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1. Introduction. In this paper, we discuss the Hélder continuity of the
'solutions of equations of the form

(14) [[v, @Pu g+ u+ ) +ov(c*u +du+flldx=0 forallve H},
é

on G where we assume that the a*# are bounded and measurable and satisfy
the uniform ellipticity condition (2.3), the coefficients 4" and c*€ Ly, and d€ L,
for some p>v/2 (v being the number of variables x), the €L, and f€L,,
and e and f satisfy certain integral growth conditions (see §§3, 4). In the
equations (1.1), the tensor summation convention is assumed, as will be done
throughout, the Greek letters running from 1 to »; the subscripts after the
commas denote differentiation.

In 1938, the writer [6] studied the solutions of (1.1) in the case where
» =2 and the coefficients #*, ¢* d and f were zero and showed that they were
Hoélder continuous on the interior provided that the ¢* satisfied the cor-
responding integral growth condition; some results concerning boundary
behavior were also obtained. Later [7], the writer generalized the results for
the interior to systems of equations of the type (1.1) in which all the terms-
were present but » still was 2; the restrictions on the 5%, ¢*, and 4 made in that
work were somewhat weaker than those made in this paper. The motivation
for the study of equations with such general coefficients was that of proving
certain differentiability properties of the solutions of a class of variational
problems.’ : ‘

The methods used by the writer in this work were peculiar to the case
y=2 and neither he nor anyone else was able to generalize the results to
cases where y>2 (except in some special cases) until DE Giorai [2, 3] and
Nasr [10, 117 concurrently and independently showed that ‘“‘a-harmonic”
functions in any number of variables are Hélder continuous on compact sub-
sets of their domains of definition; a function is e-harmonic on a domain G
if and only if it is in H} and satisfies I, {%, v; E) =0 (see (2.7)) for each domain
E with E compact and ECG and each v ¢ Hi, on E. The methods of NasH
and DE GIORGI are completely unrelated- Nash obtained his results as a by-
product of his work on parabolic equations, whereas DE GIORGI’S method
involves only elliptic equations. Nash confined himself to bounded solutions,
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whereas DE GIORGI allowed solutions merely in L,; since functions in H} are
not necessarily bounded, the starting point for our investigations is the paper
of DE GIorai [3] which we discuss in § 2.

Very recently, StampaccHia [13] studied equations of the type (1.1) in
which the #*=0, the ¢* and d are bounded, and d(x)=0. He showed that the
solutions in Hj o or those satisfying the “homogeneous Neumann” boundary
conditions or even certain mixed boundary conditions are bounded on G,
provided that G is of his “type S”, i.e. if 9G satisfies an interior “‘strong cone”
condition. In this paper, we show, first of all, that the eigenvalue problem
for equations (1.4) has discrete eigenvalues with the usual Fredholm alternative
holding for any given parameter value (see Theorem 4.1), provided G is bounded
and then that the solutions # are Holder-continuous on compact subsets of G
if ¢ and f satisfy proper integral growth conditions (see §§3,4). In case G
is of type S*(a, @) (see § 5) and ¢ and f satisfy proper growth conditions across
9G, then the solutions # in Hj , (see below) are Hélder-tontinuous on G and
vanish in the ordinary sense on &G; the same result holds if G is a Lipschitz
domain (see § 5). Thus our results are generalizations of those of Nasa and
D Giorat and are partial generalizations of those of STampaccHia. It is
interesting that the domains of class S*(a, @) are identical with the types of
domains for which Nasu ([11] appendix) proved the Hélder continuity of
a-harmonic functions on G, assuming that the given boundary values are
Holder-continuous.

We now introduce our notations: If G is a domain, 6 G denotes its boundary.
B (x4, 7) denotes the »-ball with the center at x, and radius ». If Sis a set
in y-space, | S| denotes its v-measure; however, occasionally we consider sub-
sets S of Z'=208B(0, 1) in which case | S| means its (v — 1)-measure. We define
y,=|B(0,1)], I,=|8B(0, 1)|; clearly I',=vy,. If u is a function (or vector
function), V» denotes its gradient, [’2u denotes its second gradient #,, etc.
If ¢ is any function, vector, or tensor, |@| denotes its length (the square root
of the sum of the squares of its components). All integrals are Lebesgue
integrals. The spaces Lp over some set have their usual meaning. The space
H} over the domain G is the closure of the space of C’ functions on G according

to the norm (i) "-fuu|2+|l7u|2]mdx

The space H’0 is the subspace of H; obtained by closing the space of func-
tions of dass €’ having compact support interior to G. For such functions,
we define a topologically equivalent norm

(k0P =] IPupa
If p =2, the spaces H; and Hj , are Hilbert spaces and
@, o)y = (Vu-Vv+uv)ydx, (u,0)so=/Vu-Vvdx.
G G

We define
D@w,G)= [ |Puf*dx, d(u,G)=[D(,G)".
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There are many results which are inequalities involving a constant which may
depend on various other constants; we denote all these constants by C but
do not assume that all these constants are the same.

2. The De Giorgi lemmas and. theorems; a-harmonic functions. In this
section, we quote the lemmas and relevant theorems of DE GIORGI, which
are proved in [3], and then prove important Dirichlet growth theorems for

a-harmonic functions and Hj functions in general. We begin with DE GIORGI’S
definition of his B(E; y) classes:

- DEFINITION. Suppose E is a domain and y>0. A function #€%B(E;y)
if and only if #€L, on E, u€ Hy on domains D with D compact and DCE

and if
Pupdr<s Y f Tu(x) — k]Pdx

(02— 01)?
Ak} N B (%, 01) A(k) ™ B (%, 04)
PuPdr< —¥ f C[u(x) — k]2dx
{ee—@)*
B(k) "B {xy 1) B (k) N B (%, 0a)

for all %, x4, g,, and g, for which 0< g, <<g, and_B (%, g,) CE; here A(k) is
the set where u(x)>% and B(%) is the set where « (x)<<2.

Lemma I. Each class B(E;y) is closed with respect to stromg convergence
in L,.

Lemma 1. There is a constant ﬂl( )>>0 such that
(2.1) B [ \Puldxz=(a— k) [vik A; )]0k

: A(k;e)—4(2;0)

whenever wé Hy on B(x,, o) and A>k. Here 1(k, A; 0) indicates the smaller of
|4(3; 0)| and | B(x,, o) — A(k; ¢)] and Alk; @) =A(R)~B(2y; o), ete.

Lemuma II1. There is.a constant f,(v)>0 such that
(2:2) J [u(x) — kPdx < B, |A(k; @)[*  |Vul?dx

Ake) - Ak;e) B

whenever u€ Hy on B(x,, o) and |A(k; 0)| < | B(x,;.0)]/2.
LEMMA IV, There is a function 3{c; v, y) which is defined and positive for
0<<ao<<1 such that if u€B(E; ), B(x,; 0) CE, and for some k we have
|4kl < #(o;7,9)
then
[A(k+0c; 0 —ag)| =
where
cz0 and = (g9 f [u x)— k2dx.

REMARK. From Lemma IV, it follows that if uc B(E; y) then u is (essen-
tially) bounded on compact subsets of E.
LEMMA V. There exists a number 5= (v; y)>0 such that if u€B(E;y)
and B(xy; 40) CE, then
' osc (#;0) = (1 —n) osc(u; 4p),

where osc(u; 7) denotes the (essential) oscillation on B(x,; 7).
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THEOREM 1. Any function w€B(E;y) satisfies a uniform Holder condition
with exponent A(v,y) >0 on any compact subset of E.

THEOREM I1. If the coefficients a*® are bounded and measurable on E and
satisfy a*f = aP* and

(23) (—h|EPsa*f(x) <1 + h).|§]2, x€E, 0<h<1,
and all &, then any a-harmonic function in L, on ECB(E, y) where
(2.9) ' y=0+h32(1— 12

We now prove
THEOREM 2.4. If u €L, and is a-harmonic on B(x,, a) then

@25) A Blgn]SU+R(A~h2a—nul, o<r<a.
If wis also in Hy on B(x,, a), then

(2.6) - Alu; B(xg; )] < C(v, h) - d[u; B(xy; a)] - (r/a)"'l"'l"
where
A=A, 1+ (1—nT],  T=yp2.

If u*EHl on a bounded domain E, there is a unique a-harmomnic fzmctwn %
on E such that u — u*EH2 son E. _

"Proof. The first statement follows from the definitions and the last is
proved by the usual lower-semicontinuity argument for mlnlmlzlng the
integral I, (u; u; E), where
(2.7) _ Iy(u,v; E) =fv,aa°“8u,ﬂdx.

Or one can set # =#*+ U and look for a solution U in H; 4 of the non-homo-
genecous equation as in the proof of Theorem 3.2.

Next, let {,} be any sequence of a,-harmonic functions on B(0, 1) with
d[u,; B(0, 1)] uniformly bounded and where the a, all satisfy (2.3) with the
same k; we may as well assume that the average %, of u, over B(0, 1) is zero.
Then by RELLICH's theorem

luale < Co(3) d[w,; B (0, 1)].

We may also assume that »,—u in Hj on B(0, 1). Then # is also in B(E, y)
where y is given by (2.4) and E=B(0,1). Let us choose any p and ¢ with
0<p,6<<1. There is a & such that [4(k; g)|<¢*®(o;v,) and [ B(—&, o)| <

@@ (o; v, y) for the limit function ». For those %, g, and ¢, we see from the
strong convergence in L, of %, to » that these inequalities hold for all suf-
ficiently large =. Accordingly the u, and » are all uniformly bounded on
B(0, go) and so u,(0) and #(0) are uniformly bounded. From Lemma V, it
follows, then, that ’

|u(2)| < Clv, k) d[u, B(0,1)],
[u(x) —u(O)| < Clw B)d[u; BO,1)]-[x]*,  [|¢]<}

for every a-harmonic function # where the a*? satisfy (2.3).
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From the closure theorem, we may assume that the a*# 6 C* so the a-har-
monic functions are. Thus we have (# a-harmonic) :
(1 —h) D[u, B(0,7)] < Iy[u,u; B(0,7)] = [ (4 — ug) a**n,u ,dS
éB(0,7)
— up)2a*f ds a*f as =
[aB(o’,)(u ue)2 0% m, g ] [aB(fo,') U L%, } (z=1[2)
S (1+ R phrth (o' () e ()], ¢(r) =Dlw, B(0,7)],

%y =1 (0), o=r=i}. -

A

Hence ,
2 g2 C, k) [p)]r"h, 07

50) 2 9 () [+ p(3) C gt (1) (A=m—Foa™+h=1)]
.u<p(r)§C(v,h)<p(1)-’““_1, 0=r=1.

IA
[V

But now, if « is a-harmonic on a sphere B(x,, R), the function »’ defined -
by #'(y) =u(%y--Rv) is ‘a-harmonic on B (0, 1), where "a*# (y) =a*? (x,+RY)
and the 'a*” clearly satisfy (2.3) with the same 4. The result (2.6) then follows
using homogeneity argument. ‘

The following ““Dirichlet growth’ theorem is well known (see, for instance

[8], p. 111 or [7], pp. 12, 13).
THEOREM 2.2. If uCH} on G and satisfies

“du, B(x, )] < L(#/0)"1TE, 0<A<1, 0=7<9

for each x, in G, O being the distance of xq from &G, then u satisfies a uniform
Hoélder condition with exponent A on any compact subset of G and satisfies

[w(x) —wu(x)| SC,A)-L- 8" |x — x|t if |x— x| £ 6/2,
B{(x,, 6) (G

3. A special case. In this section, we study the solutions of equations of
the form _ ‘
(3.1) f[v,,(a“""u +é)+vfldx=0 for all v€Hy, on G,
where we assume that the a*? are bounded and measurable and satisfy (2.3)

for some A.
LemMma 3.1, If S is any set of finite measure and ¢>>0, then

J1E—=x"7"dE£os®  where  y,s"=|S]|.
5
Proof. For obviously
CJlE—aPraEs S |E— e,
S Blz,s)
LEmMA 3.2. If u € Hy o on the bounded domain G for some p=1, then
(3-2) “(x)=AFflelf—xl_"(fa—x“)“,a(f)df

for almost all x in G.
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Proof. If u is of class C’ and has support in G, x € G, and 7 is the distance
from x, then

(3.3) wie) == fulxtrt@ldr  (£€2B0.1)

where we assume B(x, R) >G and #(§) =0 for £€ B(x, R) —G. Then (3.2)
follows by averaging over B (0, 1). From (3.2), we see that

64 ()| ST 16— o P (@) ds

(w of class C' as above). From the Holder inequality we see that
65) |w@PST L7 g — 2~ anf = ] |& — 2" [7u(@)] .
By integrating over G, we find that '

6.6 [lufPdrse [IPu@lPaE whee 3,8 =|6].

Thus the formula (3.2) holds in general by approximations.
DErINITION. Suppose f€L; on G. We define its potentral by

(3.7) - V(x)=—@»— 2)—11“;1Gf|§ — x| f(8) dE

Remark. The following -theorem enables us to reduce the general equa-
tions (3.1) to ones where f=0, provided the original f satisfies (3.8).
THEOREM 3.1*). Suppose that €L, on G and satisfies
(3-8) [ 1@lds<Lr**%  o<i<i,
GAN\B(x,1)

for eaéh sphere B(x,,7), suppose V is the potential of f, and suppose v € Hy,
on G. Then VCH} on any bounded domain and satisfies

6.9 | JIVV@EPdz=C0 2 LY x€G, 0<r=R

Blxp?)

where R 1s the diameter of G. Moreover
(3.10) Jo@) 3 dx == Jv4(x) Va(2) d.

Proof. 1t is straightforward to show that V€L, on any cell and (by
integrating the expression for V , (%), using FUBINI's theorem, etc.) is absolutely
continuous along almost all lines in each coordinate direction with partial
derivatives given by

(3-11) Vfa(x)=—Ffléflé—xl—.”(f“—x"‘)f(f)dE
almost everywhere.

*) Compare [7], pp. 61—64.



152 CHARLES B. MORREY jr.:

‘Now, we select x,€ G and we write

1E) =h(E) +1()  where £ (&) =/(&) in B(,27)
and f1(&) =0 elsewhere and let V, be the potential of f,. Let

(3.12) Palo; %) = / |£(&)| d€.

Bz, )N\ [G—B{x,, 27)]

Then, from (3.11) for V,, we have
PYISE [ |6 =218 as

—B(%,2r)

R
=I’f"f01‘"¢é(@;x)dg

R
< LI [R’l“l + v~ 1) [ ¢**do]

S@—NI7a— LAY %€ B(xg;7)

since, obviously

. 0, 0=p=7 )
¢2(Q’x)§{L9u—2+l 7§_Q§R (xeB(xO!r))'
Accordingly ,
(3.13) [ [PVa(®)|2dx < Clo, 2) L2r—2+24,
Bl%,7)

From the Schwarz inequality, we obtain
(3.14) VVi(x)*< I, 'I,I,, where 0=Z=o<Al and
L=07" [ |&—#"7|1(8)] ¢,
B(x,,27)
Iy= [ |& =77 |f(8)] &

B(x,,27)

since f,(£) =0 outside B(x,, 27). In order to evaluate I, define

pilose)= [ |f(®]d¢E.

. B(x,0) "B, 2r) NG
Then we see that

s Lg% 0K ‘
wl(e’x)§{l.(27)””2+l 0=, , XEB(xg:7).
Proceeding as with @,, we see that
(3.45) I,<[{v—2—0) (A—o)+ 21—2+}.]L7,/1——a.

Integrating (3.14) over B(#x,,7) and using (3.15), we see that

[ PV (x)|2dx < 071(27)° L(2#)" " ***C(v, 4, 0) L¥".
B(xg, 1)
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Since this holds for any ¢ with 0<<g<CA, we see that

(3.16) B(f [PV, (2)[2dx < C(v, 3) L2722,
Using (3.11) we :;:that
*fv x)dx=1I, lfflé xl'” — 2 v, (%) f(E)dxdé
=gv@

using Lemma 3.2 (with x and & interchanged).

THEOREM 3.2. If G is a domain (B(xy, R), e€ Ly, on G, and | satisfies
(3.8) on G, there exists a unique solution u in Hj 4 on G of (3.1). Moreover
(3-17) luflho= (1 — 2) (lel8+ CoL R,

Proof. On account of (2.3), we see that the inner product Iy(u, v:G)
[see (2.7)] leads to a norm which is topologically equivalent to |lu|3o. Since

(3:18) Gf (v, o+ fv)dx =Gf vule*—Vo)dx

is a linear functional in Hz o, we conclude the existence of a unique solution #
of (3.1) from Hilbert space theory. Setting v=w# in (3.1) and usmg (2.3),
(3.18), etc., we obtain

(=) (lulzo)*= | ol — Vo) dx < ulfo (I3 + P V1)

from which (3.17) follows, on account of Theorem 3.1.

THEOREM 3.3. Suppose u € Hy o and satisfies (3.1) on G=B(x,, a) where
J=0 and ec L, on B(x,, a) with

(3-19) J le@Pax<L2(rja) ™, 0<i<hy, 0S7=a.
i B(#,,7)

Then : '
(3.20) / |l7u W)2dx<Cw, h,A) - L2(rjay ™2 o0<r<a. .

Bz, 7 .
If u€H} on B(x(,, a) and e satisfies (3.19), then (3.20) holds with L replaced
by L+d[u; B(x,, a)]. ,

Proof. The last statement follows from the first, since we may write
# = U+ H where H is$ the a-harmonic function coinciding with % on 8 B (#,, a).
Then U € H; , and is a solution of (3.1) with the same ¢ and f, so U satisfies
(3.20). Moreover

(3.21)  I,[u, u; B{xy, a)] =I,[U, U By, &)] + I,[H, H; B(%,,a)].

The result for » then follows from Theorem 2.1.
In order to prove the first statement *), let

@(s) =sup L2d[u, B(x,, Rs)] .

*) Ci. The proofs of Lemma 2.1 and Theorem 2.2 in [8].
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for all ¢ satisfying (3.19) with a replaced by R, where 0<<R=<4 and « is the
solution of (3.1) (f=0) in Hj o on B(x,, R). Then, choose any ¢ satisfying
(3.19) and 0<r<<R<a and write u=U+H on B(x,, R) where H is th.
a-harmonic function =u on 8B (x,, R). Then (3.21) holds, so that

d{H;B(xy, R)] = C(h)d[u; B(xy; R)] < CL ¢(R]a)
by the definition of ¢. Also e satisfies
[ |e(@)Pax < L¥(Rjay . (yRy -2+,
B(x0,7)

Hence, if we apply Theorem 2.1 and the definition of ¢, we obtain

dlu, B(xy, )] S d[H; B(%g,7)] +4[U; B(%,,7)]

< CLy(Rja) (R 5+ L(Rja)" " g (7|R).
Since e was arbitrary, we see tﬁat
(3.22) @Sl +Clo, ) p@®) (s o<s<E<1.
Now it is clear from Theorem 3.2 that ¢ is non-decreasing for 0<s=<1 with
()< (1— )i
Next, choose ¢ with_0<a< 1. Then, cleé.rly ‘
@)= Sps" M for  o<s<1 if Sp=@(1)e A

Applying (3.22) with o?<s<o¢ and {=0"1s, we see that
- 323) @)K ST where S, =S,(1+Cw), o=d¢"""

Since 5;=S,, we see that (3.23) holds for 62<s<1. Applying (3.22) with
0*=<s<o0? and t=0"%s, we obtain

P(s) S S5 S, =Syl Cw)(1+Ca?), ot=s<1.

By repeating the process, we find that
P(s) =S S=S(1+Cw)(1+Cu¥)(1+CwY ..., 0<s=1.
The result follows.

- 4. Existence theory and interior estimaies for the general equations. In this
section, we study the solutions of the general equations (1.1} in which the
a*f satisfy (2.3), the 5* and ¢*€Ly,and d€ L, on G for some p>v/2; we call
these gemeral conditions.

LEMMA 4.4 If wu€Hy on B(x,;a), there exists a function U Hiy on
B(x,, 2a) such that U(x) =u(x) on B(x,, ) and

@) (TR =C0) ([Pulf)>+ a2 (ju])2 = C2 ) ("lufp)2

Proof. U is defined =u on B(x,, a) and U is the harmonic function 1n
B (%, 2a) — B (%, a) coinciding with « on 9 B (%,, ) and vanishing on 8 B(x,, 24).
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One verifies the result by introducing spherical harmonics (as in [4], for
instance), and computing the result.

Lemma 4.2, If u € H,fo for some v, 0<<r<Cw, on some bounded domain G,
or € H} over the whole space then u€ L, on G, where

’ vy
y—v

4

v—v

and [ub =720 TT (lual0) P s vt — 1) 0 — 92 u

Proof. This follows from the representation (3.2) in the first case and
by a limit process in the second and from the theorems in [12].

LEMMA 4.3. If w€ Hy o on a bounded domain G or if u € Hy on.a sphere
G =B(xy, a), then u € L and

(4.2) ulf =CO)[ulzo or Cl

respectively, where s =2y|(v — 2).

Proof. This follows from Lemma 4.2 for « € H; o and the second follows
using Lemma 4.1.

LemMA 4.4, If u€ Hy, on the bounded domain G and d €L, onG /‘or some‘_
;b>v/2 then (du?) € L,, where

(4.3) t=pulipy+v —29),
(44) an < 114113 (|lw]]2)2= Co) |11 (111 o)
(4.5) B(“f) |du2|dx<C(v”d”p(Hu““)zrzu p=1—v2p.

Proof. For, suppose p’, ¢ '>1, {1+ (¢)*=1. From the Holder- in-
cquality we obtain

l@a)lP < 1215 - (l#]l2:0)*

The results follow by setting ¢p’=49 and 2¢{¢’=s and then using Lemma 4.2.
LEMMA 4.5. If f€ L, on a bounded domain G, where '

(4.6) )
then its foténtial Ve Hy on any bounded domain I with
- (47) JIrmrazs co) (IR
- If, also [ satisfies
(4.8) RVCEEE L T A

B(%,8) CG, L=||f- 4
for all x; in G, then

(4.9) f |VV|2dx<C(,, NL2EOP T, o<r<6.

Proof. From the results of CALDERON and ZYGMUND [1], it follows thai
V2V ¢ L, over the whole space. From Lemma 4.2, the result (4.7) follows.
Mathematische Zeitschrift. Bd. 72 . ) o1 ‘
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To prove the second result, choose a point x, € G and let é be the distance
of x, from 0G. Write

Hx) = h(x) + fa(x)

where f,(x) =0 in B(%, §/2) and f,(x) =0 in G— B(x,, §/2) and let ¥, be the
potential of /,. Clearly /,€ L, with [|£,][g <||/|[g so its potential ¥, H on any
bounded I". But since V, is harmonic on B(x,, 8/2), it satisfies a condition
(4.9) with A=1 and L =||f|]. Moreover, it is easy to see that f, satisfies the
condition of Theorem 3.1 with that L replaced by C(», ) L&' ~"~* for every
sphere B(x,,7), so that V] satisfies (4.9). The result follows.

We now define
I, v; G) = [ [0, (a9 y 0°u) 4 v(c 0 4 du)] d x,
(4.10) - J(n,v; G) =:f [v 0%+ v(c*u ,+du)]dx = I{u,v; G) — I(u,v; G)
K(u,v;G) =Gfuvdx. '

We shall first prove an existence theorem for equations of the form

v Iu,v; G) + AK(u,v; G) = L{v) for all v€ Hy o, where
(1) { — L) = [ v+ fo) dx.
é

For A =0, the equations (1.1°) reduce to (1.1). Let us define the transtrma_;
tions Ty, 7;, T, and the function w by

(Gu, v)0=1Io(m,v), (L, vho=]umv), (Lnv)k,=Kuv).
(w, 0)3.0= L(v) '

where we have assumed G fixed and bounded. Then the equation (1.1)" is
equivalent to

(4.11) Thiut+TLutAln=1w.

THEOREM 4.1. If G is a bounded domain and the coefficients satisfy our
general conditions, then the equation (1.1)" has a uwique solution w in Hj o for
any ¢ in Ly and any | whose potential V is in Hy , provided that A does not belong
to an isclated set of characteristic values. If A is chavacteristic, the homogeneous
equation (¢ =f=0) has soluttons u=g 0, the manifold of these being finite dimen-
sional. For any A, the Fredholbm alternative holds.

Proof. 1t is well-known (see [7] or [9], for instance) that K(u, v) is com-
pletely continuous (i.e. continuous with respect to weak convergence in #
and v). Next, suppose #,—# and v,—v in H; , on G. Then, by Lemma 4.4
and our hypotheses, we see that ||bu,ly,, ||cv,|ls, and ||du,|; are uniformly
bounded. A simple argument involving subsequences of subsequences shows
that J(u, v) is also completely continuous. Hence I; and T, are completely
continuous. '
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N ext. we see that there is a 45 such that
Io(u,u) + J(u, u) + AK (w,u) = 272 (1 — h) (||u|3,0)> if A= 4.
‘For, if not, there is a sequence %, with
412) =1, Lo, ;) + Ty, 10) + 78 Kty 1) < 272(4 — ).

A subsequence of {#,} converges weakly to some % and J, and K, converge
to their values for that #. But since I,,, J,, and K, are bounded, we see
that X,—0 $o #=0. Hence J,—0. But, since J,,,= (1— %), we have a contra-
diction. Thus for A=4,, (T;+T;+ 47;) has a bounded inverse W, say.
Then (4.11) is equivalent to '

ut (A= i) Uw) = W(w), U=WT,

where U is completely continuous. The results follow.

THEOREM 4.2. There is an a,>>0, depending only on h, p, ”b”g[,+ ”c“gp,
and ||d||3 such that if 0<a< a, and the coefficients satisfy our general comditions
on B(x,y, a), then A
| I[u,u; B(xo, &)1 2 L2 D, B(xg, )] = U2 ([uffo)?

Jor every u € Hy 4 on B(x,, a).
Proof. For
I[u,u; B(xy,a)] =Iy[u,u; B(xo,a)] + [ [(°+ ) un ,+du]dx.
. : B(xo, a) .
Since
| J 0 unda| S ulho{ [ 160 +e@* |u(xaa
and |b+c|26Lp, the result follows from Lemma 4.4.

THEOREM 4.3. I } 0<a<a,, a*, b, ¢, and d satisfy the general conditions
on B(x,, a), eE L, there, and } satzsfzes the first condition of Lemma 4.5 then
there exists a unique solution u of (1.1) in Hy o on B(x,, a). Moreover
(4.13) dfu, B (%, a)] < 2(1— 1) [[lell2 -+ C(v, 1) ||7]] -

A corresponding rvesult holds if | satisfies the condition of Theorem 3.1.

Proof. The proof parallels that of Theorems 3.2 and 4.1 since Theorem 4.2
holds.

THEOREM 4.4. Suppose uC L, on B(x,, a) where 0<a=a, and the coef-
ficienis satisfy the conditions of Theorem 4.3 on B(x,, a). Suppose also that
uC HY and satisfies (1.1) on each B{xy, R) with 0<R<<a. Then
(4.14) d[u, B(xy, )] = Co(B) {|lells + Co, ) IS+ (@ — ) |ul3}, 0=7<a.
A corvesponding result holds if f salisfies the condition of Theorem 3.1.

Proof. Let h( ) be a fixed function of class C’ with A(s) =1 for s<0
h(s)=0 for s=1, and A'(s)<0. Choose R so r<R<a and define

C(x) =h[(|x — x| —)[(R—1)], v__—=.7,‘2u, U=Cu.
' 11*
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Then v and U € Hyy on B (%, R). Substituting in (1.1), we obtain
o=I[U,U;B(x0, ]+ f [Ce“Ua+(,‘Uf+U( — ) gu

B(x, R

+wc,uu—auﬁc,acﬂuﬂd@‘rﬂ (U f0)2~

— Ul olllell+Clu.v) LR”‘“"+Ch =) [b—cllg, R |ulf3] -
— (R —7)2e|la ||l — (1 R) (R — r)23 (Jlu]5)2%).
The result follows.

We now define the spaces S; and S, 4 for 0< 1<1 as follows: # € S; on
B(%,, a) if and only if »€ Hj there and there is an L such that

(4.16) dlu, B(x,7)] < L(r/a)f-l“ 07 d=a— |5, — x|
for every x in B(x, a); if w€ S; we define |||u[||s as the larger of “l|u|[} (see
(4.1)) and the smallest L which satisfies (4.16)). The space S, , is the subspace
of S; for which u € Hy ¢ and |||u|||; ¢ is the larger of HuH2 o and the smallest
L as above.
LEMMA 4.6. Suppose the 6%, c* and d satisfy ouwr gemeral comditions and
suppose u € S, on B(xo, a). Then ¢*u €L, duCL,, and 0*u €Ly on B(x,, a)
where

(4.15)

>

=2 S Y SRS
sl B ST R A R
and v
(f “’(" [*lu(®)2dz < (CO, A)|[ullla- [[6]l2) 02 (e/8) >+
B(x,,0)
(447)] p S 1R e ()] 2= COY sl (ell3, 8 (/o) =2+

f |d(x)u(x)\dxgcv,a Y- || o]l]a- | 2] 19 67212 (of8) 22, 0< <6

Bz, e)
for each %€ B(x,, a), where 6 =a —|x, — %,|.
Proof. The first results follow from Lemma 4.3 and the Hélder inequality.
From Theorem 2.2 and the definition of |||u||];, we see that
Joe(x) —u(x)] = Cl, A ||| ]| 74 | — xllz, 0Z | —m| < 6/2
o J [u(@)rdx< o |||}
B, 8)

From these facts, it is easy to conclude that
|u(x)] = Clo, A) |||l 6'7°  for 0= |5 — xy] < 8)2.
The results (4.17) follow easily from this and the Holder inequality.
DEFINITION.  For u in Hj 4 or in any S, ,, we define the linear operator 7
by: Tu=U where U is the solution in Hj ¢ of

J [v (@ U g+ b u) +v(c “ a-{-du)] dx.
* -  B{r,a
*) If we did not assume 4f%—4%8, the integral would contain also the terms

(a*P—aP* uUg and the bracket multiplied by 1U{|3,0 would have another term
Ch1(R“”)—1“””2
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THEOREM 4.5. There is a number a, with 0<a,<ay which depends only
on h,v,p, A, and the norms of b, c, zmd A such that if 0<asay, and 0<A=y,
Tu€ Sy, and ||T||<E :

This follows 1mmed1ately from the preceding lemma and from Theorems
3.1 and 3.3. Accordingly we have-the following Theorem:

THEOREM 4.6. If 0<a=Za, and if e satisfies (3.19) and | satisfies all the
“conditions of Lemma 4.5 with 0<<A=pu dnd I<h,, then the solution of (1.1)
which is in Hy o is also in S, and

I““l”a o=Cly,p,A) L

A corvesponding result holds if f satisfies (3.8) with I< u and 2<10

Finally, we have the following final result on interior continuity:

THEOREM 4.7. Suppose uC L, on G and u € H} on any domain D with D
compact and DCG. Suppose also that w satisfies (1.1) on each such domain
where e and | satisfy the conditions of Theorem 4.5 for each B(xy,7) (G with
ASp and A<Ay. Then u€S, on each sphere interior to G, where il norm
depends only on L, h, u, X, p, the norms of b, c, d, and the distance of B(x,, a)
from 3G, provided a<a,. Thus u satisfies a uniform Hilder condition on each
such domain D which depends on D and the quantities above.

Proof. Choose B(xy, 4)CG. Then wC H} on B(xy, ) and, in fact, its
norm”||u|{3, as defined in, (3.1), is bounded as indicated in Theorem 4.3. Then,
let H be the a-harmonic function coinciding with # on é B(%,, 4,) and define

.U by u —-‘U—{— .
Then Ug H; o on B(x,, 4) and satisfies (1.1) with ¢ and f replaced by E*
and F, respectlvely, where
*=¢ 4+ b0"H, F=f+cH,+dH.

But now H< S, on B(xo, &,) with

| ' il #llls = Co, B) ez
by Theorem 2.1, since Io(u, u; B) =1,(U, U; B)+1,(H, H; B) (B = B(x,, a)).
But then it follows from Lemma 4.6 that £ and F satisfy the conditions of

Theorem 4.6, where L. now involves ’”u“é linearly. The results follow from
Theorems 4.6 and 2.2.

5. Hélder continuity at the boundary. In this section, we prove our results
about Hélder continuity at the boundary. We begin by defining domains of
class S*(«, a).

DEFINITION. A domain G is of class S*(}x, a), 0<a< 1, if and only if it is
bounded and

| B(x,7) — G| Z a| B(x,,7)|, forally witho<r<a
and any x4 not in G. '
We begin by generalizing some of DE GIORGI’S lemmas and theorems.
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DEFINITION. A function # € B*(E, y) iff €L, on E, # € Hy on domains D .
with D compact and DCE, and if .

J uppazs-—Y— [ |u(x) —EPPdx  for all k=0,
(5.1) Ak, 01) ( Q) Ak, 02) .
J IVulzdx_S_——J——z—‘ J |u(x) —k|2dx  for all k<0,
B (02— &)* ey

the notations being those of § 2.

It is easy to see that DE Giore1r’'s Lemma I holds for such functions and
(by repeating his proof) that his Lemma IV holds, provided 2=0 and a
corresponding result holds for the sets B(k, g) for 2= 0; we label these results
as Lemmas I* and IV*, Asin De GIORGI’S case, these lemmas imply that any
function » € B*(E, y) is bounded on compact subsets of E. We now prove a
lemma which permits us to. generalize DE GiorGI's Lemmas IT and III
slightly: ) ,

LEMMA 5.1. Suppose u H} on B(xy, p), suppose u vanishes on a subset B
with | B|Z«| B(g)| (B(0) =B (xy, 0)); 0<a<<1. Then

5.2) flu(x)l”dxéﬂﬁ(v,a)-|Gl‘f’“”/”[e[1/;({[Vu{”d,x (G=B(g) - B).

Proof. It is known ([7] or [9]) that u is equivalent to a function which
is absolutely continuous along almost all lines in any direction and continues
to have this property in any coordinate system related to the original by a
bi-Lipschitz transformation. So we assume # to have this property already.
It is easy to show that if x, is not in a set Z of measure zero [for instance
if u(xy) is the Lebesgue derivative of f #(x) dx at x, and if the Lebesgue

derivatives of [ u (%) dx all exist at x,,] then # is absolutely continuous for
e

7= 0 along almost all radial lines through x,. -

. Suppose 0<<e<<a and 9 =¢|B(p)|. We may cover G with an open set
~G'CB(g) such that |G’|<|B(Q)] —|B|+n. Let B'=B(g)—G’; then
| B'|>(e—e¢) - | B(g)|]. For each x in G', let X(x) be the set of points { on
dB(0, 1) such that x—}—rC €B' for at least one 7; clearly 2(x) is the union of
a countable family of closed sets and so is measurable. It is geometncally
evident that

(53) CZ@zCa -] L, C>0

since | Z(x)] would be smallest if B’ were a cone with vertex at x and axis
along a diameter of B(g).. '

For each x in G’ and { in 2(x), let 7(x,{) be the smallest value of # such
that x4-#{ € B’ and let G (x) denote the set of all £ =x+7{ for 0=7r<7(x,{).
If x € G"—Z and if  does not belorig to a set of measure zero, we have # (x4-7{)
absolutely continuous in 7 for 0=r=<r(x,{), so that

r(x,8)

(5.4) u(x) = — of u(x+rlydr  (u,=0",), L€ 2(#).
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Averaging over 2(x), we obtain
(5-5) u(x) = —[2(x|—1f|§—x]"’ x%)u . (§)dé
From (5.3) and.(S.S), it follows tha“g i
(5:6)  |w@|SCL (6 |Pu(E)]ds, 266~

Since ¢ is arbitrary (5.6) holds with C =C(e, v) and G’ replaced by G. If p>1,
we may use the Holder inequality to obtain

[P = C L] & — [ ag] ™ [1E =27 [Pulg)fad

(5.7) <c| Gl(ﬂ—l)/vy:(ﬁ—l)/’['y-—léf [E—x|'"- |Vu(&)PdE, x€G—Z.

If p =1, (5.7) coincides with (5.6) (as modified). The result follows by integrat-
ing over e. .

We now state and prove our slight generahzatlons of DE GrorGr's Lem-
mas IT and III:

LemMa IT*. If wc HY with p=1 on B(g) =B (%, @), k<2, and

|B(g) — Ak, 0)| = «|B(p)|], O<a<1,
then
(A—RAAL "< (v,0) , [ |Vu|dx.
Ak, 0) =4 (4 0)
Proof. This follows immediately from Lemma 5.1 by taking p=1 and
=A(4; ) and replacing # by the function w(x) =0 when #(x)<%, w(x) =
- (x) —k for x on A(k; o) —A(4; 0), and w(x) =(A—k) on 4(4; g).
Lemwma I11*. If wc H} on B(p) and if '

[B(o) — A(k; 0)| Za|B(g)|, «>0
then
I |u(x) —R|2dx < By (v, ) |A(k; 0)|* [ |Vu|2dx.
Ak 0) Alk; 0) :

Proof. This follows from Lemma.5.1 by setting p =2 and e=A4(%; p) =G
and replacing « by w where w (x) =0if u(¥) <k and w(x) =u (x) —kif u(x)> k.

By repeating DE GIORGI'S proof of his Lemma V, using the modified
lemmas above, we obtain the following lemma:

LeMMA V*. Suppose u€ B*(E,y). Then there is a number 5(v,y, 0)>0
such that if B(x,, 40)CE, p>0, >0, u—2w=0, u(x)<u on B(x,, 49), and
[A(u—2w;20)| < (1—a) |B(xy; 20)|, then u(x)<p—nw on B(x; g).

REMARK. Results corresponding to the lemmas above hold if # is replaced
by —u.

We now .prove an analog of DE GIORGI's Theorem II and extend our
Theorem 2.1; Theorem II* has been proved by NasH in [11].
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THEOREM 1I*. Suppose the part B(x,, a)G of the domain G is of type
S*(«, a), suppose u € Ly on B(xy, a) and u € H} on each B (x,, R) with 0<R<a,
suppose u is a-harmonic on G B (x,, a), and supposen (x) =0 for x € B (x4, a)—G.
Then u satisfies a uniform Holder condition with exponent A¥(h, o) on each
B(xy, R) with 0<R<a which depends only on h,v,a, a—R, and ||u|f and
ll#|l§ s finite on each such B(x,, R).

THEOREM 5.1. If G and u salisfy the hypotheses of Theorem I11* and if
€ H} on B(x,, a), then

d[u, By, 1) < Clo, hya) dlw, By, 0)] - (1]8)" "%, 0<r S8 =a— |2 — x|

for any %€ B (x,, a)

Proofs. Suppose, first, that x,€ B(x,, ) —G. Let k(#) be an arbitrary
function of class C’ for 0L 7= 6 with 4 (r) =0 near r =4. Let v be any function
¢ H} on B(x,,6) which is the strong limit in H} of functions of class C’ on
B(x,, 8} which vanish on B(x,, §) —G and define

V(x)=h(|x—x]) v

Then V € H} g on B(x,, 6) and on B(x,, )~G and V vanishes on B(x;, 6) — G
so that
[ Vatugdz= [ V, aPugdx=0

B(z,,6) * B(x,, "G R
R ,
= f {h N [ v,afusdS+hr [ va“ﬂn)mu‘ﬂdS}dr
8B(z,7) OB{#3,7)

R
[ W { Jva*n ugdS— [ v, a*u ﬂdx} dr
2B{xy,7) B{xy, 1)

since % is a-harmonic on B(x,, 8)~G. Since this is true for any A (7) as stated,

we see that

(5.8) [ a“"uﬁdx~ [ va*n,u,dS, O0Z<r<R, reE‘Z.

B(xy,r) oB{x,,r) . ‘
I we apply (5.8) ‘with v =pos(u — k) where =0, we see that (5.8) holds

with « replaced by v. By following the procedure in the proof of the Leray-

~ Cacciopeli lemma ([], p. 153) we see that

2 < .y _ hi2
A(k;fex){Vu} dxs o A(kf |%(x) — k|2dx,
where

0<@<e<d, k20, Akie) =4k~ B(x;0)

where the » here is the same as in Theorem II. A similar result holds for the
sets B(k; p). Accordingly uE‘“*(E ¥} on B(x, d).

Moreover, since |B(x,,7) —G|Za|B(x,, 7)] for 0<r<6, we see immedi-
ately from Lemma V* that u satisfies a Hélder condition with exponent
Z3 (v, «, h) and constant depending only on those numbers, ||#||3, and 8 with
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# (%) =0. Now, from our previous results each point x; in B(xy, 4)nG is
also the center of a sphere B(x,, 5p/2) in which

lu(x) —u@)| S K@) lx —n|*SKE*x) |2 —x|¥,  2€B(x,5¢2).

If 0<R<a, B(x,, R) can be covered by a finite number of the spheres
B(x;, ¢) (CB (%, 50/2)). Thus u satisfies a Holder condition of exponent A3
on B(#xy, R). The homogeneity argument in the proof of Theorem 2.1 may
be repeated after which Theorem 5.1 follows as before.

We can now sketch how to prove the results concerning the boundary
behavior of the solutions of equations (1.1) which were stated in the intro-
duction for domains G of type S*(«, a): We first consider solutions « in Hj o
on G of equations (3.1) where we assume that ¢ and f satisfy

I lelpdx < L2(rjay**¥, o0=r<a,
B{x,, ’N\G

|f|ldx < KLa* " (rfa)~***  for all 7,

Bz, NG

(5.9) 0<A< Ao, pt

for any x,; the restriction on f guarantees that the gradient of the potential
of f restricted to B (x,, q) satisfies a condition like that for e. First, we notice
that if # is such a solution and we subtract off the function H, which is
a-harmonic on Gn B(x,, ) and coincides on 0[G B(x,, a)] with # and vanishes
on B(x,y, a) — G, then u,=u — H, vanishes on 0 B(%,, @) and is a solution of
(3:1) with the same ¢ and /. Then the argument of Theorem 3.3 can be repeated
to obtain the result of that theorem for #%,, the only difference being that
when one writes u,=U-+H on B(x,, R), the function H is that function
which is a-harmonic on G~ B{x,, R) and coincides with #; on é[G~ B (x,, R)]
and is 0 on B (x,, R) — G as are %, %,, and U; the argument works on account
of Theorems II* and 5.1.

It is now clear that the relévant arguments of section 4 will go through
for spheres B(x,, a) if we restrict ourselves throughout to the space *Hj
consisting of all #€ H} on B(x,, a) which are limits in Hj of functions of class
C’' which vanish in a neighborhood of [B(x,, @) —G] and define *Hj,
=*H} o~ Hj o and *S,=*H}~ S,, etc.

In case G is a Lipschitz domain, i.e. one such that each boundary pomt
is in a neighborhood N on G &G which can be mapped in a bi-Lipschitz way
on a hemisphere in such a way that N~9G corresponds to the flat boundary,
and if e and f satisfy (5.9) and the coefficients satisfy our general conditions,
we see that any solution # of (1.1) satisfies a uniform Holder condition on G
as follows: Let x, be any point of &G and let 7 be a bi-Lipschitz map as above.
Then the transform of u satisfies an equation of the same form on the hemi-
sphere but, of course, the normis of the new 5% £, d, e, and f will be different
and the new a*® will satisfy (2.3) with a different 5. But now % =0 along
the flat boundary. If weé extend # by reflection (as we would a harmonic
function) and extend the coefficients and the ¢* and f properly, the extended
# will satisfy the extended equations on the full sphere and our results follow
from our previous results for the interior. -
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