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0. Introduction

During the last years interesting regularity theorems have been proved for

obstacle problems (with integral constraints) in the vector-valued case, we

mention the papers [6-10, 12]. Unfortunately complete results for general non-

convex obstacles were only obtained in two dimensions, in higher dimensions

the obstacle had to be convex. Some progress has been made by Hildebrandt,

Meier ([8]): If u: R">Q-R" minimizes jIDvlzdx under the condition v(Q)
Q

=M and if we assume M to be diffeomorphic to some convex set K then by

transformation we get a minimum-problem with convex obstacle K and as-

sociated functional of the form {b“(v)Dv'- Dv/dx and according to [8], Theo-
Q

rem 3 regularity would follow if we impose some smallness condition relating
the coefficients b and the diameter of K which is in general not satisfied.

Very recently the second author ([4]) could extend some results in [12] to
arbitrary dimensions by showing partial regularity in the special case of a
graph-obstacle uV= f(u',...,u"" ') where f: R¥ 'SR is a general smooth
function satisfying some growth conditions. The argument rests on an appro-
priate linearisation of the minimum-property giving an elliptic system with a
vector-measure on the right-hand side which does not behave too bad. In the
sequel the first author ([1]) could apply this method to more complicated
obstacles.

The plan and purpose of this paper can now be summarized as follows: We
try to extend the above mentioned result of Hildebrandt, Meier ([8], Theo-
rem 3) by considering the problem

(0.1) Fy(u)=% [ |Du|?*dx—min
Q
in the class

02) @:={veH"*(Q)": v=u, on 0Q,Gn(v):=[g(+,v)dx =K, v(Q) = M}
Q
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where M <IR" can be mapped on a closed convex set K in a Bi-Lipschitz way.
In two steps we prove that the minimizer u is regular up to a set of H" -
measure zero:

Step 1 consists in a suitable linearisation which transforms (0.1) into an elliptic
system with right-hand side of quadratic growth in the gradient of u. Here we
use ideas of [1, 4] combined with techniques due to Hildebrandt and others
([8, 97) which enable us to handle the integral constraint. In the second step we
prove a reverse Holder-inequality for the minimum, well-known arguments of
Giaquinta, Giusti (see [5]) give the desired result. We wish to remark that by
different techniques replacing step 2 it is possible to handle more general side-
conditions, but these arguments are much more technical than the approach
described here so that they will be described in a forthcoming paper.

1. Notations and the Result

We fix the following general assumptions.

(Al) QcR" nz=3,is a bounded Lipschitz-domain (see [11]), N=2 denotes a
given integer.

(A2) M =R¥ is bounded and open with smooth boundary éM of class C?;
P: M—>K:={zeR": |z|<1} is a given Bi-Lipschitz map.
(A3) g: 2xR¥-R is continuous with continuous partial derivative D,g

(which means differentiation with respect to the RV-variable). For domains D
= and functions u: D—R" let

Fy(w):=4%[|Dul?dx, GD(u):zlj;g(-, u)dx.

(A4) The boundary values u, belong to the space H*(Q)" and satisfy u,(Q)
=M and the non-degeneracy condition

H"1({xedQ: D,g(x, Po(x)) 0} NPy RN~ M) >0, Py =u|s0-
(AS) For a given real number « the class € defined in (0.2) is non-empty.

Then we have the following

Theorem. Let (A1YAS5) hold and let u be the solution of (0.1). Then there is an
open subset Q, of Q such that H* *(Q~Q,)=0 and ueC Q)" for all
O<a<l.

Remarks. 1) It is possible to replace F, by more general functionals
§a,;D,u-Dyudx with smooth coefficients a,4(x).
2

2) The non-degeneracy condition (A4) and the assumptions concerning g
are essentially due to Hildebrandt, Meier ([8]), we use a simplified version
which can be found (for the scalar case) in the papers of Eisen ([2, 3]). In
contrast to [2, 3, 8] we do not have to impose growth conditions on g and
D, g with respect to the second argument since we assume M to be bounded.
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2. Linearisation

We start with an auxiliary result which enables us to handle the integral
contraint. The proof of Lemma 1 is essentially due to Hildebrandt, Wente

(9

Lemma 1. Under the assumptions of the theorem there exist two balls B, B? and
two functions 1, f? having the following properties:

(i) B'e®, dist(B!, B)>0, fie H"2(B)YN nL*.
(i) w+tf)(BY=M for |t| <t,.

(ifi) 6G o(u,f7): Z% Golutif)=1.

Proof. Since 0Q is Lipschitz we infer from [117], Thm. 3.6.1 and (A4)

LM ({xeQ: D,g(x,u(x))*+0} nu™'(R¥~aM))>0
and by a subdivision argument there are balls B*, B as above such that
2.1 IL"({xeB": D,g(x,u(x)) =0} nu~ (M) >0, i=1,2.

Denote by M; the inner parallel set of M at distance 6>0. Obviously (2.1)
holds with M replaced by M, if we take ¢ small enough. For A:=M,,
B:=M,, let pe C3(B,[0,1]), p=1 on A. If

d
—— [ g(-,u+tnpm)dx=0
dt|0 Bi

for all ne C§(B)Y we would have a contradiction to (2.1) and our choice of 4.
Thus we find n'e Cy(B)Y such that 6Gyi(u, ' p(u))=0 and we may assume that
the first variation is =1. Now define fi:=#'pu)e H2(BYnL>; for t, suf-
ficiently small (ii) is obviously satisfied. QED

To prove our theorem we can consider subdomains D of Q having diameter
d as small as we want; for d small enough either DnB'=g or DnB?>=4. So
we may restrict ourselves to work on Q,:=Q~ B*.

Lemma 2. On Q, u satisfies the system of Euler-equations
(2.2) —Au—aD,g(+,u)=A-.

with a positive Radon-measure /. and AeL*(Q,, )", a:=0Fy(u,f'). For i we
have the estimate

(2.3) AZ C(IDul? +1|D,g(+, )} -IL?

where C denotes a positive constant.

Proof. For r>0 fixed we take h: [0, c0)—IR of class C* satisfying h=1 on [0,r],
W<0, h=0 on [2r, ). We let d(y):=dist(y,dM), V(y):=Dd(y), yeM, and
define for ¢>0, ne CJ(Q,, 10, ) v,:=u+e-n-V(u)-h(dw)). For ¢ small enough
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v,(Q)= M and if we introduce the functions

P 1):=0o+ @)+ ,(t),  Yle,t):=r+y,(e)+,(t),
0o =Fw), 0,(8):=Fyv)—Fow), @,(0):=Fyu+tf1)— Fylu),
Y1(8):=Go(v) —Go), ¥,(t):=Golu+tf") —Gow)

we have according to [8], Lemma 3:
¢1(0) =1 (0)20.
By the Riesz-representation-theorem this inequality is equivalent to

(2.4) Qf Du-D(n~V(u)-h(d(u)))dx—oc!§ D,g(*,u)- V(u)-hdu)-ndx={ n-da

2,

for all functions ne Cy(RQ,).

Now we extend V' to a neighborhood of M. For T: RY->RY with support in a
small ball Kg(y,) centered at y,eéM and the property T-V =0 we introduce
the flow &f(s, y) which satisfies

0 _ _
(D(O,y)zy,ﬁé(S,y)zT(y), ¢(57y)€M for yEM
0

Thus the function u,:=®(s-n-h(d(u)),u) respects the obstacle provided |e| <1
and ne CF(L2,). The argument from above gives
(2.5) { Du-D(y-h(d(u)- T(w)dx — [oD,g(+, wyn-h(dw) T(w)dx=0.

24 Q2
We cover a neighborhood of 6M with balls Ki(y), [=1,...,L, y,€éM on which
we can find vector-fields T, i=1,...,N—1, [=1,...,L such that T} T/ =6,
T}- V=0 on Kg(y). Let {¢'} be a partition of the unity subordinate to

{Kx(y)}, ¢'+...+9"=1 in a neighborhood of éM. For i and I fixed (2.5)
holds for T(z):=¢'(z)- T,'(z), that is

(2.6) g Du-D(n- ¢'(u)- h{d(w)) - T} (u)dx
—g o-D,g(+,u)- T/ () h(dw)-n - ¢'(1)dx =0.

Now using (2.4) (with n=y - V(u)-h{d(w))- ¢'(w)), a smoothing argument and
Hahn-Banach we infer from (2.4)

2.7) g Du-D{(y- V)-h*(d(w)- ¢'(w)- V ()} dx

—a- § Dyg(c,u)-{..}dx= [ A'yydi for all YyeCP(Q,)",
24 oy

where A' is a function in the space L2(Q,,A)", |A'|<1. Next we take 5=
T} (w)- h(d(w)- ¢ in (2.6); adding the result to (2.7), summing over i=1,...,N—1
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and then over [=1,...,L we get
(2.8) J Du-D{hZ(d(u))w}dx—ozg ng(-,u)-{...}dx=!§ A-yd2,
l A=A11+...+AL. 1
For all |e|<1 w,:=u+e(l—h*(d(u)) ¥ satisfies w,(Q,)cM, thus we get the
equation

(2.9) jDu-D{(l—hz(d(u)))-lp}dx—océ[ D,g(*,u)-{...}dx=0,

adding (2.8), (2.9) we arrive at (2.2). Finally we observe that the measure A is
independent of the parameter r (use the variation v:=u+en{h,(d(n))
—h,(dw))} V(u), |e| <1). The estimate (2.3) follows by passing to the limit r—0
in (2.4) observing the properties of h and i'. QED

3. Proof of the Theorem

According to [5], Theorem 1.3, Remark 1.3, Theorem 1.5 in Chapter VI and
our Lemma 2 the statement of the theorem is an immediate consequence of

Lemma 3. Under the assumptions of the theorem there exist constants Ry, C>0
and p>2 such that Duel? (Q)"~ and

loc

(3.1) (f |DulPdz)t? < C( j: (14 |Dul)?dz)'’?
Br(x) Bar(

2r(x)
for all xeQ and all R <min(R,, dist(x, 0£2)).

Proof. For R small enough every ball Bg(x)<Q is contained either in Q, or Q,.
Let us consider the first case and assume for simplicity x=0. For O<p<r<R
fixed we choose a cut-off function n=1 on B,, =0 on Q~B, such that
IDpl<c/(r—p) and 0y < 1. We define

w:=P~YPu+n-(a—Pu)), a:=B§ Pudx.
. R
Since P is Bi-Lipschitz w belongs to H"“*(Q)" and satisfies w=u on 9Q, w(Q)
< M. Moreover we have
(3.2) Fg (W)E Fy (Pu+n(a—Pu))- Lip(P~1)2
and the properties of g imply
(3.3) |Gp, (W) —Gp, (W) = CR".

Here and in the sequel we denote all constants independent of Bg(x) by the
same symbol C. By Lemma 1 there is a continuous function &: [ —1,,¢,]—>R,
£(0)=0, such that

10 =G+ tf )~ Gy =t-(1 + £().
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We may assume 1+&(t)=1/2 for [t|<t,, thus [ —¢/2,t/2]c y([—t,t]), 0<t=t,.
Combining this with (3.3) we see that

(3.4) G, () =Gy, (W) =2(t)

for a suitable |t|<t,, provided we take R<R,. According to (3.4) the function
v:i=w on B,,:=u+tf!' on B’,:=u elsewhere

belongs to the class #, therefore by (3.2)

Fy (u)< CFy (Pu+n(a—Pu))+ Fpi(u+1tf ") — Fgi(u)
<C [ I(1—n)-D(Pu)+Dn-(a—Pu)*dx + Clt],
B,

[t} =2|Gp, (w)— Gp, (W) = CR"
Applying Young’s inequality we get the estimate

{IDulPdx<C{ | |Dul*dx+(r—p)~%[|Pu—al’dx+R"}.
B, B.

B.~B,

We now fill the hole and use an iteration-lemma due to Giusti ([5], ¥,
Lemma 3.1) to conclude

| IDul?dx< C{R™? [ |Pu—al*dx+R"}.
Br

Brj2

The desired result follows by applying the Sobolev-Poincar ¢é inequality and
[57, V, Proposition 1.1. QED

4. Some Remarks and Extensions

1) Tt is well-known (see [5]) that x is a regular point (L.e. xe,) if and only if

®lim R*™" | |Du|*dx=0. According to Lemma 3 we thus can improve the
R-0 Br(x)
estimate for the singular set to IH*~?(Q~ Q) =0.
2) It is easy to see by using v(x):=u(Rx/|x]), Bx(0)= €, combined with a
suitable correcting variation as comparison map that y(r):=r>"" | |Du|?dx is
B,
more or less increasing. Despite of this fact we did not succeed in proving that
® from above is satisfied everywhere. The approach described in [5], VII
Section 3, fails in our situation since it essentially rests on a smallness con-
dition which must not be satisfied.

3) In the absence of the integral constraint we get a further improvement of
our result, we have

Theorem. If u is a local minimum of the Dirichlet-integral under the side-
condition w(QycM, M as in (A2), then for n=3 the singularities of u are
isolated in Q, H-dim(Q~Q,)<n—3 for n=3.
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Here IH-dim denotes the Hausdorff-dimension of the set. For the proof one
only minor modification occurs in the proof of [5a], Lemma 1, where it is
changes, the boundedness of u required in [Sa] is implied by the side-condition
and all comparison-maps used by Giaquinta-Giusti respect the obstacle. The
only minor dodification occurs in the proof of [5a], Lemma 1, where it is
shown that certain blow-ups converge to a minimizer. The map v”:=w+n(u’
—v) introduced there has to be replaced by v':=(P~ !0 Q) (Pw+#y(Pu®—Pv))
where P is defined in (A2) and Q: K'—»K, K':={zeR": |z|<3} denotes the
standard retraction
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