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O. Introduction 

During the last years interesting regularity theorems have been proved for 
obstacle problems (with integral constraints) in the vector-valued case, we 
mention the papers 1-6-10, 12]. Unfortunately complete results for general non- 
convex obstacles were only obtained in two dimensions, in higher dimensions 
the obstacle had to be convex. Some progress has been made by Hildebrandt, 
Meier ([8]): If u: R " ~ O ~ I R  N minimizes SlDvl2dx under the condition v(O) 

f~ 

c_M and if we assume M to be diffeomorphic to some convex set K then by 
transformation we get a minimum-problem with convex obstacle K and as- 
sociated functional of the form S biJ(v)Dv ~.DvJdx and according to [8], Theo- 

f~ 
rem 3 regularity would follow if we impose some smallness condition relating 
the coefficients b ~j and the diameter of K which is in general not satisfied. 

Very recently the second author ([-4]) could extend some results in [12] to 
arbitrary dimensions by showing partial regularity in the special case of a 
graph-obstacle u N > f ( u  1 . . . .  ,b/N-l) where f: I R N - I ~ R  is a general smooth 
function satisfying some growth conditions. The argument rests on an appro- 
priate linearisation of the minimum-property giving an elliptic system with a 
vector-measure on the right-hand side which does not behave too bad. In the 
sequel the first author ([1]) could apply this method to more complicated 
obstacles. 

The plan and purpose of this paper can now be summarized as follows: We 
try to extend the above mentioned result of Hildebrandt, Meier ([8], Theo- 
rem 3) by considering the problem 

(0.1) F~(u) = �89 ~ IDu[Z dx ~ m i n  
f~ 

in the class 

(0.2) cg:={v~Hl'2(12)N: v=u o on c~g2, G~(v) :=~g( . ,v )dx=K,v(g2)cM} 
f/ 
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where ~ c N N  can be mapped on a closed convex set K in a Bi-Lipschitz way. 
In two steps we prove that the minimizer u is regular up to a set of IH n-2- 
measure zero: 
Step 1 consists in a suitable linearisation which transforms (0.1) into an elliptic 
system with right-hand side of quadratic growth in the gradient of u. Here we 
use ideas of [1, 4] combined with techniques due to Hildebrandt and others 
([8, 9]) which enable us to handle the integral constraint. In the second step we 
prove a reverse H61der-inequality for the minimum, well-known arguments of 
Giaquinta, Giusti (see [5]) give the desired result. We wish to remark that by 
different techniques replacing step 2 it is possible to handle more general side- 
conditions, but these arguments are much more technical than the approach 
described here so that they will be described in a forthcoming paper. 

1. Notations and the Result 

We fix the following general assumptions. 

(A1) f2clR", n>3,  is a bounded Lipschitz-domain (see [11]), N > 2  denotes a 
given integer. 

(A2) M c l R  N is bounded and open with smooth boundary 0M of class C2; 
P: f / - - ,K:  = {z~NU: Izt < 1} is a given Bi-Lipschitz map. 

(A3) g: O x l R N ~ N  is continuous with continuous partial derivative D2g 
(which means differentiation with respect to the lRN-variable). For  domains D 
c f2  and functions u: D~IR N let 

FD(u) : =�89 5 IDul2dx, GD(u): = 5 g(-, u)dx. 
D D 

(A4) The boundary values u o belong to the space H1"2(0) N and satisfy Uo(O ) 
c M and the non-degeneracy condition 

IH n- 1 ({x e0f2: D 2 g(x, ~o(X)) :t = 0} ~ ~o 1( IRN "~ 0M)) > 0, q~0: = u0 I~. 

(A5) For  a given real number ~c the class cg defined in (0.2) is non-empty. 

Then we have the following 

Theorem. Let (A1) (A5) hold and let u be the solution of (0.1). Then there is an 
open subset Qo of Q such that l~In--2(~"~'~O)~-0 and uECl'~(f2o) N for all 
0 < ~ < 1 .  

Remarks. 1) It is possible to replace Fe by more general functionals 
a~D~u.Dpudx with smooth coefficients a~(x). 

2) The non-degeneracy condition (A4) and the assumptions concerning g 
are essentially due to Hildebrandt, Meier ([81), we use a simplified version 
which can be found (for the scalar case) in the papers of Eisen ([2, 3]). In 
contrast to [2, 3, 8] we do not have to impose growth conditions on g and 
D2g with respect to the second argument since we assume M to be bounded. 
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2. Linearisation 

We start  with an auxil iary result which enables us to handle  the integral  
contraint .  The  p roof  of L e m m a  1 is essentially due to Hi ldebrandt ,  Wente  
([9]). 

L e m m a  1. Under the assumptions of the theorem there exist two balls B 1, B 2 and 
two functions f 1, f 2  having the following properties: 

(i) BiGf2, dist(B1,B2)>o, fieI?tl'2(Bi)U c~U ~ 

(ii) (u+tf l ) (Bi)c l f i  for It[_-<t0. 

d 
(iii) 6G~(u , f i ) :=d~ ~ Ge(u + t f  ~) = 1. 

Proof Since 3f2 is Lipschitz  we infer f rom [11], Thm.  3.6.1 and  (A4) 

lL"({xe~?: D2g(x,u(x))=~O} c~u- I(IRN~aM))>O 

and by a subdivision a rgument  there are balls B 1, B a as above  such that  

(2.1) ILn({x~Bi: Dag(x,u(x))=~O}~u-l(M))>O, i =  1,2. 

Deno te  by M a the inner parallel  set of M at distance 6 > 0 .  Obvious ly  (2.1) 
holds with M replaced by Ma if we take c5 small  enough. For  A:=Ma,  
B:=Ma/: let p~C~(B,[0,1]), p = l  on A. If  

d Sg(.,u+t~p(u))dx=O 
dtlo w 

for all rleC~(Bi) u we would have a contradic t ion to (2.1) and  our  choice of 6. 
Thus we find tlieCl(Bi) N such that  6GB,(u, tllp(u))+O and we may  assume that  
the first var ia t ion is =1 .  N o w  define fi:=rlip(u)d211"z(Bi)c~L~176 for t o suf- 
ficiently small  (ii) is obviously satisfied. Q E D  

To  prove  our  t heo rem we can consider subdomains  D of ~2 having d iameter  
d as small  as we want ;  for d small  enough either D c ~ B I = ~  or Dc~B2=,~. So 
we m a y  restrict ourselves to work  on ~ :=~2~/3~. 

L e m m a  2. On ~ lu  satisfies the system of Euler-equations 

(2.2) - Au - ~ D  zg(" , u) = A. 2 

with a positive Radon-measure 2 and AmL~ N, e:=6Fo(u,fl). For 2 we 
have the estimate 

(2.3) 2 <= C(IOu[ 2 + ]D2g( ' ,  u)l).IL" 

where C denotes a positive constant. 

Proof For  r > 0 fixed we take h: [0, oo)~lR of class C a satisfying h = 1 on [0, r], 
h ' < 0 ,  h = 0  on [2r, oe). We let d(y):=dist(y, OM), V(y):=Dd(y), y~M, and 
define for e > 0 ,  t/~C~~ [0, oc)) v#=u+e.r l .  V(u).h(d(u)). For  e small  enough 
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v~((2) c ~r and if we introduce the functions 

(P(8, t ) : = t p o + ( p l ( e ) + ( P 2 ( t ) ,  ~(8, t ) : = t C + O l ( 8 ) + O 2 ( t  ), 

(P0 : = Fo(u), q~i(e):=Fa(v~)-F,(u), (Pz(t):=F,(u+tfi)-F,(u),  

@l (e): = Ga(v~) - ae(u), Oz (t): = Ot~(u ~- ~f 1) _ Of~(u) 

we have according to [8], L e m m a  3: 

~o'1(o)  - ~. q'~ (o) __> o .  

By the Riesz-representat ion-theorem this inequality is equivalent to 

(2.4) ~ Du.D(tl.V(u).h(d(u)))dx-c~ ~ D2g( . , u  ). V(u).h(d(u)).~ldx= ~ rl.d2 
F2i Ell f t l  

for all functions ~/e C~~ 

Now we extend V to a ne ighborhood of 8M. For  T: ]RN--,]R N with support  in a 
small ball KR(Yo) centered at yoeOM and the proper ty  T - V = 0  we introduce 
the flow ~b(s, y) which satisfies 

8 
�9 (O,y)=y,~slo~b(s,y)=T(y), (b(s,y)e37i for y e M .  

Thus the function u~:= ~(e-t / .  h(d(u)),u) respects the obstacle provided [e] ~ 1 
and t/~ C~(O1). The argument  from above gives 

(2.5) ~ Du. D(~. h(d(u)). T(u))dx - y a. D 2 g(', u)~l. h(d(u)) T(u)dx =0.  
Fat ~i 

We cover a ne ighborhood  of 8M with balls KR(y~) , l= 1 ..... L, yzeSM on which 
we can find vector-fields T~ i, i =  1 . . . . .  N -  1, l =  1, . . . ,  L such that  T~ i. T j =  6q, 
T~i .V=0 on KR(y~). Let  {(pl} be a part i t ion of the unity subordinate  to 
(KR(yz) }, ( p l + . . . + c p L = l  in a ne ighborhood of 8M. For  i and I fixed (2.5) 
holds for T(z ) :=  qol(z) �9 Tzi(z), that  is 

(2.6) S Du . D(,I . r h(d(u)) . T~'(u))dx 

- S a.  D2g(- , u). T/(u). h(d(u)).rl, q~l(u)dx =0.  
Fzt 

Now using (2.4) (with t/=O-V(u).h(d(u)).q)l(u)),  a smoothing argument  and 
Hahn-Banach  we infer from (2.4) 

(2.7) [. Du. D{(O. V). hZ(d(u)). r V(u)}dx 
Fat 

-c~. ~ Dzg( . ,u) .{ . . . }dx= [. A~.Od2 for all OeC~(~2~) u, 
~i g2t 

where A ~ is a function in the space L~176 N, [A~IN1. Next  we take ~/= 
T/(u).h(d(u)).t) in (2.6); adding the result to (2.7), summing over  i = 1 ,  . . . , N - 1  
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and then over l =  1 , . . . ,L  we get 

(2.8) ~ Du.D{h2(d(u))O}dx-c~ ~ D z g ( . , u ) . { . . . I d x =  ~ A.~d)o, 
f~t 01 f2a 

A = A ~ + . . . + A  z. 

For all l e l~ l  w,:=u+e(1-h:(d(u) ) ) .q /  satisfies w~(f21)cM, thus we get the 
equation 

(2.9) I Du. D{(1 -h~(d(u))). O}dx - ~  ~ D~g(', u). {...}dx =0, 
01 f2x 

adding (2.8), (2.9) we arrive at (2.2). Finally we observe that the measure 2 is 
independent of the parameter r (use the variation v~:=u+e~l{hz(d(u)) 
-h2(d(u)) } V(u), lel ~ 1). The estimate (2.3) follows by passing to the limit r o 0  
in (2.4) observing the properties of h and h'. QED 

3. Proof of the Theorem 

According to [5], Theorem 1.3, Remark 1.3, Theorem 1.5 in Chapter VI and 
our Lemma 2 the statement of the theorem is an immediate consequence of 

Lemma 3. Under the assumptions of the theorem there exist constants R o, C > 0  
and p > 2  such that Du~L~oc(f2) "N and 

(3.1) ( ~ IOulPdz)a/P<C( ~ (l+lOul)adz) a/2 
BR(X) B2R(X) 

for all x Ef2 and all R <__ min(R o, dist(x, Of 2)). 

Proof. For  R small enough every ball BR(x ) c f~ is contained either in f2~ or (2 z. 
Let us consider the first case and assume for simplicity x = 0 .  For O < p < r < R  
fixed we choose a cut-off function ~/=1 on Bo, t /=0 on f2~B~ such that 
1Dill <c/(r - p )  and 0__<~/__< 1. We define 

w:=P- l (Pu+~1- (a -Pu) ) ,  a : =  ~ Pudx. 
BR 

Since P is Bi-Lipschitz w belongs to Hl'2(f2) N and satisfies w = u  on ~f2, w(O) 
)~r. Moreover we have 

(3.2) F~r(w ) < FBr(Pu + tl(a -- Pu)). Lip(P-  1)2 

and the properties of g imply 

(3.3) IGBr(w) --GBr(U)I <~ CR n. 

Here and in the sequel we denote all constants independent of BR(x ) by the 
same symbol C. By Lemma 1 there is a continuous function 4: [ - t o ,  t0]--+N, 
~(0) = 0, such that 

Z(t): = Gnl(u + t f  1) - GBI(u ) = t. (1 + ~. (t)). 
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We may assume 1 + ~(t) > 1/2 for It[ < to, thus [ -  t/2, t/2] c Z ( [ -  t, t]), 0 < t < t o. 
Combining this with (3.3) we see that 

(3.4) Gin(u) - GB,.(w) = z(t) 

for a suitable Itl <_-to, provided we take R < R  o. According to (3.4) the function 

v : = w  on B ~ , ; = u + t f  I on B 1,. '=u elsewhere 

belongs to the class cg, therefore by (3.2) 

FBr(U ) < CFB.(Pu + tl(a - eu)) + FB~(U + t f  1) -- FB~(u ) 

=< C ~ 1(1 -~/). D(Pu)+ Dr 1 �9 (a -nu)12 dx + Cltl, 
B. 

Itt _<- 21GB,(u) - a,Aw)l <= CR +. 

Applying Young's inequality we get the estimate 

[Dul2dx<C{  ~ I D u l 2 d x + ( r - p )  -2  ~ I P u - a l 2 d x + R " } .  
B o B~ ~ Bp B~ 

We now fill the hole and use an iteration-lemma due to Giusti ([5], V, 
Lemma 3.1) to conclude 

IDuladx<=C{R -2 ~ ] P u - a l e d x + R " } .  
BR/2 BR 

The desired result follows by applying the Sobolev-Poincar 6 inequality and 
[5~, V, Proposition 1.1. QED 

4. Some Remarks and Extensions 

1) It is well-known (see [5]) that x is a regular point (i.e. xSf2o) if and only if 
|  2-" ~ LDulZdx=O. According to Lemma 3 we thus can improve the 

R ~ O  BR(X) 

estimate for the singular set to ]H"-P(Y2~s 

2) It is easy to see by using v(x):=u(Rx/Ixl) ,  BR(O)~Q,. combined with a 
suitable correcting variation as comparison map that tp(r):=rZ-n ~ ]Du[2dx is 

Br 
more or less increasing. Despite of this fact we did not succeed in proving that 
| from above is satisfied everywhere. The approach described in [5], VII 
Section 3, fails in our situation since it essentially rests on a smallness con- 
dition which must not be satisfied. 

3) In the absence of the integral constraint we get a further improvement of 
our result, we have 

Theorem. I f  u is a local minimum of the Dirichlet-integral under the side- 
condition u(g2)~)fI, M as in (A2), then for n = 3  the singularities of  u are 
isolated in O, I H - d i m ( f 2 ~ O 0 ) < n - 3  for n>=3. 
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Here lH-dim denotes the Hausdorf f -d imens ion  of the set. For  the proof  one 
only mino r  modif icat ion occurs in the proof  of l-5a], L e m m a  1, where it is 
changes, the boundedness  of u required in [5a]  is implied by the s ide-condi t ion 
and  all compar i son-maps  used by G iaqu in t a -Gius t i  respect the obstacle. The 
only minor  dodif icat ion occurs in the proof  of [5a] ,  L e m m a  1, where it is 
shown that  certain blow-ups converge to a minimizer.  The map  v~:=w+tl(u v 
- v )  in t roduced  there has to be replaced by v ~ : = ( P - t o  Q) (pw+rl(pu ~_Pv)) 
where P is defined in (A2) and  Q: K'~K, K' :={z~IRN:  Iz[_<_3} denotes the 
s tandard  retract ion 
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