l 

T~ = P x a`~ Q 

Def in ing  

one has 
a ( T (')) .= 1. 

T =  T1T2.. ,  T,~. 
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For  later reference we introduce the ring R [x~ of functions /(x) which 
are analytic in some (individual) neighborhood Ix[ <Q.  R(x) denotes the 
corresponding field, generated b y  R Ix]. The elements in R (x) can be writ ten 
in the form x~/(x) where 0~ is an integer a n d / C R [ x ] I / ( 0 )  =~=0. Wi th  M/x/ ,  
M(x) we denote the ring of matrices whose elements lie in R [x], R (x) respec- 
t i ve ly .  Thus M/x/ ,  M(x) formnon commutat ive  rings with zero divisors. 
The unit  elements in the ring M Ex], consist of those matrices Q (x) for  which 
det Q (o) =~ o. 

Similarly let R 0 [x~ denote the ring of polynomials of x and Ro(x ) the 
field generated b y  R o ~x].  If  Mo Ex~, Mo(X) are the rings of matrices whose 
elements are in Ro[x ~, Ro(x ) one can express Lemma I as follows: Every  
T(x)EM(x) can be writ ten in the form P(x)x=Q(x) where P is a unit  in 
M o I x / a n d  Q is a unit  in M [x~. x ~ has the same meaning as above. 

LEMMA 2. Let 
A(x) = Aot+- x A 1 + 

belong to M/x /  and satis/y r=r(Ao)>O (i.e. A o : ~ 0  ). Let T(x) be a matrix 
in M(x) with det T(x) ~ 0 and de/ine 

B (x) = T -1 A T. 

A necessary and su//icient condition/or the existence o/such a T(x) that 

B (x) = B o+ x Bl + .. . 

belongs to "M Ix/and satis/ies 
r(Bo) < r(Ao) 

is that the polynomial 

vanishes identically in ,L 
PROOF) This condition is certainly necessary: If  there exists such a T(x) 

then 

�9 de~(~L I + ~ )  = de t (~I  +B(xx' ) = 

The last determinant  contains x-. 1 a t  most  to the power r(Bo)<r, hence 

x'det (;t 1.4 @ )  " 

vanishes identically in ~, for x =  0.- 

" To prove the converse we make use of the theory of invariants  of matrices 
under similarity transformations 4). 

4) The following proof is a slight modification of an argument for which I am indebted 
L Professor A. A. ALBERT. 

'hematische Zeitschrift. Bd. 72 :2 7 
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Let 1(4, x) = det (41 + A(x)) 

be the characteristic polynomial of A(x). Then the condition ~3(4)~0 is 
t a n t a m o u n t  to 

x"-'+111(4 x, x) 

i.e. ,to the assumption that  x - - + ' - 1 / ( 4 x ,  x) is a power series in x. This 
follows immediately from the equati.on 

x_,+,_l / (4x,  x) = x,_l de t (2 i  + A(x) ). 

Denote by  s the largest integer for which xS]/(Ax, x). �9 n - - r < s < = n .  
We will prove the converse of Lemma 2 in the stronger version, that  the 
rank of B 0 satisfies 

(2.2*) r (Bo) ~ n - -  s; 

which implies r (B0) < r (Ao). 
To prove this statement we make use of the fact that  a matr ix  C = C(x) 

in M(x) is similar to A(~) if and only if it has the same elementary divisors 
1i(4, x) as A(x). The 1i(4, x) are polynomials in 4 with coefficients in the 
field R (x) 7r satisfy 

�9 o J  

(2.3) 1(4, x) = H ti(4, x). 
i=l 

Since the highest coefficient of ]i(4, x) is one and concludes from Gauss' 
Lemma that  the coefficients of/~ (4, x) lie in the ring REx]. 

CorrespondiTlg to the factorization of /(4, x) one can decompose the n di- 
r  (.=x) mensional vector space into ni d imensional  subspaces n i which are 

invariant under A. In the invariant subspaces A is given by  matrices A i 
with respect to an appropriate basis and 

1i(2, x) ~- det (4/n, + A i ) .  

Let s i be the largest integer satisfying x~]]i (2x, x) then it follows from (2.3) 

that  ~ s i= s. 
i=1 

Assuming that  the statement (2.2*) has been proven for the indecomposable 
matrices AiS), namely that  they are similar to B i (x) in ~r[x]  with r(B i (0))=< 
n i - -  sj it follows that  the matrix B (x), which is composed of the B~ (x), satisfies 

~o 

, (z~ (o)) = 2 ] ,  (~;(o))  _-< ~. ( , ~ ; -  sj) = , ~  - , .  
i=1 i=1 

Therefore it suffices to prove the statement (2.2*) for indecomposable matrices 
A(x). Then 

(2.4) 1 (4, x) = 2" + a~ (x) 2 "-1 + o - .  + aa (x) 

6). For the concepts used here compare [6], Chap. IV. 
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is the minimal polynomial and the coi~dition x~/] (2x,  x) ensures that 

889 

a = . ,  a s  b s + l  bl.(x) = a ~  b~ x--T=Y-i" b~ - -  a,~ = b,~. XS ' . . . s  X ~ : a s + l ~  . , - ?  

a re  ~ower series in R [x]. Any indecomposable matrix A (x) satisfying (2.4) 
is similar to the so-called companion mat r ix ' ( (x )  of ](2, x) which contains 
ones in the diagonal above the main diagonal and has as last row the elements 

(ai, as, . . . ,  a,,) = (b i x ~, b2 x s - i  . . . . .  b s x, b,+i . . . . .  b,,). 

All other elements of C are O. 

Defining the diagonal matrix 

�9 D ( x ) - =  (x -~, x : ' + l ,  . . ,  x - i ,  t ,  . . . ,  t)  

and 
D - i C  D = B (x) 

it is easily seen that B (x) belongs to M [x] and that the  first s rows of B (0) 
are zero rows, Hence 

r ( B  (0})  < n - -  s 

which proves the statement (2.2*) and the Lemma 2. 

]-EMMA 3. Let  A (x) satis]y the assumption o] L e m m a  2 affd assume 

=oi 

Then  there exists a trdns]ormation T(x)  (as in L e m m a  2) ]or which 

T - i  A T -:  B (x) e M [x] r (B (0)) < r (A (0)) 
]or which 

= t .  

PROOF. a) For the proof i t  suffices to assume that A(0) is nilpotent. 
Otherwise A (0) has a nonzero eigenvalue a =t= 0 and with a constant similarity 

one can achieve that A(0) is a triangular matrix and' a a i = a ~ 0 1  Let A be 
the (n'-- 1) b y  (n -- t:) matrix which is obtained from A(x )  by cancelling the 
first row and column. I t  is easily seen tha t  

where 

(2~ = x 'de t  (21 + Ax(X) ~ o  = a  ~ (2) 

*(2) = x ' - i d e t ( 2 I +  A(X)x L=o 

and thus A satisfies the same hypothes as A does. If the statement can be 
proven for all matrices with < n rows and columns it follows for n by n matrices 

p rov ided the re  is a nonzero eigenvalue of A(0). This reduces the probf to nil- 
potent A (0). 

Mathematische Zeitschrift. Bd. 72. 27~L 
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b) By  Lemma 2 there exists some T(x)eM(x)  which diminishes the rank 
of the constant  term. Representing T(x) in the form 

T(x)  - -  P (x )  ~ (2 (x) 

according to Lemma t we define 

A = P - ~ A P ,  ~ = Q B Q - I  

x-~, A x~ = ~ .  
so tha t  

Since 
r (A(O)) --  r (A(O)) ; 

we can assume T ( x ) =  x ~, where 

:r = diag (al, - .- ,  ~.), 

(~ (o)) = ,  (B (o)) 

0 ~ 1 ~ 0 ~ $ ~ - . . ' ~ 0 ~  n. 

Furthermore,  since ~ (~) depends on A o, A 1 only we can assume 
A ~ = A  8 . . . . .  O. 

c) In  the decomposition P x ~ Q the factors P ,  Q are not  uniquely determined 
since there are polynomials P1, P2 for which 

~ - ~ ,  

for instance, for all ~ which are upper  tr iangular matrices x-~P1 x ~ are poly- 
nomials in x again. 

This freedom in P ,  Q can be used to achieve tha t  the nonzero column 
ctors of A(0) are linearly independent. Thus if A(0) is decomposed into 

several matrices with n rows: 

A (0) - -  (As , . . . ,  ~L) 
the rank.is additive 

T 
r (A(0)) ---- X r (~i,). 

To achieve this aim, we write 

A (0) = (a~ z) 
and notice tha t  

a k i n - 0  for ~ a > ~ ,  

since otherwise X-c'A x ~ would have a singularity at  0. "We represent A(0) 
by  blocks of matrices by  combining the akl with a k = ~ ,  x l - -x '  to A ~ ,  so that  

A(0) = (&~,) 

where ~, ~' runs over certain integers. The above'  condition amounts  to 

A ~ . = 0  for 0~>~'.  

The diagonal, matrices Ae~, of course, are nilpotent since A(0) is. By  a 
constant  t ransformation 

To = (To~,) 
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which is a diagonal matrix in this block representation ( T ~ , = 0  for ~:4:0r 
one call achieve that Aa~ are in upper triangular normal form. Thus A (0) = (a, ~) 
are upper triangular with zero diagonal elements. 

Now we achieve that the column vectors of A. (0) are replaced by 0 vectors 
and r independent .vectors. For this purpose let a, denote the column vectors 
of A (o) ; 

A (0) = ( ~ ,  ~ , .  : . ,  ~,,). 

L e t ~  a2 . . . . .  ok-1 consist of zero and independent vectors already and 
assume a I is dependent on ok,a 2 . . . . .  az-x 

a I ":-' ~, C A a ~ .  
a < l  

Let C denote the constant matrix which is obtained from the unit matrix 
by replacing the/th column by 

- -  C 2 

' i  
. - -  e l _  1 . 

T h e n  
A(O) C - ( ~ , ~ ,  . . . . .  a l - 1 ,  o, a l+ l  . . . . .  a~). 

since C-1A(O)C is obtained from A(O)C by adding the lth row t o  the ~th 
(~<l) the first l columns are not affected by this procedure since A(O)C 
like A (0) is upper triangular with zero diagonal elements. Also since. 

x - ~ C  x ~ = G(x)  

is a polynomial with det Cx (~x)~ l (hence a unit in  the polynomial ring) we 
have 

x-~(C-XA C) x ~ = C~I BC1 = B  

r(C -1A (0) C) = r (A (0)) 

r (~ (o/) = r (B (o/). 

Thus we can assume that A is replaced by C-XA C in the above statement. 

Thus we can assume that the rank is additive with respect to a decompo- 
sition of A (0) into several column matrices. 

d) For the sake of simplicity we f i r s t  carry out the proof of Lemma 3 
in case 

The general case will be a generalization of this idea. 
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B y  a), b), c) we can assume 

J O R G E N  M O S E R :  

A = A o + x A  1 

A 0 consists of 0 and independent column vectors 

A o is upper  triangular. 

r . (C (~) (0) < r (=4o)) 

for some v. Counterexamples show tha t  in general this inequali ty is riot 
t rue for all v. 

To prove th i s  s ta tement  notice tha t  fl(k ~) --fit  "1 > 0 implie s a~ a, > 0. There- 
fore CO'),(x) has no negative powers of x and the matr ix  CI,I (0) has the form 

0 a12 . . .  ( g l , - - i  

�9 " .  O" 
a v - -  2, v -- 1 

0 . . . .  0 

b~,,-i 

Hence the rank of C I') (0) is at  most  

, ( 4 ,  a , ,  . .  a . _ , ,  a , + . ,  . . .  a,) + ,(b;) 

0 tgv, , +  1 

o 

and claim tha t  
(*) 

Since 
B = x - ~ X  x ~ 

B ~  = x - ~  W' Ak l (X  ) 

the  elements of  B(0) are zero except if - - x k + c q = - - t .  Thus with 

one has B (0) = (b,z) 

b ~ z = 0  for c c n 4 : ~ z + l  

in particular, b~l = 0 for k 4: l + 1. 

The ~k form an increasing sequence of integers..  We construct, all those 
sequences fl~)for which fl~)--fl(~0=t which have the jump from k = v - - t  t o  
k = v  ( v = 2  . . . . .  n). Introducing 

fl(~) = diag (fl~/, fl~) . . . . .  /3~ I) ( v  = 2 . . . . . .  n) 

we form the matrices . : : " 

x-ar A ( x) x ar = C c~) ( x) 
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where b~ s tands for the v th row of B (0). Since the rank  is addi t ive for~ A o 
it follows 

r(C (0) <= r(Ao) --r(a,)+r(b,). 

Adding over  all v one obtains 

n 

X r (c(')) =<(~ - t) r(A0) - -  r (Ao) + r (B (0)). 
, = 2  

The assumption r (Ao) > r(B (0)) leads to 

2 r(C(')) < r(Ao) 
! 

n t V = 2  " 

which proves the s ta tement  (*). 

e) A similar a rgument  as in d) can be applied in the general case 

al < ~----<"" < ~,-  

In  this case, however,  one first has to achieve tha t  B (0) has the addit ive 
rank  proper ty  with respect to the rows and s imul taneously  A (0) wi th  respect 
to the columns. Here  we refer ' to  rows and columns in the block representat ion 
determined b y  indices k wi th  equal  xk. In  other  words:  Let  

4t0 -=  (A  (1) , A (~) . . . . .  A (N)) 

be a decomposi t ion of A o .into N matr ices  of consecutive columns in such 
a manner  tha t  ~k ~ : % '  if k, k' are the column numbers  belonging to different 
matr ices AIK). Then"  

N 
r (Ao) = ~, r (A(•)). 

K = I  

A simi lar  p roper ty  can be achieved s imultaneously with respec t to the rows 
of S(0) .  

To prove this s ta tement  we can assume A ( 0 ) t o  be an upper  triangtilar 
Matr ix  consisting of r independent  column vectors  and  n -  r zero columns. 
Wri t ing A (0) in the block represe_ntation 

A (0.) = (A~ , ) ,  B (0) = (B~ ~,) 

where e, od runs over  the integers which are assumed b y  oq ...... a ,  one has 
in part icular ,  A ~ = , = 0  for e > o d .  Breaking up A(0) into column matr ices  

A~, = (A~ w) 
one obviously has  

(**) , (A(o)) = E r ( & ) .  

�9 In  order to achieve t h e  corresponding p roper ty  with respect to  the rows 
of B (0) we app ly  a constant  ma t r ix  

C = (C~,) (Ca~, = 6 if o(:t= a ')  
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(diagonal in block representation) so that  .4=~= B== and hence B (0) become 
lower triangular matrices. Since C commutes with x = one has 

x-= (C -1A C) x = = C -1B C 

and the matrix C-1.4(0)C satisfies (**) since the rank of .4~, remains un- 
changed. 

Applying the construction of c) we achieve that  B(0) consists of~zero 
and linear independent row vectors. For this purpose we construct a constant 
matrix C1 such that  

C 1B (0) C[ i -  

consists of zero rows and linearly independent rows. C1 has ones in the diagonal 
and zeros above the diagonal. Then x ' = A  x = = B  goes over into 

x -~  C2A C'~ i x = = C 1 B C ~  1 

where 
C,  (x) = x ~ G x - "  

C, (x )  is regular at x = 0 ,  sinc%C x has zeros above the diagonal. Moreover 
C~(0) is nonsingular and d e t ' ~ . t ( 0 ) = l .  Actually. C~(0) is diagonal in the 
block representation so that  tE/::.condition (**) will be satisfied for C2A C~ ~ 

as for A. This shows that  one can  assume that  A as well as B have the additive 
rafik property With respect to their columns (A) and their rows (B) respec- 
tively, 

�9 f) Now the proof can be finished ~ike in d). Let ~,~(~)---- dia=b ~'lr~), ~',R('), ~.., fl~)) 
(v= 2,' . . . .  iV), where fl(~') are increasing' sequences of 0 and t for which t.he 

jump occurs only at a jump of the given sequence 0%. Then T =  x ~(v} have 
span 1, Introducing 

x -~ ! ' )A  (x) x #') =- C(') (x) (v = 2, . . : . ,  N )  

it can  be shown that  

where F'/ 
. 4 . =  ( .4% Al% . . . ,  .41~b , B .  = \BCNI/ " 

Adding these relations one finds 

' 

N - - t  V ~ 2  

hence 
(c~'~ (o)) < ~(.4o) 

for at least one v. Since x #e has span t the Lemrna 3 is proven. 
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III. Proof ofTheorem 1 and 2 

a) Assume A = x-P (Ao+ xAt+.. .)  satisfies 

~(2) x" d e t ( - ~  + A t + 2I)L=o ~ 0. 

Then according to Lemma 3 there is a transformation 

with a (T) = t such that  

T(~) = To+ x ~ ' +  . . . .  T 

T-tA T = B  
and m (A) > m (B). 

Since ct (T)= t one can write T in the form P x ~ Q with ~ . - -~ t  = t .  Hence 

aP x" Q + -t " q-1 aO T -t ~ T = Q-t x-~, p-x ~ Q .-x-Q+ dx 

has at most a pole of order 1. Thus, i f / ~ >  t (i.e. m >  t) then 

m(T-XA T--  T-X J-~x T)< m(A ) 

which proves  the first part  of the theorem. 
b) If  on the other hand there exists some T(x) such that  

T-t A T- -  T-t ~--~ T"-.-- B 

and m (B) < ,,, (.4) 

then  one can represent T in the form 

P~Q, 
Then with 

one has 

x . ' A  x ~ -  o~ = ~  
X 

and 

inCA) = ~ ( a ) ;  , . (~)  = ~ C B )  

since P, Q are regular at  x = o .  Since we'assurned re (A)>1  i t  follows 

thus m can,be diminished by  a similarity transformation. This proves that  

x '  dei ( a I  + xO~-x}A) ~=0 ~ O. 
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Since this expression depends on A 0, A~ only and sinceA - - p - 1 A  P------p-1 d p 
dx 

is a power series in x it follows that  ~3(~)=xrdet(2I '+xP-lA)]~=o~O. In  
other words: If  the number re(A) is greater than t it can  be diminished by  
similarity if and only if if can be diminished by  the operation 

T -1A T -- T -1 T' 

The transformation T can always be  chosen as to be of span t. Moreover, 
representing T in the form P x ~ Q of Lemma 1 one observes tha t  Q (x) does 
not change m (B) and therefore  can be replaced by  the identity. Finally it 
is obvious tha t  only the first two terms of P(x) enter in Bo, so that  we can 
assume T = ( P o + ~ x  ) x ~. This completes the proof of theorem 2. 

In  particular one notices tha t  for symmetric  matrices A (x) only the reduced 
fo rm.can  occur. Since for a symmetric  matr ix the rank agrees with the 
numbero~ non zero eigenvalues one has 

~(~) = x ' d e t  (~I  + 9 +A1)~=o  = a l  . . . . .  a, det (~I  + A )  

if a a . . . . .  a, are the non zero eigenvalues of A o. This expression is a polynomial 
of degree n -  r. 

IV. The case of a single differential equa t ion  

Consider a differential equation of n-th order 

dnu d n - l ~  
(E) + al (x) + . . . .  + a _l (x) + (x) u = 0 

for which the coefficients a~(x) have at most  a pole at zero. Let  2~>--0 denote 
the order of the pole ofa~.  ( g a = 0  if a~ is regular). 

We now Construct p, r as the smallest 
"X, 

�9  

which 

integers (p, r) ordered lexicographically such 
• • tha t  

, ~k --<--- k (P - -  1) + r" 

, This can be visualized graphically if one 
I �9 , plots the g~ as ordinates over the abscissa k 

f a 'k and then first coI~structs the straight line 
�9 through 0 with the smallest integer slope p 

stays above all 2~. Then one finds among all the parallel tines of 
slope p -  1 the lowest one. The section which is cut off on the ~-axis is r, 
�9 which is an integer. That  r is an integer follows from the formula 

Def in ing .  

we have: 
?k = Min (p k, (p --  t) k + r) 
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and  equa l i t y  for a t  least  one k.'>r. Let  ]>=r be the smallest  integer  wi th  

2 j - :  Yi. 

Geome t r i c a l l y  ~ represents  the  broken line domina t ing  2k. 

Now i t  is. easy  to cons t ruc t  an i r reducible  sys tem of different ia l  equat ions  
which is equiva len t  to (E). F o r  th is  purpose  in t roduce  the vector  y wi th  the 
components  

' --7'n k d k u  Y ~ + x = x  - - -  , ( k = 0 ,  , n - - a ~ .  
d x k � 9  . 

Then for k----0 . . . .  , n -  2 

d Y k + l  - -  X--~'n--k+~'n--k--t Y k + 2 -  ~n--k Y k + l  
d x  x 

n--1 

dyndx - -  E an--k  X--r;+rz--k Yk -.i __ _)'ix_ Yn" 
k=0 

Therefore,  in t roducing  

and  
7 = d iag  (y . . . . . .  )'1) 

n - - r +  t 

/ 
K(x) = I 0 1 

' 0  
i 
J l 

b i : . . b ,  b , -1  bl 

where the  b~ are the  regular  funct ions 

b~ (x)  = - -  ~ (x)  x ~  (k = 1,  . . , ,  n )  
we have 

I t  has  to be shown tha t  for 

A(x) = x-PK(x) ~' 
X 

the  po lynomia l  ~3 (2) does not  vanish ident ical ly ,  if p > ~. I t  is obvious tha t  

x ~  (x)l .= 0 ----- A o = K(O) 

has r ank  r, since r . - -  t rows of K(O) conta ins  ones  a n d  since 

b i (x) = - -  a i ( x  ) xrJ = - -  a i (x) xO (] >= r) 

6) Use 7x----- Min {p, p -- t + r} = p. 
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does not  vanish at  x =  O. If  one considers the  de te rminan t  

one computes  eas i ly  the  highest  coefficient to be 

~ ( a ) =  a"-' bj (0) + - . -  

where  ~ '> r  was defined above. Hence the  degree of ~3(;t) is <__n'r  and  
~3(X) ~ 0 .  This proves t ha t  the  above sys tem is not  .reducible,  hence # is 
given b y  

# = p - - t +  n i f .  ~ > t  

where p, r were def ined b y  the above diagram.  
Necessary and  sufficient for a regular  s ingular i ty  is t ha t  p = t  or # ~  t 

which is the  pr incipal  result  of Fuchs  theory.  The above resul t  can be con- 
s idered a general izat ion of Fuchs '  theorem. 

References' 

[1] I-Io~N, J.: Zflr The0rie der Systeme linearer Differe_nfialgleichungen mit einer 
unabl~ingigen Vergnderlichen, II.  Math. Annalen 40, 527--550 (1892). -- [2] BIRKHOFF, 
G.D. : Equivalent singularities of ordinary linear differential equations. Math. ,Ann. 
74, t34--t39 (1913). -- [3] BIEBERBACH, L.: Theorie der gewOhnlichen Differential- 
gleichungen. Berlin: Springer t953; esp. w 6. ~- [4] CODDINGTON, ]~. A., and N. L~VI.NSON: 
Theory of Ordinary Differential Equation's McGraw-Hill 1955; Chap. 4 and 5- -- 
[5] ALBERT, A. A.: Modern Algebra. Chicago 1937, i958; in particular Chap. I.V. -- 
[6] LoEwY, A.: 0bet  Matrizen- und Differentialkomplexe, I, IIi III .  Math. Ann. 78, 
1--51, 343--358, 359--359 (1918). -- [7] I>~lrRON, O.: 0ber diejenigen Integrale linearer 
D ifferentialgleichungen, welc he sich an einer Unbestimmtheitsstelle bestimmt verhalten, 
Math~ Ann. 70, 1--32 (1911). 

Dept. o[ Math.,Massachusetts Institute o] Teehnology~ Cambridge 39, Mass. (U.S.A.) 

(Ei#gegangen am 2. M a  t 1959) '. 


