
Math. Z. 191, 405-415 (1986) Mathematische 
Zeitschrift 

�9 Springer-Verlag 1986 

Descent for the K-Theory of Polynomial Rings 

Wilberd van der Kallen 
Mathematisch Instituut, Rijksuniversiteit, Postbus 80.010, 3508 TA Utrecht, Netherlands 

Introduction 

Let A IX l be a polynomial ring over a commutative ring A and let 
c~K,(A[X]), n~Z. We say that c~ is extended (from A) if it lies in the image of 
K,(A). Our purpose is to prove statements of the following type: e is extended 
if and only if it is extended locally in the 6tale topology on Spec (A). We take 
as our starting point analogous results obtained by Vorst [16] in the Zariski 
topology. Of course the "locally extended is extended" theme goes back to 
Quillen's solution of Serre's problem [13]. As was pointed out by Lindel it 
would be of interest to have 6tale descent results for isomorphism classes of 
projective modules, not just for their stable isomorphism classes. To be more 
specific, one would hope that if A is local and P is a finitely generated 
projective A IX] module which becomes extended (hence free) after base 
change to a henselization of A or to a strict henselization, then P must be 
extended to begin with. But our method applies only to the stable isomor- 
phism classes, as it relies heavily on the module structure of NK,(A) over the 
ring of big Witt vectors W(A), [-5, 14, 17 I. In order to understand how NK,(A) 
localizes in the 6tale topology we also investigate the behaviour of W(A) and 
its truncations Wt(A ) under 6tale extensions. Here our results are similar to 
those obtained by Illusie for p-Witt vectors [9]. In the last section we describe 
NKn(B) in terms of NK,(A) | W(B) when B is 6tale over A and A, n are as in 
Sect. 1. W<A) 

Acknowledgements. Many people have made useful suggestions. Hereby I thank in particular 
O. Gabber, J. Stienstra and T. Vorst for their comments. 

w 1. Descent for NK. 

(1.1) All rings are commutat ive with unit. Let n~Z and let A be a ring. One 
puts NKn(A)=coker (K,(A)~K,(A[X])). Here, if n < 0  Bass' definition of 
negative K groups is used. 
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(1.2) Assume that one of the following two conditions holds. 

(i) n<2.  
(ii) A is noetherian and each zero-divisor of A is contained in a minimal 

prime ideal of A. 

Theorem. Given such A, n, let B be dtale and faithfully fiat over A. Then the 
Amitsur complex [10; p. 119] 

0 ~ N K  n (A) ~ N K  n(B) -~ N K  n (B | B) ~ N K  n (B | B | B) ~ . . .  
A A A 

is exact. (Compare with [16; 1.7]). 

(1.3) Remark. Saying that B is 6tale and faithfully fiat over A is the same as 
saying that Spec(B)~Spec(A) is a covering family - consisting of 1 element - 
in the 6tale topology. The Amitsur complex is the complex whose cohomology 
is taken when computing the Cech cohomology groups, with coefficients NKn, 
of this covering family. We have augmented the complex with NK,,(A). 

(1.4) Remark. Instead of assuming that B is unramified over A one may make 
the weaker assumption that for each fiber the trace is surjective. (This sur- 
jectivity is automatic in characteristic 0.) In the terminology of EGA the 
conditions of the theorem then read: "For  such A, n, let B be faithfully flat, 
finitely presented, quasi-finite over A, such that for each maximal ideal m of A 
the trace B / m B ~ A / m  is surjective". We will explain in 1.20 below how to 
modify the proof under these weaker assumptions. 

(1.5) Remark. Consider for a noetherian ring A the property (P) Every zero- 
divisor is contained in a minimal prime ideal. If A is reduced then it satisfies 
(P). (Exercise.) If B is finite and flat over A and A has (P), then so does B [11; 
9D, 5El. Further A has (P) if and only if all its local rings have it [11; 7C]. If 
A has (P) and B is quasi-finite, flat, finitely presented over A, then it easily 
follows from Zariski's Main Theorem [8; IV, 8.12.6] and from [11; 9D, 5E, 
7C] that B has (P). In particular, if B is 6tale over A and A has (P) then so 
does B. Property (P) is relevant to us because of the following theorem of 
Vorst. 

(1.6) As in Vorst [16] we write [ f ]  for the Teichmtiller lifting to W(A) of 
f e A  (cf. 1.14 below). This I f ]  acts on NK,(A) compatibly with the action on 
K,(A [X]) that is induced by the substitution X~-*fX. 

Theorem (Vorst). Let A, n be as in 1.2 and let f~A .  Then 

NK.(A)[f]'~ NK,(Af) .  

Proof. Instead of Lemma 1.6 of [16] use Lemma 1.7 below. [] 

(1.7) Lemma. Let A have the property discussed in 1.5. For f ~ A  there are g~A 
and m > 1 so that frog = 0 and so that fro+ g is a non-zero-divisor. 

Proof. Choose ~ so that it lies exactly in those minimal prime ideals that do 
not contain f. Then choose m so that (f~,)m= 0 and put g = ~m. []  
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(1.8) Vorst's theorem allows us to go local. When doing this it is good to 
keep in mind that f l ,  ..-,fro in A generate the unit ideal if and only if 
[ f l ] ,  . . . ,  [fm] generate the unit ideal in W(A). [16; 1.8]. In other words 

Spec(Asl ) . . . .  , Spec(Afm ) cover Spec(A) 

if and only if 

Spec(W(A)ml) . . . . .  Spec(W(A)E~1) cover Spec(W(A)). 

Also observe that, by a limit argument, one may extend Theorem 1.6 to 
multiplicative systems: If S is such a system in A and [S] is the system of the 
[ f ]  ~ W(A) with f~S,  then [S]-  1NK,(A) ~- N K , ( S -  1A), provided that A satis- 
fies the conditions of the theorem. 

(1.9) We give some corollaries to Theorem 1.2. 

Corollary. Let X be a reduced scheme, ~AroY', the Zariski sheafification of 
U~--~ NK,(F(U)) on the Otale site of X. 

(i) JVJY', is an ~tale sheaf with 

H~t(X , .AroY')- ' 
- -  Hzar(X , .A#ff{'n). 

(ii) I f  X is affine, X=Spec(A), then 

.Ar2K,)=~NK,(A) if i = 0  
H~t(X, lo if i>0.  

Proof. Theorem 1.2 easily implies that Xo~f, is an 6tale sheaf and that, if X is 
affine, the 6tale (2ech cohomology groups are like is suggested in (ii). (Use that 
a reduced ring is a filtered direct limit of noetherian reduced subrings and see 
[8; IV, 17.7.8]). By a criterion of Cartan [6; Chap. II, 5.9.2] part (ii) 
follows. (The proof of Cartan's criterion remains valid in the 6tale topology, cf. 
[12; Chap. III].) Now it is also clear that the higher direct images of X ~ ,  
under ~: X~t ~ X z ,  r vanish and (i) follows from the Leray spectral sequence for 
rc with coefficients JVog(,. [] 

(1.10) If A is a positively graded ring, A =  @A~, we write A + for @A~. By a 
i_->0 i > 0  

trick of Weibel [18] the relative K-groups K , ( A , A  +) are naturally direct 
summands of the NK,(A,  A +) which in their turn are naturally direct sum- 
mands of NK,(A).  (Weibel uses the homomorphism A ~ A  [X] that sends aeA~ 
to aXe). Thus we get 

Corollary (Weibel). Let A, n, B be as in 1.2 and assume moreover that A-* B is a 
homomorphism of positively graded rings. Then the complex 

0 ~ K,(A,  A +) ~ K,,(B, B +) -+ K,(B | (B |  +) ~ . . .  
A A 

is exact. [] 

(1.11) Corollary. Let A, n be as in (1.2) and assume A is local, essentially of 
finite type over a field or over an excellent discrete valuation ring. Then 
NK ~(A )~  NK,(A)  is injective where A denotes the completion of A. 
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Proof As K-theory commutes with filtered direct limits and Theorem 1.2 tells 
that NK,(A)--*NK,(B) is injective for any 6tale neighborhood (B, q) of (A, m), 
we get an injection NK,(A)~ NK,(Ah), where A h is a henselization of A [12]. 
By Artin approximation NKn(Ah)--* NK,(A) is injective. (Apply (1.12) and (1.8) 
of [2] to the functor which assigns to an A h algebra C the set of non-trivial 
elements in the kernel of NK,(A h)--,NK.(C).) [] 

(1.12) An obvious corollary of (1.2) is 

Corollary. Let A, n be as in (1.2) and let B be Galois over A with Galois group G 
[12; Chap. I, 5.4]. Then NK,(A)~H~ NK,,(B)). 

(1.13) Remark. Arguing as in the proof of (1.2) one may also show that 
HZ(G, NK,(B)) vanishes for i > 0. 

(1.14) Before turning to the proof of Theorem 1.2 we briefly recall how W(A) 
acts on NK,(A), so as to fix notation. (For details see [5, 1, 7, 14, 17]). By 
Bass' theory of contracted functors [3; Chap. XII, w we may assume n >  1 
and by the fundamental theorem we may then view NK,(A) as a summand 
K,_l(~Argd(A)) of K,_l(zffd(A)), where Xd(A)  is the category of pairs (P,f) 
with f a nilpotent endomorphism of the finitely generated projective A module 
P. Using the product structure of algebraic K-theory and a tensor product 
functor one makes K,_I(Yd(A)) into a module over the ring Ko(C~(A)) 
where 6%d(A) is the category of pairs (P,f) with f an endomorphism of the 
finitely generated projective A module P. Let [P,f] denote the class of (P,f) 
and let e be the idempotent [A, 1 ] - [ A ,  0] of Ko(E~d(A)). Then I~,_l(~d(A)) 
=eK,_I(Xd(A)) is a module over I~o(E~/(A))=eKo(~/(A)). By a theorem 
of Almkvist there is an injective ring homomorphism 

z: ~0(~(A))-+ W(A) 

with dense image, such that ~(e [P, f ] ) =  ~o(det ( 1 -  Tf)-1) where 

co: (1 + TA [ IT]J)  • ~ W(A) 

is the usual isomorphism of topological abelian groups, here normalized as in 
Bloch [4]. (On (1 + TA[[T]]) • one puts the T-adic topology.) We shall identify 
/~o(#~/(A)) with its image under X. I f f~A  we write [ f ]  for e[A, f ]=[A, f ]  
- [ A ,  0] = c o ( ( 1 - T  f)-1). An arbitrary element of W(A) can be written uniquely 
as a convergent sum ~ V~[fJ where the Vii are the Verschiebung operators, 

i > 1  

characterized by Vm(co(q(T)))=co(q(Tm)). The continuous multiplication in 
W(A) satisfies 

(v~ [ f ] ) ( v ;  [g])  = d V~a/a I-fjla gila] 

where d=g cd(i, j), f, geA. 
We write FiltmW(A) for co((l+rm+lA[[r]])• and Wm(A) for the ring 

W(A)/Filtm(A) of truncated big Witt vectors of length m. If M is a W(A) 
module we write Fil t=M for the submodule consisting of the element that are 
annihilated by FiR m W(A). One can show [14] that NK,(A) has a module 
structure over the ring W(A) such that NK,,(A) is the union of the 
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Filt,,NK,(A), m> 1, and such that restriction of scalars to I(o(g~(A)) agrees 
with the module structure o f / ( , _  I(Xd(A)) over I(o(&~((A)). As the image of 
X is dense these properties determine the action of W(A) on NK,(A). 

(1.15) We now start proving Theorem 1.2. If C is an A algebra, write Hi(C) 
for the j-th cohomology of the complex 

0 ~ NK.(C) ~ NK.(C| ~ NK.((C|174 (C| --. .... 
A A C A 

Consider ~HS(A). We have to show ~ vanishes. By a limit argument we may 
assume A is noetherian [8; IV, 17.7.9] so that we may freely refer to [12] in 
the sequel. By (1.8) it suffices to show that for each maximal ideal m of A there 
is f~A, f(~m with I f ]  ~=0.  A limit argument tells that we must show that the 
image of ~ in HJ(A,,) vanishes (see (1.8) again) and we further assume A is 
local. First suppose A is strictly henselian. Then A-~B has a section [8; IV, 
18.8.1] and this section provides a contracting homotopy of the Amitsur 
complex (Exercise, or see [12; Chap. III, 2.1 and 2.2]). Thus the theorem is 
trivially true in this case. 

In general, if A is local and A =h is a strict henselization of A, we now know 
that the image of ~ in HS(A =h) is zero. This implies that there is a standard 
6tale neighborhood (C s, q) of (A, m) [12; Chap. I, 3.14] such that the image of 

in HS(Cs)=HS(C)m vanishes. Here C is a finite A algebra, free as an A 
module, f ~  C, q is a maximal ideal of C (lying over the maximal ideal m of A) 
with fCq, A o C  s is 6tale. There is a power fm of f so that [fm]~0,(~) 
=[ f ]mq~,(~)=0,  where (0, is induced by (o:AoC,  ~o,(~)~HJ(C). Replacing f 
by its power to simplify notation we record 

(1.16) I f ]  (p,(c0 = 0. 

(1.17) Lemma. For r> 1 the trace map TC/A: C--+A mapsfrC onto A. 

Proof It suffices to show that the image o f F  C contains a unit. Go modulo m 
and use that the trace form of the finite separable field extension Aim ~ C/q is 
non-degenerate.-(C/q is one of the factors of the artinian Aim algebra 
C/~ C.) [] 

(1.18) End of Proof of 1.2. Let ~o*: I(o(g~(C))-~Ko(gCed(A)) be induced by 
the forgetful functor g~/(C)~g~/(A) .  The Verschiebung operators V~ are 

(P, g) v--~ 

induced by the functors 

See [7]. Clearly they commute with (o*. For  g~C and f as above we find 
(p*((V,.[g]) I / I ) =  q~*(V,.[f"g])= V~ (p* [ f "g ]  = V,.co(det (1 - Tf"g)-  1) where in the 
last member f"g is viewed as an A linear endomorphism of C. Therefore 
(p* ((V r[g])  I f ] )  ~ V r [ T c / A ( f  r g)] rood Filt" W(A) and with Lemma 1.17 this shows 
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that q~*(I(o(g~/(C))[f]) is dense in W(A). The functoriality of the K-theory 
product yields for P e / ( o ( g ~  (C)) the projection formula 

~o* (P [ f ] )  ~ = q~* (P [ f ]  q), (e)). 

The right hand side vanishes by (1.16). Choose s so that meFiltsHY(A) and 
choose P so that q ~ * ( P [ f ] ) - 1  mod Filt s W(A). Then the left hand side in the 
projection formula equals c~ so that c~=0. [] 

(1.19) Exercise. Show that q)* extends to a continuous W(A) linear map 
W(C) ~ W(A). 

(1.20) Under the conditions indicated in Remark 1.4 the proof goes roughly 
like this. If A is local the map A sh ~ASh|  does not quite split, but there is by 

A 

[8; IV, 18.5.111 a direct factor D of the tensor product that is finite over A sh, 
free as an A sh module [11; 3G], such that the trace D ~ A  sh is surjective. As D 
is a B algebra the m a p D ~ D |  splits, so that Hi(D) vanishes. One derives 

A 

from this as in (1.18) (with f = l )  that HJ(A sh) vanishes and from there one 
follows the old proof. [] 

(1.21) Remark. As is clear from the proof, Theorem 1.2 remains valid with 
Z/m coefficients, i.e. the complex 

0 ~ N K ,  (A)/mNK n (A) ~ NKn (S)/mNK~ (B) ~ . . .  

is also exact, and therefore the complex 

0 ~ NK~(A; Z/m) ~ NK~(B; 71/m) ~ . . .  
is exact too. 

w 2. Big Witt Vectors and l~tale Maps 

(2.1) Big Witt vectors and truncated big Witt vectors behave rather badly. If 
A is noetherian, Wa(A ) need not be noetherian, and if B is finite over A, W2(B ) 
need not be finite over W2(A ). Nevertheless we will see that for 6tale maps 
good properties may be proved, cf. [9]. 

(2.2) If A is of finite type over Z, say generated by x 1, . . . ,  x d_ 1 where d>__ 1, 
and if t__> 1, then Wt(A ) is finite over the subring generated by Ix1] . . . .  , [xd-11. 
(Exercise. Also get used to the abuse of notation.) In this situation Wt(A ) is 
thus noetherian of dimension at most d. As most of our problems commute 
with filtered direct limits this observation allows us to reduce to the noetherian 
case when studying truncated big Witt vectors. For  the Big Witt vectors 
themselves this does not work. 

(2.3) Lemma. Let t > l ,  f~A .  With notations as in (1.8), (1.14), we have 
Wt(Af)~-Wt(A)Ey I and, more generally, for a multiplicative system S in 
A: W,(S-1A)~-[S] -1Wt(A ). [] 
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(2.4) Theorem Let B be &ale over A, t >__ 1. 

(i) Wt(A ) | Wt+ I (B)~  Wt(B ) is an isomorphism. 
W ( A )  

(ii) Wt(B ) is &ale over Wt(A ). 
(iii) I f  C is another A algebra and B or C is finite over A then 

Wt(B ) | Wt(C ) ~ Wt(B| C) 
W t (A) A 

is an isomorphism. It  also is an isomorphism if B and C are both &ale over A. 
(iv) I f  B is 4tale and finite over A, of degree r, then W(B) is &ale and finite 

over W(A), of degree r. 
(v) I f  B is &ale and faithfully flat over A and M is a Wt(A ) module, then the 

"augmented Amitsur complex" 

O~  M ~ M | Wt(B)--, M | W t ( B |  
Wt (A) W t (A) A 

is exact. 

(2.5) To prove the theorem we start with a few lemmas. 

Lemma. Let A be local of residue characteristic p > 0 and let B be &ale over A. 
For e > 1 the pe-th powers in B generate B as an A module. 

Proof. Define A" A [ X ]  ~ A [ X ]  by ( A f ) ( X ) - - f ( X  + 1 ) - f (X ) .  Take f ( X ) = X  pe 
and consider the A module M generated by f(B).  It contains (Aif)(B) for i=> 1, 
in particular for i = p e - 1 .  Thus M contains (pe)!B. Go modulo (pe)! and p is 
nilpotent in A. By the Nakayama lemma we may assume A has characteristic 
p. Then [9; 1.5.7.1] applies. [] 

(2.6) Lemma. Let A be local, B finite &ale over A, t > 1, such that each residue 
field of B has at least t 2 elements. There is a basis bl, ..., b, of the free A module 
B such that for each i with l<_i<_t the sequence b~ . . . .  , b i, is also a basis. It  
follows that [bl], ... , [b,] is a basis of the Wt(A ) module Wt(B ). 

Proof. For the last statement use [b] V~[a]=V~[bra] and proceed along the 
filtration Filt* Wt(B ). For  the rest we may assume A is a field. We may assume 
B is a finite (separable) field extension of A. We will take bj of the form b j with 
b chosen suitably. Clearly b is suitable if and only if b' generates the field 
extension for each i with 1 _< i _ t .  If B is a finite field, a generator of its 
multiplicative group is a suitable choice (exercise). If B is infinite we see from 
a general position argument that it suffices to show for fixed i that b i can be 
taken outside each of the finitely many field extensions of A that are properly 
contained in B. By the same kind of general position argument we need 
consider only one of the intermediate fields. We must show that this field K 
does not contain all i-th powers. As B is separable over K we may assume i is 
not a multiple of the characteristic. Choose ao, ..., a i distinct and non-zero 
in A and recall that the Vandermonde determinant det(a~) is invertible. 

Thus if K contains (a,.+b)i= ~ a ,  ~. (~)b  i-S for all r, it contains (i)bi-S" Take 
s = i - 1 .  [] s 
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(2.7) Lemma. Let t >= 1 and let I be an ideal in A. 

(i) I f  B is ~tale over A then Wt(I ) Wt(B ) = Wt(IB ). 
(ii) I f  C is an A algebra and I is finitely generated then the Wt(I ) Wt(C)-adic 

completion of Wt( C ) equals Wt( C ) where C is the I C-adic completion of C. 

Proof. (i) By (2.3) and (1.8) we may assume A is local. Use Lemma 2.5 and the 
formulas (V~ [b]) (V~p~ [a]) = r V~p~ [b pea], proceeding - as always - along the fil- 
tration of Wt(B ). 

(ii) Now use V~[ar~c]=[a]rV,[c]. [] 

(2.8) Part (i) of Theorem 2.4 is proved like part (i) of (2.7). [] 

(2.9) Recall the ghost maps g h :  W ( A ) ~ A  sending ~ V~[a,] to ~ da~/d, They 
are homomorphisms [7]. Let Rad denote the Jacobson radical, dl, 

Lemma. Let A be local with residue field k and let t > 1. 

(i) Rad(Wt(A)) is the kernel of the direct product over i not divisible by 
char(k), l < i<t ,  of the composite homomorphisms Wt(A)~ A ~ k .  This makes 

ghi 

Wt(A)/Rad (Wt(A)) isomorphic with ]-I k. Thus Wt(A ) is semitocat. 
i 

(ii) I f  B is finite ~tale over A then Rad(Wt(B))=Rad(W~(A))Wt(B ) and 
W t (B)/Rad (Wt(B)) is isomorphic with H (B | k). 

i A 

Proof (i) As W(Rad(A))c Rad(W(A)) (Exercise) we may assume A is a field. If 
p = char(A)~= 0 then p is topologically nilpotent in W(A) and therefore Vpi [a] is 
topologically nilpotent for i__> 1, aeA. 

(ii) Use (2.7(i)) and (2.4(i)) and argue similarly. [] 

(2.10) Proof of (2.4(ii)). We may assume A, B, W~(A), Wt(B ) are noetherian (see 
(2.2)). Using [8; Chap. IV, 17.6.3], (2.3) and (1.8), we may change the problem 
somewhat and now assume A local, B essentially 6tale [-8; Chap. IV, 18.6.1] 
over A. Let m be the maximal ideal of A. As Wt(m)~Rad(Wt(A)) and 
W,(m) Wt(B)=Wt(mB)cRad(Wt(B))  by (2.9), the new problem is to show that 
the Wt(mB)-adic completion of Wt(B ) is 6tale over the Wt(m)-adic completion of 
Wt(A ) [8; Chap. IV, 17.6.3]. By (2.7) we may thus replace A by/1, B by/~. Now 
B has become finite 6tale over A and it is clear from (2.9) that Wt(B ) is 
unramified over Wt(A ). If the residue fields of B have at least t 2 elements then 
(2.6) shows that Wt(B ) is free over W~(A) and we are done. If some residue fields 
are too small, choose C faithfully fiat and 6tale over B so that its residue fields 
are sufficiently larger and observe that Wt(C) is 6tale over W,(A), faithfully fiat 
over Wt(B ). [] 

(2.11) Proof of (2.4(iii)). Surjectivity is proved like part (i) of (2.7). Remains to 
show our map is injective. We may assume A is of finite type over 7.. Using 
standard 6tale maps and localization the case that both B and C are 6tale over 
A is reduced to the case that C is finite over A and B 6tale over A. As in (2.10) 
we change that case slightly and now consider the case that A is local, C finite 
over A, B essentially ~tale over A, A essentially of finite type over 7Z. Check 
that W~(C) is finite over W~(A) (first pretend A is of finite type over Z, then 
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localize) and that Wt(A), Wt(B), Wt(C ) are noetherian. To see that our map is 
injective, we may complete it with respect to the Wt(m ) Wt(B)-adic topology. 
Using (2.7) and the fact that Wt(C ) is a finitely presented Wt(A ) module we see 
that this amounts to replacing A, B, C by their respective completions. This 
way we have reduced to the case that A is local, B is finite 6tale over A, which 
is thus the only case that remains. Finish as in (2.10), using Lemma 2.6. [] 

(2.12) Remark. Of course the restriction on the size of the residue fields in 
Lemma 2.6 was needed only to produce a basis of a specific form for Wt(B ) 
over Wt(A ). One may always construct a basis by lifting one of 
Wt(B)/Rad(Wt(B)) over Wt(A)/Rad(Wt(A)), when B is finite 6tale over the local 
ring A (see (2.9), (2.4(ii))). 

(2.13) Proof of (2.4(iv)). We first assume A is of finite type over Z, generated 
by d - 1  elements, d > l .  We shall construct d+r elements b a . . . .  , bd+ r of W(B) 
that generate W(B) as a W(A)-module. To see that they generate it suffices to 
check that they generate Wt(B| ) over Wt(Am) for each t > l  and each 

A 
maximal ideal m of A (use (2.4(i)), (1.8), (2.3)). By Lemma 2.9 and the 
Nakayama lemma we must assure that for t > 1 and for each m whose residue 
characteristic does not divide t, the ght(bi) generate B/mB over A/m. We 
construct the bl along the filtration, considering one t at a time, and leaving 
the residues rood Filff-I(W(B)) fixed when working on t. Fix t. Construct b~ by 
induction on i, and using general position arguments as in [-3; Chap. IV, proof 
of (2.8)-] so that the set of m with residue characteristic that does not divide t 
and with dima/m (span of ght(bl) . . . . .  ght(bl) in B/mB)<=min(r-1, i-j), has 
dimension at most d - j  for j_>_ 0. (The dimension of the empty set is - oe. For  i 
=d+r, j = d + l  the condition says that ght(b 0 . . . .  ,ght(bd+r) span B/mB if 
t(zm.) This construction yields a surjective W(A) linear map F ~  W(B), where F 
is a free W(A) module on d + r generators. We wish to find a splitting of this 
map. This splitting is constructed along the projective system W(B)---limm Wt(B ) 
using the fact that F | Wt(A ) --~ Wt(B ) splits, and that the freedom of choice in 

W(A) 
the splitting of F | Wt(A)--+ Wt(B ) surjects onto the freedom of choice of 

W(A) 
splitting F | W t_ ~(A)--+ W~_ ~(B). Thus W(B) is a finitely generated projective 

W(A) 
W(A) module. To see that it is 6tale over W(A) we must split 
W(B) | W(B)-+W(B) [-8; Chap. IV, 18.3.1-]. This can be done for similar 

W(A) 
reasons. It is clear from Lemma 2.9 that Wt(B ) has degree r over Wt(A ). 
Therefore the idempotent E in W(A) which defines the part of the spectrum 
over which W(B) has degree r is congruent to 1 modulo Filff W(A), for each t. 
We must have E = 1. We have proved part (iv) if A is of finite type over 7/. The 
general case is obtained by base change from this special case and one deals 
with it by applying base change at appropriate stages of the above proof. [] 

(2.14) Remark. Because W(A) is rather unwieldy as an abstract ring, it may be 
better to consider it only with its topology. Thus part (ii) seems more relevant 
than part (iv). 
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(2.15) Remark. If p is prime and all integers prime to p are invertible in A, 
then one may want to pass to p-Witt vectors by multiplying with the appropri- 
ate idempotent in W(A) [4; I(3.5)]. 

(2.16) Proof of (2.4(v)). Again we may assume A is local noetherian. By part 
(ii) the map Wt(A)~ Wt(A ~h) is faithfully fiat where A sh is a strict henselization 
of A. By part (iii) base change along this faithfully fiat map reduces us to the 
case A=A ~h. As in (1.15) this case is trivial because of a contracting homotopy. 

w 3. l~tale Localization of NK. 

(3.1) Let M be a W(A)-module that is the union of its submodules Filt, M (see 
(1.14) for the notation). If B is +tale over A, then part (i) of Theorem 2.4 allows 

us to form li_mm(FilttM | Wt(B)). We call the limit M | W(B) and, for 
t Wt(A) W(A) 

mEFilttM , beWt(B ), we write m| for the corresponding element of 

M | W(B). There is an obvious map from M | W(B) onto M | W(B) and 
W(A) W(A) W(A) 

its kernel is generated by the m| for which there is a sequence (b,), converg- 
ing to b, with m| in M | W(B). (Exercise. First show that the kernel is 

W(A) 

generated by the m | b with m + Filt~ M, b E Filt t W(B) for some t). 

Remark If Filff W(B)c(Filff W(A)) W(B), then clearly M | W(B) coincides with 
W(A) 

M | W(B). Weibel has pointed out that this applies if A contains the field of 
W(A) 

rational numbers. (Inspect the images of Filff W(A) and Filff W(B) under the 
isomorphism gh: W(B)-~ l-I B of [4, p. 195]). Another case where this applies is 

given in (3.2(ii)). But one may show that it does not apply when A=k[XJ, B 
= k[X, X - l j ,  where k is a field of positive characteristic. 

(3.2) Theorem. Let A, n be as in (1.2) and let B be dtale over A. 

(i) The map NK,(A) | W(B)~ NK,(B) is an isomorphism. 
W(A) 

(ii) If  B is finite dtale over A then NK,(A) | W(B)~ NKn(B) is an isomor- 
phism. W(A) 

(3.3) Remark. This theorem generalizes Theorem 1.6 above of Vorst and was 
suggested by him. 

(3.4) Proof of the Theorem. (ii) By part (iv) of Theorem 2.4 the W(A) module 
W(B) is finitely presented so that FilffW(B)c(FilffW(A))W(B). Thus (3.1) 
shows that part (ii) follows from part (i). 

(i) For an A algebra C let H~(C) denote the j-th cohomology of the 
complex 

O-~ NK,(C) | W(B| NK,(B| 
w (c) A A 

and let a~H~(A). We have to show a vanishes. As this problem involves direct 
limits with truncated big Witt vectors in them, we can still make the usual 
reductions and assume A is local noetherian. We arge as in the proof of 
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Theorem 1.2. If A sh is a strict hensel izat ion of A then HJ(A sh) vanishes because 
B | A sh is a direct p roduct  of finitely m a n y  copies of A sh and  possibly a factor 

A 
whose degree over A sh is smaller than  the degree of B over A, so that  we may 
assume it is harmless, by induc t ion  on  the degree ( = m a x i m u m  n u m b e r  of 
points  in a geometric fiber). As in (1.15) we find a finite A algebra C, free as an 
A module,  and  f ~ C  with I f ]  go.(c0=0, where go: A ~  C is such that  A ~  Cy is 
6tale and  faithfully flat. To proceed as in (1.18) we need transfer 

maps  go*: HJ(C)-~HJ(A). Now gKn(C ) | W(B| C)~-NK,,(C) | W(B) 
W(C) A W(A) 

by part  (iii) of Theorem 2.4. Fur ther  the project ion formula shows that 
go*'NK,(C)~NK,,(A) is W(A) linear, so that it induces 

go*: NKn(C ) | W(B)-*NKn(A ) | W(B) 
W(A) W(A) 

and  one easily sees from (3.1) that  this factors through 

go*" NK,(C) | W(B)-+ NK,(A) | W(B). 
W(A) W(A) 

F r o m  here the way is clear. []  

(3.5) Exercise. Rederive Theorem 1.2 from Theorem 2.4(v) and  Theorem 3.2. 
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