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1. Introduction. In this paper, we discuss the H61der continuity of the 
~solutions of equations of the form 

(t.t) f [v ,~(a~u~+b~u+~)+v(c~ ,~+du+/)]dx~-O fora l lvEH~,  0 
c 

on G where we assume that the a ~ are bounded and measurable and satisfy 
the uniform ellipticity condition (2.3), the coefficients b ~ and c ~ E L2~ and d E Lp 
for some p>v/2 (v being the number of variables x), the e~CL~ a n d / E L 1 ,  
and e and / satisfy certain integral growth conditions (see w167 3, .4). In the 
equations (t.t), the tensor summation convention is assumed, as will be done 
throughout, the Greek letters running from ! to v; the subscripts after the 
commas denote differentiation. 

In t938, the writer [61 studied the solutions of (t.t) in the case where 
v = 2 and the coefficients b ~, c ~, d and / were zero and showed that they were 
H61der continuous on the interior provided that the e ~ satisfied the cor- 
responding integral growth condition; some results concerning boundary 
behavior were also obtained. Later [71, the writer generalized the results for 
the interior to systems of equations of the type (1.t) in which all the terms 
were present but v still was 2; the restrictions on the b ~, c ~, and d made in that 
work were somewhat weaker than those made in this paper. The motivation 
for the study of equations with such general coefficients was that of proving 
certain differentiability properties of the solutions of a class of variational 
problems. 

The methods used by t he  writer in this work were peculiar to the case 
v - - 2  and neither he nor anyone else was able to generalize the results to 
cases where v >  2 (except in some special cases) until DE GIORGI E2, 3] and 
NASI* [10, 111 concurrently and independently showed that "a-harmonic" 
functions in any number of variables are H61der continuous on compact sub- 
sets of their domains of definition; a function is a-harmonic on a domain G 
if and only if it is in Hi and satisfies I 0 (u, v ; E) = 0 (see (2.7)) for each domain 
E with E compact and E ( G and each v C//21,o on E. The methods of NASH 
and DE GIORGI are compIetely unrelated- Nash obtained his results as a by- 
product of tits work on parabolic equations, whereas DE GIORGI'S method 
involves only elliptic equations. Nash confined himself to bounded solutions, 
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whereas DE GIORGI allowed solutions merely in L2; since functions in Hi  are 
not necessarily bounded, the starting point for our investigations is the paper 
of DB GIORGI [3] which we discuss in w 2. 

Very recently, STAMPACCHIA [131 studied equations of the type (t.t) in 
which the b%~ 0, the c = and d are bounded, and d (x)>_ 0. He showed that  the 
solutions in H~, o or those satisfying the "homogeneous Neumann" boundary 
conditions or even certain mixed boundary conditions are bounded on G, 
provided that  G is of his " type  S", i.e. if 0G satisfies an interior "strong cone" 
condition. In this paper, we show, first of all, that  the eigenvalue problem 
for equations (1.t) has discrete eigenvalues with the usual Fredholm alternative 
holding for any given parameter  value (see Theorem 4.t), provided G is bounded 
and then that  the solutions u are HSlder-continuous on compact subsets of G 
if e and ] satisfy proper integral growth conditions (see w167 3, 4). In case G 
is of type S*(~, a) (see w 5) and e and ] satisfy proper growth conditions across 
0G, then the solutions u in H, 1 (see below) are H61der-eontinuous on G and 3,0 
vanish in the ordinary sense on ~G; the same result holds if G is a Lipschitz 
domain (see w 5): Thus our results are generalizations of those of NASH and 
DE GIORGI and are partial generalizations of those of STAMPACCHIA. I t  is 
interesting that  the domains of class S*(~, a) are identical with the t3/pes of 
domains for which NASH ([11] appendix) proved the HSlder continuity of 
a-harmonic functions on G, assuming that  the given boundary values are 
HSlder-continuous. 

We now introduce our notations: If  G is a domain, a G denotes its boundary. 
B (xo, r) denotes the v-ball with the center at x o and radius r. If  S is a set 
in v-space, I S I denotes its v-measure ; however, occasionally we consider sub- 
sets S of 27----- ~B(0, 1) in which case I SI means its (v--  1)-measure. We define 
y,--IB(0, t) I, I',-=lOB(o, 1)1; c lear ly / ' ,=v~, , .  If  u is a function (or vector 
function), Vu denotes its gradient, V*u denotes its second gradient u=p, etc. 
If 9 is any function, vector, or tensor, [~01 denotes its length (the square root 
of the sum of the squares of its components). All integrals are Lebes_gue 
integrals. The spaces Lp over some set have their usual meaning. The space 
H~ over the domain G is the closure of the space of C' functions on G according 
to the norm (]! ~,.~ Ii 1,,1, = / [I,.,12+ Iv,.12 *:2ax. 

6: 

The space H~, o is the subspace of H i obtained by closing the space of func- 
tion's of class C' having compact support interior to G. For such functions, 
we define a topologically equivalent norm 

= y Iv,,IPa . 
G 

If p = 2, the spaces HI  and H. 1 ~,o are Hilbert spaces and 

(u ,v)~=f  (Vu. Vv+uv )dx ,  (u,v)~,o= f Vu. Vvdx. 
G G 

We define 
D(u,G)=f[Vul2dx, d(u,G)=[D(u,G)] 112. 

G 
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There are m a n y  results which are inequalities involving a constant  which m a y  
depend on various other  constants ;  we denote all these constants  by  C but  
do not assume tha t  all these constants  are the same. 

2. The De Giorgi lemmas and theorems; a-harmonic /unctions. In  this 
section, we quote the lemmas and relevant  theorems of DE GIORGI, which 
are proved in [3], and then prove impor tan t  Dirichlet growth theorems for 
a-harmonic functions and//21 functions in general. We begin with DE GIORGI'S 
definition of his ?3 (E; y) classes: 

DEFINITION. Suppose E is a domain  and y > 0 .  A function u E ? 3 ( E ; y )  
if and only if u C L~ on E, u C H~ on domains D with D compact  and  D ~ E, 
and if 

r f [u(x)--kpdx f (e'- Q0 ~ IVul d _-< 
A (k) f, B (xo, O~) A (k) A B (xo, 0,) 

~' f [u(x).kpdx : f Ivul~ -< 
B (k) A B (xo, ot) B (k) A B (xo, o,) 

for all k, Xo, 0~, and 0~ for which 0 < ~o x < Q~ and~B (x o, ~2) ( E ;  here A (k) is 
the set where u ( x ) >  k and B (h.) is the set where u ( x ) < k .  

Each class ?3 (E ;y )  is closed with respect to strong convergence LEMMA I. 
in L 2. 

LEMMA II .  

(2.t) 

There is a constant fix (v) > 0 such that 

a(~;q)--A(a;Q) 

whenever u~ H~ on B(xo, ~) and ~>k.  Here v(k, ~; Q) indicates the smaller o/ 
IX(A; e)] and I B(xo, 07 --A(k; O)l and A(k; 07 ----A(k)~B(xo; e); etc. 

LEMMA I I I .  There i sa  constant f l z (v )>0  such that 

(2.2) f [u(x) - -  k]~dx< fl~[A(h; q) ~l, f ]Vul~dx 
a(k;o) a(k;~) 

whenever uE H~ on B(xo, e) and [A(h; e)]<iB(xo; e)]/2. 
LEMMA IV. There is a/unction 0(a ;  v, y) which is defined and positive/or 

0 <  a <  t such that i/  u E ?3 (E; ~.), B (xo; e ) ( E ,  and/or some k we have 

IA(k; o)t < r) 
then 

]A(k + a c ;  ~ - -  ae ) ]  = 0 ,  
where 

c=>o and e~=(r  -1 f [u (x ) - -kpdx .  
A(k;o) 

RE,MARK. From L e m m a  IV, it foUows tha t  if u C 73 (E; y) then u is (essen- 
tially) bounded on compact  subsets of E. 

LEMMAV. There exists a number ~ / = ~ ( v ; y ) > 0  such that i[ uE?3(E; y) 
and B (x o ; 4 e) ~ E, then 

osc (u; 0) ~ (l - -  ~) osc (u; 4e) ,  

where osc(u; r) denotes the (essential 7 oscillation on B(xo; r). 
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THEOREM I. Any/unct ion uE  73 (E; 7) satisfies a uniform H6lder condition 
with exponent ~ (v, ~,)> 0 on any compact subset of E. 

T~EOR~M II.  If the coefficients a ~ are bounded and measurable on E and 
satisfy a ~a = a a~' and 

(2.9) ( l - - h ) [ ~ i 2 ~ a ~ ( x ) ~ a * r  x E E ,  O < h < l ,  

and all ~, then any a-harmonic function in L~ on E E ~ (E, ~) where 

(2.4) ~ = (t + h) '  (t - -  h)-'.  

We now prove 

THEOREM 2.t. I f  uE L 2 and'is a-harmonic on B(xo, a) then 

(2.5) dEu;a(xo;r)]<=O+h)(l--h)-l(a--r)-lllul] ~ O < r < a .  
I f  u is also in H~ on B (xo, a), then 

(2.6) d[u; B(xoir)] <= C(v, h) . d~u; B(x0; a)] .  (r]a) "-x+a' 

where 
Ao = A [v, ( t + h) ( t -- h)-a], z :- v]2. 

I f  u*E H~ On a bounded domain E, there is a unique a-harmonic function u 
on E such that u -- u* E H~,o on E. 

Proof. The first  statement follows from the definitions and the last is 
proved by  the usual lower-semicontinuity argument for minimizing the 
integral  !o (u; u; E), where 

(2.7) Io(u, v; E) ---- f v, aa~u,  pdx.  
E 

Or one can set u = u * +  U and look for a solution U in H~,0 of the non-homo- 
geneous equation as in the proof of Theorem 3.2. 

Next, let {u,} be any  sequence of an-harmonic functions on B(0, t) with 
d[u,; B(O, t)] uniformly bounded and where the a~ all satisfy (2.9) with t h e  
same h; we may  as well assume that  the average ~.  of u,  over B(0, t) is zero. 
Then by RELLtCH'S t heo rem  

�9 . [lu,,]]~ ~ C2(~, ) d[u,,; B(O, 1) ] .  

We may  also assume that  u, - - ,u  in H~ on B(0,.t). Then u is also in ~ ( E , ? )  
where ~ is given by  (2.4) and E = B (0, t). Let us choose any ~ and  a with 
0 < ~ , a < t .  There is a k such that  [A(k; e)[<O'~9(a;v,~) and [B( - -k ,  e ) [<  
O,v~ (a; v, ~,) for the limit function u. For those k, 0, and a, we see from the 
strong convergence in Lz of u n to u that  these inequalities hold for all suf- 
ficiently large n. Accordingly the u n and u are all uniformly bounded on 
B(0, 0a) and so u,(0) and u(0) are uniformly bounded. From Lemma V, it 
follows, then, that  

[u (x)l _<- c(,,, h) d [u, B (o, t)] ,  
I x l <  1 

for every a-harmonic function u where the a ~ satisfy (2.9). 
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From the closure theorem, we m a y  assume tha t  the a ~ C C~176 so the a-har-  
monic functions are. Thus we have  (u a-harmonic) 

(t - - h )  D [u, B (0, r)] _--< I o [u, u ;  B (0, r)] = f (u -- %) d 0 n~, u adS 
aB (0, r) 

tab ( o ,  t )  ' ' J 

(t + h )y~r  *+a~ [9'(r)]~ [9(t)]~, ~(r) = D[u, B(O, r)] ,  

Uo=U(o), o<r-__�89 
Hence 

9- , .9 ,>C(v ,h )[9( l ) ]_ l r  . . . .  a,, O<=r<=�89 

~-~ (,) > ~-~ (�89 [1 + ~ (�89 c ~-~ O) (~-'-~'-~+~-~)] 
.'.9(r)<=C(v,h)q~(Q .r ~+~~ 0 = < r = < t .  

But  now, if u is a-harmonic on a sphere B (xo, R), the function u '  defined 
by  u ' (y)=U(Xo+Ry ) is ' a -harmonic  on B(0, t), where " a ~ ( y ) = a ~ ( x o + R y )  
and the 'a ~a clearly sat isfy (2.3) with the same h. The result (2.6) then follows 
using homogenei ty  argument .  

The following "Dirichlet  g rowth"  theorem is well known (see, for instance 
[8], p. 11t or [7], pp. t2, 13). 

THEOREM 2.2. I /  U E Hi on G and satis/ies 

' d[u,B(xo,r)]<=L(r/8) ~-1+~, 0 < 4 < t ,  0_<r- -<6  

/or each x o in G, ~ being the distance o~ x o ]rom OG, then u satisfies a uni[orm 
H6lder condition with exponent ~ on any compact subset o~ G and satisfies 

I~(x)-,,(xo)l<__c(~,~).g ~l-'-~.lX-Xo[~ if [x-xol<=~/2, 
B (Xo, 3) ( G. 

3. A special case. In  this section, we s t u d y  the solutions of equat ions of 
the form 

(3.1) f[va(a~au, a + e ~ ) + v / l d x = O  for all vEH~,o on G, 

where we assume tha t  the a ~a are bounded and measurable and satisfy (2.3) 
for some h. 

LEMMA 3.1. I] S is any set o/finite measure and a > 0 ,  then 

f I # - -  x l " - "d#  _< ./",," s~ where r ~ s ~ = l S [ .  
S 

Proo]. For  obviously 

f J#- -x[" - 'd~<_ f [~--x]~ 
S B(x,s) 

LEMMA 3.2- I!  u ~ H~. o on the bounded domain G !or some p >= 1, then 

(3.2) u (x) = - - / ' 7  ~ f ] ~ - -  x ]-" ( ~  - -  x ~) u ~ (~) d~ 
G 

]or almost all x in G. 
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Pro@ If u is of class C' and has support in G, x E G, and r is the distance 
from x, then 

R 
(3.3) u(x) = - - f u , [ x + r ~ ( O ) ] d r  (~E 8B(0, t)) 

0 

where we assume B(x, R) )G and u(e) = 0  for eEB(x,  R) --G. Then (3.2) 
follows by averaging over OB(O, t). From (3.2), we see that 

(3.4) lu(x)l =< r,-1S le - xl 1-~- IVu(e)l de 
G 

(u of class C' as above). From the H61der inequality we see that 

(3 s) u(x)l,~< r r '  [ r r ' f l w  - xl '-" dw] ' - l f  l e - , l ' - ' lVu(e ) l ' de .  

By integrating over G, we find that 

(3 .6)  flu(,,)lPd~<=gP.fl~'u(e)lPd~ where 7 , g ' - - i G l .  
G G 

Thus the formula (3.2) holds in general by approximations. 
DEFINITION. Suppose JEL 1 on G. We define its potential by 

(3.7) v ( x )  -= - (v  - 2)-1FT' f l~ - x]~-=l (e) d~. 
G 

REMARK. The following theorem enables us to reduce the general equa- 
tions (3.t) to ones where/----0, provided the original 1 satisfies (3.8). 

THEOREM 3.t*). suppose that JELl on G and satisfies 

(3.8) f II(e)lq~_-<Zr'-'+', 0 < 4 < t ,  
GAB(xo, r) 

[or each sphere B(x o, r), suppose V is the potential o] 1, and suppose v • H~,o 
on G. Then VEH~ on any bounded domain and satisfies 

4, 

(3.9) f I V V ( x ) l * d x < ~ C ' ( , , , a ) . L ' '  " - ' §  ,0E~, 0_<r_<R 
B(xo, r) 

where R is the diameter o1 G. Moreover 

(3.1o) S v (x)/(x) d~ = -- S v,, (x) v~ (~) dx.  
G G 

Proof. It is straightforward to show that V ELI on any cell and (by 
integrating the expression for V,  (x), using FvBIm'S theorem, etc.) is absolutely 
continuous along almost all lines in each coordinate direction with partial 
derivatives given by 

(3.t t) V~(x) = -- r ,  -~ .f le -- x l - ' ( ~  -- X') 1(8) d8 
G 

almost everywhere. 

*) Compare  [7], pp.  6 1 - - 6 4 . '  
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Now, we select x o C G and we write 

](~) = h ( ~ )  + /2(~)  where /~(~) = / ( $ )  i n  B(xo, 2r) 

and ]1 (~) = 0 elsewhere and let V~ be the potent ia l  of ]k. Le t  

(3.~2) ~(e; x) = f II(~)l d~. 
B(x, O)A[G-- B(Xo,~,) ] 

Then, from (3.t t) for V 2, we have  

Ir'V~(4-<_rP f I~-~11-'II($)Id~ 
G--B(xo, 2r) 

R 
=/'vv--1 f el--" ~2 (e ; X) d e 

r 
R 

r 

=< (v - -  1) F~ -1 (1 - -  2)-1L r x-l ,  x ~ B (%; r) 

since, obviously 

(e; x) < I ~ o <= 0 < r =,LQ,_=+ ~ "~--e<= R (x~ B(xo;r)). 
Accordingly 

(3.t3) f V~(x)pdx-__ c(~, ~) L~, " - ' ~ .  
B xo, r 

From the Schwarz inequality,  we obta in  

(3.t4) [VVI(x)I~=<F(IlIlv where 0 - - _ ( r < ~  and 

x l = r ;  I f l~-xl~ 
B(xo, 2 r) 

!~= J l~-xl~-"-~ll(,)Id~ B(%, 2 ,) 

since ]1($) - -0  outside B(xo, 2,). In  order to evaluate  I~ define 

B(x, o)~B(xo, =r)AG 
Then we see tha t  

JLe "-~+~, o<=e=<r xEB(xo;r). 
9,' (e; x) <= [L(2r) , ,~+ ~ e => r ,  ' 

Proceeding as with ~2, we see tha t  

(3.15) 12=< [(v - -  2 - -  ~) (~ - -  ~) -1+ 2~-~+~.] Lr~-*. 

In tegra t ing  (3.t4) over  B(xo, r) and using (3.15), we see tha t  

f IvV~(x)pdx =< ~r-l(2r)"L(2r)'-'~+"C(v, ~, ~r) L A  -~, 
B(Xo, y) 
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Since this holds for any  a with 0 <  a <  2, we see tha t  

(3.t6) f Ivv (x)12dx_< 2 ) z 2 e  
Bfxo, r) 

Using (3.11), we see tl~at 

-- f v, ~ (x) V~ (x) d x  ---- F71  f f l~ -- xl-~ ( ~  -- x~) v,~ (x)/(~) d x  d~ 
G GO 

= f V (r / (~) d~ 
G 

using L e m m a  3.2 (with x and ~ interchanged).  

T~IEOREM 3"2. I /  G is a domain ( B (x o, R), e E L2 on G, and ] satisfies 
(3.8) on G, there exists a unique solution u in H~,o on G o/(3.t) .  Moreover 

(3.t7) Iluli[,0___ (t - h) -'i (llel? + C, LR*-~+~). 

Proo[. On account  of (2.3), we see tha t  the inner product  Io(u , v:G) 
1 [see (2.7)] leads to a norm" which is topologically equivalent  to Ilull2,o. Since 

(3,18) f (e~v ~+ /v) dx  ---- f v ~(e"-- V~) dx  
G G 

is a linear functional in t/1 ~,o, we conclude the existence of a unique solution u 
of (3.t) f rom Hilber t  space theory.  Set t ing v = u  in (3.1) and using (2.3), 
(3.t8), etc., we obtain 

(1 - h)(llult ,o)   I f  u N ll ,0 (lleli ~ + Hvv?) 

from which (3. t7)follows,  on account  of Theorem 3.t- 

TItEORE~ 3-3. suppose u ~-H3 and satisfies (3.t) on G = B ( x  o, a) where 2, 0 

] = 0  and eE L~ on B(xo, a) with 

(3.t9) f le(x)l~dx<=L2(r/a) ~-~+2~, 0 < 2 < 2 0 ,  O<_r<_a. 
B(xo, r) 

Then 
(3.20) f IVu(x)l*dx<_C(v,h,~).Z~(r/a)'-* +~ O<_r<_a._ 

B(xo, r) 

I] uE H~on B(xo; a) and e satisfies (3.19), then (3.20) holds with L replaced 
by L +d[u;  B(xo, a)~. 

Proo]. The last  s ta tement  follows f rom the first, since we m a y  write 
u = U +  H where H is the a-harmonic function coinciding with u on OB (Xo, a). 
Then U E H~,0 and is a solution of (3.t) with the same e a n d / ,  so U satisfies 
(3.20). Moreover 

(3.21) Io[u,u; B(xo, a)] =Io[U,  U; B(xo, a)~ +Io[H,  H i B ( x o ,  a)]. 

The result  for u then follows from Theorem 2.t.  
In  order to prove  the first s ta tement*) ,  let 

~0 (s) = sup L -1 d [u; B (Xo, R s)] 

*) Cf. The proofs of Lemma 2.~ and Theorem 2.2 in [8]. 
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for all e satisfying (3.t9) with a replaced b y  R, where O < R < a  and u is the 
solution of (3.1) ( / = 0 )  in H. 1 ~,0 on B(xo, R). Then, choose any  e satisfying 
(3.t9) and O < r < R < a  and write u = U + H  on B(xo, R ) where H is tk .  
a-harmonic function = u  on OB(xo,.R ). Then (3.2t) holds, so tha t  

d/H; B (xo, R) ] ~ C(h) d/u; B(x0; R)] <= C L q~(Rla) 

by the definition of q0. Also e satisfies 

f l e (x ) l~ax  =< L~ (R/a} "-~+~* �9 (fiR) "-~+~'. 
B(x~ 

Hence, if we apply  Theorem 2.t and the definition of 9, we obta in  

d [u, B (x0, r)] ___ a /H;  B (Xo, r)] + d EU; B (x0, r)] 
<= C L 9 (R/a) (r/R);-X+ao+ L(R/a) ~-1+~ 9 (r/R). 

Since" e was arbi t rary ,  we see tha t  

(3.22) ~ (s) <= t r-l+z q~ (s/t) + C(v, h) qD (t) (s/t) "-1§176 0 < s ~ t <= t .  

Now it is clear f rom Theorem 3.2 t ha t  9 is non-decreasing for 0<s--< t with 

q~(l) --< ft - -  h) -i. 

Next ,  choose a with 0 < g < t. Then, clearly 

9(s)<-So s~-~+z for a<--s<--t if S o = 9 ( 1 ) o  a-~-x.  

Applying (3.22) with a ~ s = < ~  and t-----a-~s, we see tha t  

(3.23) 9(s)'~ Sis "-1+~ where S 1 = So(t + Cw), oJ = a &-a. 

Since $1>= So, we see tha t  (3.23) holds for a~<--s<--t. Applying (3.22) wiih 
a4<--s<~a ~ and t = a - 2 s ,  we obtain  

9 (s) < S2 s "-~+~', S2 = So (t + C co) (! + C 02),  ~r 4 <_ s -<- t .  

By repeat ing the process, we find tha t  

~ o ( s ) ~ S s  "-~+~, S S o ( t + C r ~ ) ( t + C ~ 2 ) ( t + C o j  ~) .. . .  o < s < l .  

The result follows. 

4. Existence theory and interior�9 estimates/or the general equations. In  this 
section, we s tudy  the solutions o f  the general equations .(t.t) in which the 
a ~p satisfy (2.3), the U and c~CL~p and d~Lp  on G for some p>v/2; we call 
these general conditions. 

LEMMA4A.. I /  uE H~ on B(xo; a), there exists a /unction U C H~, o on 
B(x  o, 2a) such�9 U(x)=u(x)  on B(xo, a) and 

(4.1) (ll Ull~.,,)~= < C~ (,,)(/[ Vul',.~? + a-~ (11,.,]1~ ~ --= C~(~)('llult~') ~. 

Proo/. U is defined = u  on B(xo, a) and U is the harmonic  function in 
B (xo, 2 a) - -  B (xo, a) coinciding with u on ~ B (xo, a) and vanishing on a B (xo, 2 a).  
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One verifies the result by introducing spherical harmonics (as in [41, for 
instance), and computing the result. 

LEMMA 4.2. I] U C 1-11 ]or some r, 0 < r < v ,  on some bounded domain G, r, 0 

or E Hi over the whole space then u E L,, on G, where 

r ' - -  v r '  and !lull ~ v - - I  (Hu 0~,/,< / 1 , _ ,  - ~ _ ,  H ,., . .  , ,  = r , , -1( , ,  - -  ~)(~ - -  r ) - ' , l u L ,  o. 
(x 

Proo[. This follows from the representation (3.2) in the first case and 
by a limit process in the second and from the theorems in [12]. 

LEMMA 4.3. I /  U E H~,o on a bounded domain G or i/ u E H~ on a sphere 
G = B (Xo, a), then u C Ls and 

�9 (4.2) IluII, ~ =< cO,)Ilull;,o or c(,,)' FluI!L respeeti,,ely, where s = 2 v / ( v  = 2 ) .  

Proo/. This follows from Lemma 4.2 for u ~//21,o and the second follows 
using Lemma 4.t. 

LEMMA 4.4, I /  U E H~o on the bounded domain G and d E Lp on G/or some 
p >v/2, then (du ~) C Lt, where 

(4 .3)  t = p ~ / ( p ~  + ~ - 2 p ) ,  

(4 .4)  " Ildu*ll,~ =< Ildll~. (lluil~ c(,,) Ildll~(llullb) ~, 
(4.5) f Idu* ld , - -<q , , ) l ld t l~ ( l lu l l~ ,o ) * * * " ,  f f - - - - , - - , , /2p .  

B(xo, r)AG 

Proo]. F0r, suppose p', q '> l ,  (p ' ) - l+ (q ' ) -x= t .  From the H61der in- 
equality we obtain 

II(du*)ll ~ < Ildll?p," (11~'11%)*. 
The results follow by setting t p ' = p  and 2 t q ' = s  and then using Lemma 4.2. 

LEMMA 4.5. I!  ! E Lq on a bounded domain G, where 

(4.6) q = 2v/(v + 2) 

then its potential V(  H~ on any bounded domain I" with 

.(4.7) f IVV)*d~__ C~(~) (I]/li~),. 
,r, 

I/, also / satisfies 

(4.8) f l/(x)ldx<L6"-~(r/& -~+~, o<-_r<=6, 
B(x  I ,r) 

B(~,, 6) < G, L _>_II/ll o �9 r163 
/or all x x in G, then 

(4.9) f IVV[2dx <_ C(v, 2)L~(r/6) ~-2+~, 0<= r<= 6. 
B(x. r) 

Proo]. From the results of CALI)EROI~ and ZYGMUI~D [1], it follows thal 
V*VELq over the whole space. From Lemma4.2, the result (4.7) follows 

Maflaematische Zeit$chrift. Bd. 72 t t 
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To prove the Second result, choose a point x 1 E G and let 8 be the distance 
of xl from 0G. Write 

t (x) =/1 (x) + h (x) 

where 12 (x) = 0 in B (xl, 8/2) and t l  (X) : 0 in G -- B (xl, 8/2) and let V k be the 
potential of ]k- Clearly/~ E Lq wi th  []/, ]]o < ]l/ll ~ so its potential ~ E Hi  on any 
b o u n d e d / ' .  But since V 2 is harmonic on B (x,, 8/2), it satisfies a condition 
(4.9) with i----1 and L---II/lig. Moreover, it is easy to see that /1  satisfies the 
condition of Theorem 3.1 with that L replaced by C(v, 2)L81-*-a for every 
sphere B (x 0, r), so that V 1 satisfies (4.9). The result follows. 

We now define 

I(u, v; G) = J  [v,=(a=~ u,e+ b=u) + v(c~u,~ + du)] dx,  

(4.10) J(u, v; G) = j  [v ~b~'u + v(c•u c,+ du)] dx = I (u ,  v; G) - -  Io(u;  v; G) 

K(u, v; G) =~ uv dx. 

We shall first prove an existence theorem for equations of the form 

~ I ( u , v G ) + i K ( u , v ; G ) = L ( v )  for all v EH~,o, where 0J' )  
- L(v) = f Ee~v~+ Iv) dx: 

G 

For i =0 ,  the equations (t.t ')  reduce to (t.i). Let us define the transforma- 
tions To, T1, T2 and the function w by 

(T~u,v)~,o=Zo(U,V), (T~u,v)~,o~J(u,v), (T~u,v)~,o=K(u,v). 
(~, v)~.o L(v) 

where we have assumed G fixed and bounded. Then the equation (t . t) '  is 
e@ivalent to 

(4.1t) T0u + T~u + ~ Tou = w. 

TI-IEOREM 4.1. I] G is a bounded domain and the coefficients satis]y our 
general conditions, then the equation 0. t )  ~ has a unique solution u in H~,o /or 
any e in Le and any ] whose potential V is in Hi ,  provided that I does not belong 
to an isolated set o/characteristic values. I] ,~ is characteristic, the homogeneous 
equation (e~= ] = 0) has solutions u ~. O, the mani]old o] these being finite dimen7 
sional. For any 2, the Fredholm alternative holds. 

Pro@ It  is well-known (see [7~ or I9J, for instance) that K(u, v) is com- 
pletely continuous (i.e. continuous with respect to weak convergence in u 
and v). Next, supi~ose u , ~ u  and v,,---zv in H~,o on G. Then, by Lemma4.4 
and our hypotheses, we see tha(l lbu/l l , , ,  Ilcv,,ll~, and Ildu~ll, are uniformly 
bounded. A simple argument involving subsequences of subsequences shows 
that J(u, v) is also completely continuous. Hence T~ and To are completely 
continuous. 
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Next  we see tha t  there is a 2 o such tha t  

Io(u,u)+J(u,u)+4K(u,u)>=2-1(a--h)(llull~,o) ~ if 4_ ->40 .  

F o r ,  if not,  there is a sequence u,, with 

(4.t2) Ilu, t[ = a, I o (un, u,) + j (u , ,  u,) + n K(u~, u,) < 2 -1 (a -- h). 

A subsequence of {u,} converges weakly" to some u and J,,, and K,, converge 
to their v.alues for tha t  u. But  since Ion, J,,,, and K ,  are bounded, we see 
that  K~-+0 go ~ = 0 .  Hence f,-->0. But,  since I0 , ,=  (1 - -h) ,  we have a contra- 
diction. Thus for 4 = 4 0 ,  (To+TI+~oT,)  has a bounded inverse W, say. 
Then (4.t 1) is equivalent to 

u + (~ - ~o) v(u)  = w(w) ,  u = w T~ 

where U is completely continuous. The results follow. 
0 0 THEOREM 4.2. There is an do>0 ,  depending only on h, p, ]tb]I2p-]-][c[],p, 

and I[ d ll~ such that i~ 0 < a ~ a o and the coe//icients satis/y our general conditions 
on B (xo, a), then 

I[u, u; B(xo, a)] _--> (1 -2 h) D[u, B(xo, a)] --  (1 -2- h) ([[u][[,o) ~ 

/or every u E H~, o on B (Xo, a). 
Proo/. For 

I [u ,  u; B(Xo, a)] = Io[U, u; B(xo,  a)] + f [(b~+ c ~) uu  ~ +  duel dx .  
B(xo, a) 

Since 
I f (b~+c~)uu,~dxl < llull~,o{ ~J~ Ib(x)+ c(x)l'. I~(~)pdx}a 
B(Xo, a) 

and ]b+c[~ELp, the result follows from Lemma 4.4. 

THEOREM 4.3- /] O< a<=ao, a~a, b ~, c ~, and d satis/y the general conditions 
on B(xo, a), eC L,  there, and /satis/ies the/irst condition o/Lemma 4.5 then 
there exists a unique solution u o./ (IA) in /-/~1,o on B(xo, a). Moreover 

(4.~3) a[u, B(xo, a)] __< 2(~ -- h)-l[ l l  ell ~ + C(,,/,)II/ll~ 
A corresponding result holds i / /sat is f ies  the condition o/ Theorem 3.1. 

Proo/. The proof parallels tha t  of Theorems 3.2 and 4.1 si~ace Theorem 4.2 
holds. 

THEOREM 4.4. Suppose uCL 2 on B(xo, a) where 0<a_--<a o and the coc/- 
/icients satis/y the conditions o/ Theorem 4.3 on B(%,  a). Suppose also their 
uE H~ and satisfies (tA) on each B(xo, R) with 0 < R < a .  Then 

(4.t4) d [u, B (xo, r)] =< Cz (h) {][ eli ~ + C(v,/,) N/][q ~ + (a -- r)-I 1] u[]o}, 0 =< r < a. 

A corresponding result holds i / /sat is f ies  the condition o/ Theorem L 1. 

Proo/. Let  h(s) be a fixed function of class C' with h(s)= 1 for s=<0, 
h(s) = 0  for s>=t, and h'(s)~O. Choose R so r < R < a  and define 

J 

r =h[(Ix-xol--r)/(R--r)], v=~*u, U=~u. 
t l *  
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Then v and U C H,18,0 on B (xo, R). Substituting in (1.t), we obtain 

0-----I[U, U; B(xo lR)]  + f [ ~ e ~ U ~ + ~ U / +  U(b~--c~)~,~u + 
B(xo, R) 

+ ~ e ~ , ~ u .  a ~ , ~ , , a  us] d .  => ~ (11 Vllko) 2 - -  
(4A5) 

�9 - I I  e l l k o E i l e i l + C O * , v )  g R ' - X + 2 " + C h , ( R - r ) - X l l b - c l l 2 p ' R ~ l l u i l ~  - 

- ~ ( R  - r)-' Ilell, 0 IlulIR - ( t  + h ) ( R  - -  r ) -~hf  (ilull~)2*). 

The result follows. 
We now define the spaces S~ and Sao for 0 < ~ < l  as follows: u C S x  on 

B (xo, a) if and only if uE H~ there and there is an L such that 

(4.16) d[u,B(x~,r)]<=L(r/~5) ~-~+a , O<-r--< 6 = a - -  Ix~--xol 

for every x in B(xo, a); if uE Sx we define [Hulli, as the larger of 'llu][~ (see 
(4.1)) and the smallest L which satisfies (4.t6)). The space Sx o is the subspace 

U 1 of Sx for which uC/-Ps, o and l[lulHa, o is the larger of [I [[2,o and the smallest 
L as above. 

LEMMA' 4.6. Suppose the b", c ~ and d satis/y our general conditions and 
Suppose u C S~ on B (xo, a). Then #u ,~  E L~ du  C L,,  and b~u E L2 on B (xo, a), 

where 2p r' 2vp " v 
r - -  > q and --  > q, p ----- t --  - -  

p + l  p v - - 2 p + 2  2p 
and 

f Ib(~)12iu(.)l*d~ =< (c(., Z)lllulll, i Ilbll~~ '-2§ 
I B(xl, O) 

{4.17) f i~~ ":-2+~+" 
B(, .  e) 

S Id{~)u(~)ld~<__ c(,,, ~). Illulll, Ildlt~,~'-'+~"(e/,~) "-2+2", o <  , ,<,~ 
B{x,, e) ~ - -  

/or each xlE B(xo,  a), where 6 - - - a -  Ix1--%1" 

Proo/. The first results follow from Lemma 4.3 and the H61der inequality. 
From Theorem 2.2 and the definition of liiul!l~, we see that 

�9 lu(~) . -u(~, ) t  =< c(,,. ,t)illulll~,~ , - , -~  I~ - ~ , i  ~, o = I~ -~. , t  =< ,~/2 
f lu(~)l ~ d x <  a~. IllulllL B(xx, ~) 

From these facts, it is easy to conclude that 

lu( , ) l  < c(~, ~)Illulll,. 0 ~-" for o ~ Ix - *,I < ~/2. 
The results (4A 7) follow easily from this and the HSlder inequality. 

DEFXmTmX. For u in/-/~,o or in any Sa, o, we define the linear operator T 
by: T u  = U where U is the solution in H~,0 of 

f [ ~ ( a  ~ u ~ +  b~u) + ~(c=~,,+~du)] d , .  
Bfxo, a ) 

*) I f  we  did n o t  a s s u m e  a f l a = a  ~fl, t h e  in tegra l  wou ld  co n t a in  also t h e  t e r m s  
(a a f~--a~).~, r U ~ .and t h e  b r a c k e t  mul t ip l ied  b y ,  HUtl  21, 0 wou ld  h a v e  a n o t h e r  t e rm  
c,~:, (~ -,')-'11 ,,ll ~. . 
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THEORE~t 4.5. There is a number a~ with 0 < a t ~ a  0 which depends only 
on h, v, p, 2, and the norms o/b, c, and d such that i/O<a<=al, and 0<2_</, ,  
Tu and II Tll--<�89 

This follows immediately from the preceding lemma and from Theorems 
3.t and 3'3- Accordingly we have ' the following Theorem: 

THEOREM 4.6. I /  0 < a < a  a and i/ e satisfies (3A9) and ] satisfies all the 
conditions o/ Lemma 4.5 with 0<2=<# dnd 2<20,  then the solution o/ (tA) 
which is in 1-I. 1 is also in S A o and ~, 0 

iilulll ,0=< p, 2)L. 
A corresponding result holds i / ]  satisfies (3.8) with 2<=# and 2<~o.- 

Finally, we have the following final result on interior continuity: 

THEOREM 4.7. Suppose u C L~ on G and u E H~ on any domain D with L) 
compact and D(G.  Suppose also that u satisfies (t.t) on each such domain 
where e and / satis[y the conditions o/ Theorem 4.5 /or each B (xo, r ) (  G with 
2<=# and 2<20.  Then uE S v on each sphere interior to G, where itg norm 
depends only on L, h,/~, 2, p, the norms o/b, c, d, and the distance o / B  (xo, a) 
from 8G, provided a <= a 1. Thus u satisfies a uni/orm H6lder condition on each 
such domain D which depends on D and the quantities above. 

Proo]. Choose B(xo, al)(G. Then u CH~ on B(xo, aa) and, in fact, its 
norm"l]ul.{[, as defined in (3A), is bounded as indicated in Theorem 4.3. Then, 
let H be the a-harmonic function coinciding with u on 8 B (Xo, al) and define 
U by 

u = ' U + H .  

Then UEH~,o on B(xo, as) and satisfies (t.1) with e ~ and ] replaced by E ~ 
and F, respectively, where 

E~----e~+b~'H, F = / + c ~ H ~ + d H .  

But now H C S~o on B (x 0, ax) with 

IlJnlll~, <= c(v, h)'[]u]t ~ 

by Theorem 2.t, since Io(U , u; B) = I o  ( U, U; B) + I  o (H, H ; B) ( B = B (Xo, al) ). 
But then it follows from Lemma 4.6 that E and F satisfy the conditions of 
Theorem 4.6, where L. now involves '][uH~ linearly. The results follow from 
Theorems 4.6 and 2.2. 

5. H61der continuity at the boundary. In this section, we prove our results 
about H61der continuity at the boundary. We begin by defining domains of 
class S*(~, a). 

DEFImTION. A domain G is of, class S*(X, a), 0 < a < l ,  if and only if it is 
bounded and 

[B(xo, r)--G[>_o~[B(xo, r)[, f o r a l l r w i t h O < r < = a  

and any Xo'not in G. 

We begin by generalizing some of DE GIORGI'S lemmas and theorems. 
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DEFINITION. A function uEf3*(E, y) iff uEL~ on E, uEH~ on domains D 
with D compact and ~ ( E ,  and if 

f [Vu[~dx< ,7 f lU(x)--kl~dx for all k-----01 
�9 ( 5 . 1 )  A(k, 01) - -  (0~t- -  e l )  ~ a(k,O, ) 

�9 f ] V u ? d x <  ~ ' ~c~,o,) (~-~)~ ~,fo,~ lu(x) - - k [ ~ d x  for all k < O ,  

the notations being those of w 2. 

I t  is easy to see that  D~ GIORGI'S Lemma I holds for such functions and 
(by repeating his proof) that  his Lemma I V  holds, provided k>--0 and a 
corresponding result holds for the sets B (k, 0) for k <  0; we label these results 
as Lemmas I* and IV*. As in DE GIORGfs case, these lemmas imply that  any 
function u E ~3*(E, 7) is bounded on compact subsets of E. We now prove a 
lemma which permits us t o  generalize DE GIORGI'S Lemmas I I  and I I I  
slightly: 

LEmMA 5 A. Suppose u ~ H i on B (Xo, p), suppose u Vanishes on a subset B 
wi,h iBId.] B(e)[ ~B(q) = B(x0, q)). o < ~ < I .  Then 

(5.2) f[u(x)[Pdx<=fl#(v,~) "lcI~-~!/'lel~/" f Ivulpa, (c= B(o)- B). 
e BIQ) 

Proo/. I t  is known ([7] or [9]) that  u is equivalent to a function which 
is absolutely continuous along almost all lines in any direction and continues 
to have this property in any coordinate system related to the original by a 
bi-Lipschitz transformation. So we assume u to have this property already. 
I t  is easy to show that  if x 0 is not in a set z of measure zero [for instance 
if u(xo) is the Lebesgue derivative of f u(x)dx  at x o and if t h e  Lebe'sgue 

derivatives of f u.~ (x) d x all exist at x0] then u is absolutely continuous for 

r ~ 0  along almost all radial ' lines through x 0. 

. Suppose 0 < e < ~  and ~/=elB(p)I .  We may cover G with a.n open set 
G'(B(~) such that  IG'I<IB(~)I--IBI+ ~. L e t  B'=B(~)--G'.; then 
I B ' I >  (0~-~).  [B(~)I. For each x in C',, let 2~(x) be the set of points ~ on 
0B(0, f) such that  x+r~E B" for at least one r; clearly X(x) is the union of 
a countable family of closed sets and so is measurable. I t  is geometrically 
evident that  

(5.3) " 12:(x)I >=- [C(~ - -  ~, v) ] -~F, ,  C > 0 

since 12~(x)l would be smallest if B'  were a cone with vertex at x and axis 
along a diameter of B (~)., 

For each x in G '  and ~ in 2~(x), let r (x, r be the smallest value of r such 
that  x+rr B' and let G(x) denote the set of all ~ = x ' + r r  for O<~r<r(x, ~). 
If  x E G'--Z and ifr does not belong to a set of measure zero, we have u (x+rr 
absolutely continuous in r for 0--< r_< r (x, r so that  

~(x, r 
(5.4) u(x) = -  f u,(x + rr dr (u, = ~ u  =), i E Z,(x). 

0 
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Averaging over ~(x), we obtain 

(5.5) u (x) = --  [ Z(x) l-1 f 12 --  x ]-" (~  --  x~) u ~ (2) d2. 
a(x) 

From (5-3) and(5.5) ,  it follows tha t  

(5.6) lu(x)l<cI;-l fl2-xl~-'lvu(2)ldL xEG'-z .  Gr 

Since e is arbi t rary  (5.6) ho ldswi th  C = C(~, v) and G' replaced by  G. If p >  t, 
we m ay  use the H61der ine~quality to obtain 

tu(x)[P= C P r ; P  [ j [ 2  --  x ] l - ~ d 2 ] p - l - j  12 --  xl ~- ' '  IVu(2)lPd2 

(S.7) "~ C[ Gl{P-1)/s'r~-(P-1)]'l~v-1 .J]2--x[ 1-'- Ivu(2)lpa2, . ~ c - z .  

If p = 1, (5.7) coincides with (5.6) (as modified ). The result follows by  integrat- 
ing over e. 

We now state and prove our slight generalizations of DE GIORGfS Lem- 
mas II  and I I I :  

LEMMA II*. / / u E H r  with p>=l on B(O ) = B ( x 0 ,  0), k < 4 ,  and 

[B(q ) - -A(k ,o ) [>=~[B(e ) [ ,  0 < ~ < 1 ,  
then 

(4--k)lA(,t;O)lc'-~)/'~fl~(v,~) f IVu[dx. 
AIk,'~)-a(~, QI 

Proo]. This follows immediately from Lemma 5A by taking p = t  and 
e = A ( 4 ;  0) and. replacing u by  the function w(x) = 0  when u(x )~k ,  w(x) = 

�9 u (x) --  k for x on A (k; 0) - -  A (4; 0), and w (x) = (4 --  k) on A (4; q)." 

LEMMA III*.  I t  U C H~ on B (0) and i/ 

[ B ( 0 ) - - A ( k ; o ) I > = e [ B ( o )  ], ~ > 0  
then 

f lu(x) -k[~dx<p~(v, o~)[A(k; e)l':'J~ Ivul'a'~'A;.,, 
a(k; 0) 

Proo]. This follows from Lemma.SA by setting p = 2  and e=A(k ;  0) =G 
and replacing u by  w where w (x) = 0  if u (x) =< k and w (x) = u (x) --  k if u (x) > k. 

By  repeating DE GIORGI'S proof of his Lemma V, using the modified 
lemmas above, we obtain the following lemma: 

LEMMAV*. Suppose uE~3*(E,v ). Then there is a number ~/(v,~, ,~)>0 
such that i] B(xl ,  40 ) (E ,  # > 0 ,  oJ>0,  # - -  2~o--_0, u(x)<I* on B(xa, 40), and 
[A(#-2co;20) l___<( t -a )  ]B(xa; 20) 1, then u(x)<=#--~o~ on B(Xl, 0). 

REMARK. Results corresponding to the lemmas above hold if u is replaced 
by  - -u .  

We now .prove an analog of DE GIORGI'S Theorem II  and extend our 
Theorem 2A ; Theorem II* has been proved by NASa in [11~. 



162 CHARLES B. MORREY jr . :  

THEOREM !I*. Suppose the part B(xo, a)c~G o/ the domain G is of type 
S*(~, a), suppose u E L, on B (x o, a) and u E H~ on each B (xo, R) with 0 < R < a ,  
suppose u is a-harmonic on Gc~ B ( xo, a ), and suppose u ( x) = 0/or x E B (x0, a)--G. 
Then u satisfies a Uniform H61der condition with exponent 2~(h, v, ~) on each 
B(xo, R) with O < R < a  Which depends only on h,v, ~, a - -R ,  and Ilullg and 
Iiull ~. is finite on each such B(xo, R), 

THEOREM 5A. I] G and u satis/y the hypotheses o/ Theorem II* and i/ 
u E H~ on B (x o, a), then 

d [u, B (x 1, r)] --< C(v, h, ~) d [u, B (xl, 6)]- (r/~) "-1+at, 0 <_ r < 6 = a -- I xx -- xol 

/or any x x E B (xo, a). 
Proo/s, Suppose, first, t h a t  xxE B(xo, a)--G. Let h(r) be an arbitrary 

function of class C" for 0--<_ r < ~ with h (r) = 0 near r = ~. Let v be any function 
E HI on B (x x, 6) which is the strong limit in HI of functions of class C' on 
B (xx, 6) which vanish on B (x x, 6) - -G and define 

V(x)= h(lx - xil)" v(x). 

Then VCH],o on B(x  1, 6) and on B(xl ,  6)c~G and V vanishes on B(xa, ~)--G 
so that 

B(x~, 6) B(x~, ~)r',a 
D 

= f :v ~ + h'I,l S oa". :.,dS}d, 
0 t OB(x,,r) " ' OB(x,,r) 

= : h'Ir)I : v:'n u dS- f v W,, dx d, 
O ~B(x,,O ' '- B(x~:') 

since u is a-harmonic on B (xl, 6):, G. Since this is true for any h (r) as stated, 
we see that 

(S.8) f v,~a~%,#x= f va~%~u,#S, O<=,< R, r~Z. 
B ( x .  ,) ~B(xi,,) 

If we apply (5.8) with v=pos (u - - k )  where k_>0, we see that (5.8) holds 
with u replaced by v. By following the procedure in the proof of the Leray- 

Cacciopoli !emma (Ia], p, !53) we see that 

f Iv-? dx_< a~;~,> - te~-~o,: ~ck;..>f lu(x)--kl~dx'  
where 

O<  9!<  e ~  6, k ~ O ,  A ( k ; e ) = A ( k ) ~ B ( x x ; e )  

where the / here is the same as in Theorem II. A similar result holds for the 
sets B(k; o~). Accordingly uE (~*(E, y) on B(xl ,  6). 

Moreover, since I B (x~, r) -- G 1 >= ~tB (xa, r)[ for O--< r--< 6, we see immedi- 
ately from Lemma V* that u satisfies a H61der condition with exponent 
20*(v, ~, h) and constant depending only on those numbers, IlullL and 6 with 
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u(xl) = 0 .  Now, from our previous results each point x 1 in B(x  o, a)~G is 
also the center of a sphere B (xl, 5. 0/2) in which 

x B (Xl,  5 Q/2 ) . 

I f  0 < R < a ,  B(xo, R) can be covered by  a finite number  of the spheres 
B (zl, ~) (< B (xl, 5 Q/2)). Thus u satisfies a HSlder condition of exponent 2" 
on B(x  o, R), The homogenei ty argument  in the proof of Theorem 2A may  
be repeated after which Theorem 5.1 follows as before. 

We can now sketch how to prove the results concerning the boundary  
behavior of the solutions of equations (t . t)  which were stated in the intro- 
duction for domains G of type S*(~r a) : We first consider solutions u in/-/21,0 
on G of equations (3.1) where we assume that  e and ] satisfy 

: O<, '<a,  
n(,~,,)~,G 0 < 2 < 2o, ~ 

(5-9) f I/Idx<KLal-'(,ta)'-'+~ for all r ,  
B(xo, r )  z ~ G  

for any  Xo; the restriction on / guarantees tha t  the gradient of the potential 
of [ restricted to B (x 0, a) satisfies a condition like that  for e. Firs t ,  we notice 
tha t  if u is such a solution and we subtract  off the function H 0 which is 
a-harmonic on G~ B (xo, a) and coincides on ~ [G~ B (x 0, a)] with u and vanishes 
on B (xo, a ) -  G, then u l =  u - - H  0 vanishes on 0 B (x o, a) and is a solution of 
(3,t) With the same e and 1. Then the argument  of Theorem 3.3 can be repeated 
to obtain the result of tha t  theorem for ul, the only difference being that  
when one writes u I = U + H  on B(x  o, R), the function H is tha t  function 
which is a-harmonic on G~ B (Xo, R) and coincides with u 1 on ~ [G,~B (x o, R)] 
and is 0 on B (xo, R) - -  G as are u, ul, and U; the argument  works on account 
of Theorems I I*  and 5.t. 

I t  is now clear tha t  the relevant arguments  of section 4 will go through 
for spheres B(xo, a) if we restrict ourselves throughout  to the space */-/21 
consisting of all u E H~ on B (Xo, a) which are limits in H~ of functions of class 
C' which vanish in a neighborhood of [B(xo, a ) -  G] and define *//21, 0 

, I : - / I  _ ~ 1  = *-*;0' '~*,o and *Sa-=*B~c~Sa, etc. 
In  case G is a Lipschitz domain, i.e. one such that  each boundary  point 

is in a neighborhood N on G ~ 0 G which can be mapped in a bi-Lipschitz way 
on a hemisphere in such a way  that  N,',OG corresponds to the flat boundary,  
a n d  if e and ] satisfy (5-9) and the coefficients satisfy our general conditions, 
we see tha t  any  solution u of (t . l)  satisfies a uniform H61der condition on 
as follows : L e t  x o be any Point of ~G and let T b e  a bi-Lipschitz map as above. 
Then the t ransform of u satisfies an equation of the same form on the hemi- 
sphere but,  of course, the norms of the new b ~', c #, d, e, and / will be different 
and  the new a ~~ will satisfy (2.3) with a different h. But  now u = 0  along 
the flat boundary.  If  we extend u by  reflection (as we would a harmonic 
function) and extend the coefficients and the : and ] properly, the extended 
u will sat isfy the extended equations on the full sphere and our results follow 
from our previous results for the  in te r io r .  
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