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w 1. Introduction 

In this paper we shall provide a general method of constructing solvable Lie 
algebras from isolated hypersurface singularities. The ideas come from our 
previous result [9] with Mather, which says that isolated hypersurface singu- 
larities determine and are determined by their moduli algebras. There are two 
natural problems raised by this result. The first one is the recognition problem: 
when is a commutative local algebra a moduli algebra of an isolated hyper- 
surface singularity? The second question asks what kind of information does 
one need from the moduli algebra in order to determine the topological type of 
the singularity. Since moduli algebras are Artinian algebras, their associated 
algebras of derivations are finite dimensional Lie algebras. It is these Lie 
algebras that we are interested in. We conjectured in 1982 these Lie algebras to 
be solvable, which would give a necessary condition for the first problem. The 
second question has been studied by many authors including La and Rama- 
nujam [7], Pham [13], Teissier [18, 19], and Zariski [23, 24]. Zariski shows 
that two irreducible plane curves are topological equivalent if and only if their 
associated numerical invariants so called Puiseux characteristic are the same 
(cf. also Pham [-13]). Until now the higher dimension problem remains un- 
solved. Actually there is not even a conjecture of what the result should be. By 
[9], in order to determine the singularity (V,0) topologically, we need only to 
know partial information from A(V). So we want to forget some information in 
A(V). This leads us to consider L(V). We conjecture that L(V) is sufficient to 
determine the topological type of the singularity (V,0). The examples in [22] 
and the examples in the present article support our conjecture. They also show 
that L(V) is not a topological invariant but only a "generic" topological 
invariant in some sense. Therefore L(V) still contains too much information, so 
we want to forget some information in L(V). This leads us to consider the 
generalized Cartan matrix C(V). We suspect that C(V) is actually a topological 
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invariant. In particular, if C(V) and C(W) are of different types, then V is not 
topologically equivalent to W. Unlike the resolution matrix which is defined 
only for surface singularities, our definition for C(V) should work for singulari- 
ties of arbitrary dimension. There is a natural map from the algebra of 
derivations of the local ring of the singularity to this Lie algebra (cf. Lemma 
2.1). In general this is not surjective. So the finite dimensional Lie algebras we 
consider here are quite different from those infinite dimensional Lie algebras 
which were considered before by K. Saito, Scheja-Wiebe, C.T.C. Wall and J. 
Wahl. We prove that if (V,0) admits a C*-action, then the Lie algebra is 
abelian if and only if (V,0) is either A 1 or A 2 singularity (cf. Proposition 2.4). In 
w we first write down an interesting one parameter family of inequivalent 
finite dimensional representations of a fixed Lie algebra. This family is non- 
trivial in the sense of Proposition 3.1. We shall restrict ourselves to two 
dimensional isolated hypersurface singularities in w and prove that the Lie 
algebras which we consider here are solvable. The higher dimension case will be 
discussed in a future paper. In w 5, in view of the recent work of Santharoubane 
[26], we are able to attach a generalized Cartan matrix and hence a Kac- 
Moody Lie algebra to any isolated hyperface singularity. This generalized 
Cartan matrix is a new analytic invariant of isolated hypersurface singularities. 

We would like to thank Professors H. Hironaka, D. Kazhdem, G.D. Mostow and Y.-T. Siu for 
some useful discussions. We would also like to thank the referee for some useful suggestions in 
revising this article. 

w 2. Isolated Singularities and Finite Dimensional Lie Algebras 

In this section, we shall first establish a connection between the set of isolated 
hypersurface singularities and the set of finite dimensional Lie algebras. Let 
(V,0) be an isolated hypersurface singularity in (C"+1,0) defined by the zero of 
a holomorphic function f The moduli algebra A(V) of V is 

C { Z o , Z l , ' " , z , , l  f ,  Sz o , ' ' ' ,  . 

Recall that in [-18], Mather-Yau prove that the natural mapping 

isolated hypersurface n} 
singularities of dimension 

(<0) 
is one to one. 

[ ~Commutative algebrasl~ Artinian} 

A(V) =moduli  algebra of V 

We define L(V) to be the algebra of derivations of A(V). Since A(V) is finite 
dimensional as 112-vector space and L(V) is contained in the endomorphism 
algebra of A(V); consequently L(V) is a finite dimensional Lie algebra. Thus 
we have the following natural mapping 

isolated hypersurface; ~ {finite dimensional Lie} 
singularities J algebras 

(V,,0) --, L(V). 
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Let (9+ 1 denote the ring of germs of the origin of holomorphic functions 
(C "+ t,0)~l12. Let 0v, o=(9=+/( f )  be the local ring of V at 0. Then we have the 
following lemma. 

Lemma2.1. A derivation of (gv, o induces a derivation of A(V). Hence there is a 
natural map from the algebra of derivations of (gv, o to L(V). 

= O 
Proof Let D be a derivation of Ov. o. Then D=  ~ a i -  where a~e(9,+ 1 for all 
O<_i<_n and D ( f ) = b f f o r  some be(9=+ 1. ~=o 3z~ 

To prove that D induces a derivation of A(V), we have to prove 

, ,  
D e fOZo . . . .  ( g n + l  f o r  a l l  O<=j<n. 

D (Of 3b , . ~fi i=o0aiQ~/ ( 0f  ~ )  =~z~z d+b~Tz..-  ~ e f, (9=+, Q.E.D. Oz i Oz o ' "", . 

Remark2.2. The above natural map is not surjective in general. This can be 
seen as follows: 

Let us assume for a moment that f is a weighted homogeneous function, 
i.e., there exist qo . . . .  , q,, d e n  (the set of positive integers) such that 

f (  tq~ Zo .. . . .  tqn G) = ta f (Zo, --., z,) (2.1) 

" 0 
for all (z o .. . .  ,z ,)eG n+l and t e r  Then E=~qlzi~__.==ouzl is a derivation 

of the local ring (9v, o. This distinguished derivation is called Euler derivation. 
The following proposition is well known (cf. J. Wahl; Proc. Symp. Pure Math. 
AMS, Vol. 40, 2, p. 615). 

Proposition2.3. Let (V,O) be an isolated singularity with IE*-action i.e., Ov, o 
= ( 9 + / ( f )  (9~+ 1 where f is a weighted homogeneous holomorphic function. Then 
the algebra of derivations of (gv, o is generated as an (gv, o module by the Euler 
derivation E and the following derivations: 

Of O Of O 
Ozj Oz~ ~z~ Oz/  

Proof Derivations of (gv, o are induced by derivations of (9,+1 sending (f)(9,+1 
into (f)(9,+ 1. Let D be any derivation of (gv, o, then D f = h f  for some he@,+ 1. 

Since E f  = d f, we have D ' f =  0 where D '=  D -  E. Let D'= a~-- ,  then a z - - =  0 
0z i 0z~ " 

Because the singularity is isolated, c~,j~o,...,---,Oj~ forms a regular sequence, 
k - - t )  ~ - n d  

whence the only relations are those generated by the obvious ones. Q.E.D. 

Proposition 2.3 says that in case (V,0) admits a 112*-action then the image of 
the natural map defined in Lemma 2.1 is A(V).  E c Der(A(V))=L(V).  

Proposition 2.4. Let f ( z  o ....  , G) be a weighted homogeneous function. Suppose V 
={(Zo . . . . .  z,)ell~"+l: f (zo , . . . , z , , )=O } has an isolated singularity at the origin. 
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Then the Lie algebra L(V) associated to the singularity (V,O) is abelian if and 
only if (V,O) is either an A I or A 2 singularity. 

Proof. "if" the defining equation for A t singularity is z~+z~+.. .+z2, .  Its 
moduli algebra A(V) is isomorphic to 112. Therefore the derivation algebra L(V) 
of the moduli algebra is zero. 

3 2 2 The defining equation for A 2 singularity is Zo+Z 1 + ... +%,. Its moduli 
algebra A(V) is a Ilk-vector space spanned by 1 and z o with multiplication rule 
z~=0. Therefore the derivation algebra L(V) of the moduli algebra is a 1- 

0 
dimensional C-vector space spanned by z o - ,  in particular L(V) is abelian. 

0z o 
"only if". By [14], after analytic change of coordinates, we may write f in 

the following form. 
f = h ( z  o, .,z,.)+ 2 a . .  Zv+ 1 -[- . . .  -~Z  n 

where h is a weighted homogeneous polynomial with multiplicity at least three. 
Notice that the moduli algebra of f is isomorphic to the moduli algebra of h. 

k Suppose the Lie algebra L(V) is abelian. Let a~ be any derivation of 
the moduli algebra. Then ~=o 

qiz i~  - ,  2 a~ = 2 q j Z j ~ z j } ~ z i - L o q i a i  - "  
i_ OZi i=O i=O " j = o  OZi 

The fact that the algebra of derivations is abelian implies 

~o 0 a i _  (02o 01 0h)  qj zj ~ = ql ai mod .... for 0 _< i < r. (2.2) 
j= ' OZ 1 ' OZ r 

We observe that since (V, 0) has isolated singularity at the origin, the ideal 

0h 0h , 0h 

0Zo'0ZZ" <+' 

contains the maximal ideal mr+~___(9+~ to certain power. Let k be the least 
positive integer such that 

{~h 0h ....  , =-~h'~ k (2.3) 
~aZo az~ ~z~] (%+~=-m'+~" 

0h 
since multiplicity of h is at least 3, it follows that multiplicity of - -  is at least 2 

0z/ 
2 l ~ ( 0 h o  0h 0 h ~ ( 9 , + l a n d k > 2 .  for all O<_i<r. Therefore m~+ ' Oz~'""Oz~] = 

If k > 3, then there exists a monomial b in m~+k- ~ _c m 2~_~ such that 

(Oh,  , Oh ~ 
b~ \~-zo ... Oz, l O,+l. 
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82h 
Since multiplicity of h is at least 3, it follows that - - s t a r +  for all 0<i ,  
j < r. Therefore 8z . i  OZi 1 : 

Oh Oh , Oh ] 
b ~  [Oh\ k-1 ~Zo 8Zl --mr+ "'" ~Z~] (gr+ for all 0<i ,  j < r  OZj ~ Z i J  ~ m r + l  " m r +  1 - -  k 1 C  , , 1 = 

by (2.3). This simply means that b 8zj is an element in L(V) for all O<j<r.  Eq. 

(2.2) implies that 

8b ( 8 h ,  8h ) 
q~zjo~zj=-qibmod ... (9+~ for O<_i<_r (2.4) 

j :0  ~0Zo '&-~ 

= , . . . . .  with no+n~+ +nr>2 .  since b is a monomial of degree >2, b = z  o z~ . . .z  r ... 

The left hand side of (2.4) is njqj b. As n o + . . .  +nr__>2, there exists an i 
J 

such that ~ n j q j > q i .  This will imply that be(82o 8h)  j=0 . . . . .  8zr (gr+l by (2.4), 

which is a contradiction to our choice of b. 
By the argument above, we conclude that k = 2. In this case, we have 

m2 (2o r+ 1 = , ' " ,  8z r (gr+ 1" (2.5) 

Since the minimal number of generators for 2 is (2+r)!  m,+ 1 ~ and the minimal 

number of generators for ( O~-zh ~ .... ,Ozr0h )Or+ 1 is r + 1, (2.5) holds only if (22!r!+r)! 

= r + l ,  i.e., r=0 .  Clearly we may assume without loss of generality that f 
=z~ +1 + z~ + . . .  + z 2. The moduli algebra is isomorphic to ~ {Zo}/(Z~o) tE {Zo}. 

8 
The algebra of derivations L(V) of the moduli algebra is spanned by < z  o , 

8 ...,z~_ 1 8 8Zo 
ZZoz~' 8z o. This Lie algebra is abelian if and only if ( = 1  or 

2. Q.E.D. 

w 3. A Continuous Family of Finite Dimensional Representations 
of a Lie Algebra 

Let us consider a family of simple elliptic singularities in I123 defined by 

x3 + y3 +z3 + t x y z = O  

where t 3 + 2 7 ~ 0 .  For each fixed t with t 3 + 2 7 + 0 ,  the moduli algebra is given 
by 

A(V) = ( 1 , x , y , z ,  x y, yz,  zx ,  z y x )  
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t t t 
with multiplication rules: x2=  - ~ y z ,  y2= - g z x ,  z2= - ~ x y  

x 2 y = x y 2 = y 2 z = y z  2=x  2 z = x z  2=0. 

t 6 
We shall assume t @ 0 and 2 7 -  7 t 3 - 216 4= 0. Under these assumptions 

3 t 3 3 t 3 3 
L(Vt) = X Y ~x - ~ Z X ~yy , Z X ~ xx - ~ X Y ~zz , X Y Z ~x x 

t 3 3 3 t 3 3 
xyG, yz -iXyFz,Xyz 3z 

t 3 3 t 3 3 3 3 3 3 \  yzz, yz +  x ,xyZFz,X + =3= / 
L(V~) is independent of t and will be denoted by L(/[6). 

The natural representations Pt of L(Vt) on A(Vt) can be extended to C. Then 
we have the following result, which can be checked by computation. 

Proposition 3.1. For j(t)#:j(t'), the representations pA and Pc are not equivalent 
for any automorphism A of the Lie algebra L(/[6). 

w Solvability of L(V) 

Theorem 4.1. Suppose that V= {(x, y, z)} OE 3 : f (x, y, z) = 0} has an isolated singu- 
larity at (0,0,0). Then the finite dimensional Lie algebra L(V) associated to the 
singularity is solvable. 

We first begin with two observations. 

Lemma  4.2. Let D = a ( x , y , z ) ~ + b ( x , y , z )  +c(x,y,z)O-zz be an element in L(V) 
3x 

where a(x,y,z), b(x,y,z) and c(x,y,z) are in (93=l12{x,y,z }. Then a(0 ,0 ,0 )=0  
=b(0,0 ,0)=c(0,0 ,0) .  In particular L(V) acts on m/m z where m is the unique 
maximal ideal of (93 . 

Proof Suppose on the contrary that a(0,0 ,0)+0.  Then a(x,y,z) would be an 
unit in (93. Since V has only isolated singularity at the origin, 

3y '  

contains the maximal ideal m raised to certain power. Hence we can choose a 
smallest positive integer k such that 

xk~(f)  + A(f) .  
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As D is an element in L(V), D leaves the ideal ( f ) + A ( J )  invariant;  in part icu-  

lar D(xk)e(f)  + A (f) .  

On the other  hand  D ( x k ) = k a ( x , y , z ) x  k-~. Since a(x,y,z)  is an unit, this implies 
x k - l e ( f )  + A(f ) ,  which contradicts  to our  original choice of k. 

Similary, we can prove  b ( 0 , 0 , 0 ) = 0 = c ( 0 , 0 , 0 ) .  Q.E.D. 

L e m m a  4.3. Let L 1 = {DeL(V): D(m)~m2}. Then L 1 is a nilpotent ideal. 

Proof. By L e m m a 4 . 2 ,  it is clear that  L 1 is an ideal in L(V). Let L~ = ILl ,L1] ,  
L~=[L1 ,L~]  . . . . .  / J I = [ L ~ , / J ( 1 ] .  We claim that  for any D~EI,  D(m)c_m r+2. 
We shall p rove  this by induction. Wi thou t  loss of generality, we shall assume 
that  D = [D 1, D2] where D 1 e L ,  and D 2 e E 11 

D (m) = D 1 (D 2 ( m ) )  - -  D 2 (D1 (m)) 

~Dl(m,+ 1)_D2(m 2) 

~ m r + 2 _ m r +  2 

= m  r+2. 

Let k be a posit ive integer such that  m k c_ ( f )  + A (f).  Then  Lk{ - 2 (m) c_ m k c_ ( f )  
+A( f ) .  This means  that  Lkl-2 =0 ,  i.e. L 1 is a ni lpotent  Lie algebra. Q.E.D. 

Let  us now recall the wel l -known ~f(2, C) representa t ion  theory. 

Theorem 4.4 (Weyl). Let ~p : L ~ y~(V)  be a finite dimensional representation of a 
semisimple Lie algebra, V+O. Then ~ is completely reducible i.e. V is a direct 
sum of irreducible L-submodules. 

Recall  that  A l =  (~#(2, C)) is the complex  Lie algebra with basis 

and relat ions [ z , X + ] = 2 X + ,  [ z , X _ ] = - 2 X  , [ X + , X  ] = ~ .  Let  V be an 
arb i t ra ry  A i -module .  Since h is semisimple,  V can be writ ten as direct sum of 
eigenspaces Vx={veV: r v = 2 v } ,  2eC .  2 is called the weight of ~ in V and V a is 
called a weight space. 

Theorem 4.5. Let V be an irreducible module for A 1 =ot'(2,112). 

(a) Relative to z, V is the direct sum of  weight spaces V,, #=m,  m - 2  .. . .  , 
- ( m -  2), - m; where m + 1 = d im V and dim V u = 1 for each #. 

(b) V has (up to nonzero scalar multiples) a unique maximal vector v o whose 
weight (called the highest weight of  V) is m. 

(c) The action of A 1 on V is given explicitly by the following formulas, if the 
basis is chosen to be {Vo,V a . . . .  ,v,,} where v i = X  i_ v o. 

In  fact, the matr ices  representa t ion  with respect  to this basis are given as 
follows 
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m--2 

- ( m -  2) 

0 -m/ 

0 0 
X _ ~  1 0. 

1 0/ 

X + ~  ! 0 ~2 0 

0 

where & = i ( m - i +  1). 
We now apply the above theory to some concrete cases. 

Lemma 4.6. Let Mkz be the space of homogeneous polynomials of degree k in x 
and y variables. Let A 1 act  on Mk2 via the following actions. 

z = X ~ x - Y ~ y ,  

X+ =x  7- ,  
cy 

X_  = y ~ y .  

Then Mk2 is an irreducible Al-module. 

Lemma 4.7. Let Mk3 be the space of homogeneous polynomials of degree k in x, y 
and z variables. Let A s act on Mk3 via the following actions 

0 0 
z = x ~x -Y~yy, 

0 
X+ =X~y~ 

d 
X_ =Y~x" 

Then M~ decomposes as follows 

M~=(k + l ) |  ... @(1) 

where ( i ) : = ( x i - l z  k-i+1, x i 2yzk-i+l  . . . . .  X i j y j - l z k - i + l  . . . . .  y i - l z k  i+1) is an 
i-dimensional irreducible representation of A 1. 

Proof. Obvious. Q.E.D. 



Solvable Lie Algebras Arising from Isolated Singularities 497 

The following lemma is a special case of the theorem of Cayley-Silvester to 
be found in (3.4.2), Chap. 3 of [17]. 

Lemma 4.8. Let A 1 act on Mk3, the space of homogeneous polynomials of degree 
k in x, y and z variables, via the following actions 

0 0 ~=2x~x-2Z~z, 
0 0 

X+ = 2 X ~ y + 2 y ~ z  z, 

0 0 x =y +zuy- 

Then M~ decomposes as follows. 

(a) I f  k = 2 (  is an even integer, then M ~ = ( 1 ) @ ( 5 ) @ . . . @ ( 4 i + l ) @ . . . @ ( 4 E  
+1), where (4i+1)  is a 4 i + 1  dimensional irreducible representation of A 1. 
Moreover (1) is spanned by (y2-2xz) .  

(b) I f  k=2E + l is an odd integer, then M~=(3)@(7)@. . .@(4i  
+3)@. . .  @(4{+3),  where (4i+3)  is a 4 i + 3  dimensional irreducible representa- 
tion of A 1. Moreover (3) is spanned by 

(x(y 2 - 2 x z) ~, y ( y 2  __ 2 x z) e, z ( y  2 - -  2 x z)t). 

Proof. It follows immediately from the weight decomposition of the k th- 
symmetric power of C 3. This decomposition is trivially obtained if coordinates 
on tE 3 of weights 2 , 0 , - 2  are chosen. 

Lemma 4.9. Let f be a homogenous polynomial of degree k and q an irreducible 
Of t ~ =qe. b, ~f  _qt .  c polynomial of degree n, where k>n. Suppose that ~x=q  .a, cy ~ z -  

for f >  1 and suitable a, b, c homogenous polynomials of degree k - h E - 1 .  Then f 
is divisible by qt+l. In particular, if k = n f + l ,  i.e. a, b, cell~ and n>2, then f 
zO. 

Of ,  ~ f .  Of 
Proof. k f =x ~-x-t-y~-y+ Z~-z=qt(xa+ yb+zc)  

f = qt. p where p is a homogenous polynomial of degree k -  n 

Of tOP ~ t - a 0 q  
a ~ = q  ~xx + ~ q  ~xx'P" 

Of 0q 
Since qe divides ~x-x' q must divide ~xx- p. As q is irreducible, q divides p. Hence 

we get f divisible by qt+ 

Proof of Theorem 4.1. By the Levi decomposition, if the Lie algebra is not 
solvable, then the Lie algebra L(V) contains A~ as subalgebra. By Lemma 4.3, 
we shall assume that A~ acts on m/m z nontrivially. 
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Suppose that the multiplicity of f is two. After a biholomorphic change of 
coordinates, we can assume that f =  z 2 -g (x ,  y). In this case L(V)= L(W) where 
W= {(x, y)e1122: g(x,y)=0}. If multiplicity of g is equal to 2, then again by a 
biholomorphic change of coordinate, we can assume that g(x,y)=xZ+y "+1 
where n>  1. The associated moduli algebra A(W) is spanned by 1,y ....  ,y" - i  

with multiplication rule y"=0.  The Lie algebra L(W) is spanned by y~y ,  
y2 0 y, -1  ~ #y  .... , ~yy and hence is solvable. 

Suppose that multiplicity of g is k + l  with k>2.  Since A~ acts on m/m 2 
nontrivially, by Theorem 4.5, we know that the representation of A 1 on m/m a 
has the following forms 

(~0 _ 0 )  (00 ~0t (~ 00)" 

Hence there are three elements in L(W) of the following forms. 

Dl=X~s +higher order operator, 

D 2 = x 0@+ higher order operator, 

0 
D3 = Y ~XX + higher order operator 

0 0 
where higher order operator means operator of the form p(x, y)~xx + q(x, y)0~ 
with p(x, y), q(x, y)~m 2. Write 

ao 

g =  ~, g~ 
i = k +  1 

where g~ is a homogenous polynomial of degree i in x and y variable. Clearly 
0 

D1,D2,D 3 act on mk/m k+l. We can replace D 1 by v=X~x-Y~yy, D 2 by X+ 
0 

=M2,  =X~yy and D 3 by X =Y~xx without changing the actions on mk/rn k+l~ k 

the space of homogenous polynomials of degree k in x and y variables. By 
Lemma 4.6, M~ is an irreducible A,-module of dimension k +  1. On the other 
hand, L(14/) leaves (g)+ A(g) invariant. In particular, it leaves the initial ideal in 
[(g)+A(g)] of (g)+A(g) invariant. The space of initial forms of degree k is 

~gk+ 1 C~gk+ 1 spanned by ~ and ~7-Y" It is a nontrivial invariant subspace of dimen- 

sion at most two in M~. Since k +  1>2,  this contradicts the irreducibility of 
M~. 

From now on, we shall assume that multiplicity o f f  = k +  1 __> 3. By Theorem 
4.5, we know that the representation of A 1 on m/m 2 has one of the following 
forms. 
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Case 1. A1 has the following form 

[i ~ i] li I i] [i~ - 1  0 0 . 

0 0 0 

Then there are three elements in L(V) of the following forms 

0 
D 1 = x ~xx - y ~yy + higher order operator, 

0 
D2 =X~y 

0 
D3 =Y~X 

+ higher order operator, 

+higher  order operator 

where higher~ ~ ~  operator means operator of the form p(x,y,z)~s 

+q(x,y,Z)~yy+r(x,y,z)~ z with p(x,y,z), q(x,y,z) and r(x,y,z)~m 2. Write 

f (x,y,z)= ~ fj(x,y,z) 
j = k + l  

where fj(x,y,z) is a homogenous polynomial of degree j. D1,D2,D 3 act on 
3 0 

mk/m k+l. We can replace D 1 by z=X~x-Y~yy,  D 2 by X+ =X~yy and D a by X 
0 

=Y~xx without changing the actions on mk/mk+a~Mk= 3, the space of homo- 

genous polynomials of degree k in x, y and z variables. L(V) leaves the initial 
ideal in [ ( f )  + A(f)] of ( f )  + A ( f )  invariant. We now prove by induction on the 
degree j that all homogenous components fj  of f are divisible by z 2. The space 

c~fg+ 1 3fk+ 1 and •fk+ 1 Jk of initial forms of degree k is spanned by 3x ' 0y ~z-zz" It is an 

invariant subspace of dimension at most three in M~. If dim Jm= 1 or dim Jm 
=2,  then J,,=(z k) or J, ,=(xz  k-I, yz k - l )  respectively by Lemma 4.7. In both 

~?fk+ 1 ~fk+ 1 and Ofk+ 1 cases, 3x ' 0y ~ are divisible by z k-1. Hence by Lemma 4.9, fk+x 

is divisible by z k. If dimJm=3 and Jm is reducible, then Jm=(Zk)| k-l, 
yz  k - l )  by Lemma 4.7. Again fk+l is divisible by z k in view of Lemma 4.8. If 
d imJm=3 and Jm is irreducible, then Jm=(X2Z k-2, xy z  k 2, y2zk-2 ) by Lem- 
ma4.7. In this case, fk+l cannot be a polynomial in x, y variables alone 

Ofk+ ~ #fk+ 1 This implies otherwise dim Jm<3. Hence z appear either in ~ or 0y " 

k > 3. Lemma 4.7 shows that fk+ ~ is divisible by z k- 2, in particular, divisible by 
Z 2" 

Assume all fj  divisible by z 2 for j<n, i.e. 

f =zZ "P+f.+ 1 -~fn+2 ~- "'" 
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where p is a polynomial of degree n - 2 .  D1,D2,D 3 a c t  on (9/(m =+1 +(z)),  the 
space of polynomials of degree at most n in x and y variables. Denote the 
image of (f)+A(f) in C/(m"+l+(z)) by J(f). It is easy to see that we can 

replace D 1 by z=X~x-Y~yy, D 2 by X+=X~yy and D 3 by X =Y~xx without 

changing the actions on (m"+(z))/(m "+1 +(z)).  J(f) is an invariant subspace 

of dimension\ at most 3 in (9/(m"+i+(z)). J(f) is spanned by \ Ox ' Dy ' 

0f,+ ~ ) ~ z  and hence may be identified with a subspace of M~. By Lemma 4.6 M~ 

is an irreducible A~-module of dimension n + l > k + 2 > 4 .  Therefore J ( f ) = 0 .  

This means that 0f=+l ~f,+l and Of,+1 0x ' #y ~ are divisible by z. By Lemma 4.9, we 

obtain s  divisible by z 2. We have proved that f is divisible by z 2. In 
particular (V,0) is not an isolated singularity, a contradiction to our assump- 
tion. 

Case II. A 1 has the following form 

0 0 0 . 

0 -  0 1 

Hence after change of coordinates there are three elements in L(V) of the 
following forms. 

3 
D1 =2X~xx-Z 3~, 

D2=2x~+2Y~-- z, 

V3=yu +z G 
Write 

f(x,y,z)= ~ fj(x,y,z) 
j = k + l  

where fj(x,y,z)eM~. D1, D2, D 3 act on rnk/m k+l. Recall that L(V) leaves the 
initial ideal In[(f)+A(f)] of (f)+A(f) invariant. We first prove that k + l  >4. 

~fk+l ~fk+ 1 and ~?fk+ 1 The space Jk of initial form of degree k is spanned by ~x ' ~?y 0z 

It is an invariant subspace of dimension at most three in M~. From Corollary 
4.8, we get 

k=2{ '  even integer ~ Jk=((y2-2xz)t), 
k = 2 f + 1 odd integer ~ Jk = (x  (y2 _ 2 x z) e, y ( y 2  _ 2 x z) e, z ( y 2  _ 2 x z)e). 
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By Lemma 4.9, the first case is excluded since s Thus k is odd and k>3.  
Again by Lemma 4.9 

fk+l=(y2--2XZ) E+I where ~>1. 

We now prove by induction on the degree j that all the homogeneous com- 
ponents f~ of f are divisible by ( y Z - 2 x z )  t+l. Assume all fj divisible by (y2 
- 2 x z )  t+ f  for j < n  i.e., 

f =(y2--2xz)  ~+1 "P+ fn+ l + s  + "'" 

where p is a polynomial of degree at most n - 2 ( - 2 = n - k - 1 .  D1,Dz,D 3 acts 
on (9/(m"+ l + ( y a - 2 x z ) r  Denote the image of ( f ) + A ( f )  in (9/(m "+1+(y2 
- 2 x z )  e) by J(f) .  J ( f )  is an invariant subspace of dimension at most 3 in (m" 

af ,+l  af~+l af ,+l  + ( y Z - 2 x z ) e ) / ( m " + l + ( y 2 - 2 x z ) e ) .  J ( f )  is spanned by Ox ' Oy ' #z 

and hence may be identified with a subspace of M~. By Corollary 4.8, we get 

n = 2 #  1 even integer ~ J ( f ) = ( ( y 2 - 2 x J ~ ) ,  

n = 2 ~~ 1 + 1 odd integer ~ J( f )  = ( x ( y  2 - 2 x z) ~I, y(y2 _ 2 x z) t', z(y 2 -- 2 x z) ~ 

where in both cases ~~ By Lemma 4.9, f ,+ l  is divisible by (yZ-2xz)d+l  
We have proved that f is divisible by ( yZ -2xz ) t+ l  with f > l .  In particular 
(V,O) is not an isolated singularity, a contradiction to our original assumption. 

w 5. Kac-Moody Lie Algebras and Isolated Hypersurface Singularities 

In this section we shall attach a Kac-Moody Lie algebra to every isolated 
hypersurface singularity. Let (V,0) be an isolated hypersurface singularity. Let 
_g(V) be the maximal ideal of L(V) consisting of nilpotent elements. We recall 
from [16] how to construct a generalized Cartan matrix C(V) from g(V), 
which is a new invariant of (V,0). 

Definition5.1 ([16], 2.1). An ~xC matrix with entries in Z, C=(qj)  is a 
generalized Cartan matrix if 

a) cii=2 Vi =1 ... .  , : ,  

b) ci:<=O V i , j = l , . . . , : ,  i4=j, 

c) cij= 0 if and only if cii= 0 V i,j = 1,.. . ,  f ,  i4@ 

Let _g(V) be the set of all nilpotent elements in L(V). Then g(V) is the maximal 
nilpotent Lie subalgebra of L(V). Let Derg(V) be the derivation algebra of the 
Lie algebra g(V). 

Definition5.2 ([16], 1.2). A torus on g(V) is a commutative subalgebra of 
Der_g(V) whose elements are semi-simple endomorphisms. A maximal torus is 
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a torus not  contained in any other torus. The dimensional  of maximal  torus is 
called Mos tow number.  

Mos tow number  is an invariant of isolated singularity (V, 0). 

Theorem 5.3 (Mostow 4.1 of [22]). I f  T 1 and T 2 are maximal tori of _g(V), then 
there exists 0~Autg(V)  (automorphism group of g_(V)) such that 0 T 1 0 1= T2" 

Let  T be a maximal  torus and consider the root  space decomposi t ion of 
_g(V) relatively to T, (cf. [16], 1.4) 

_g(V)= ~ _g(v)~ 
fl~R(r) 

where g(V)/~ = {x~_g(V): t x = fi(t) x V t~ T} and R(T) = {]?~ T* :_g(V) ~ 4= (0). We de- 
note:  r e = d i m  T 

RI( T) = {fieR( T): g(V) ~ f~ [_g(V), g(V)]}, 

E i = dim(g(V)~/[g_(V), g_(V)] c~ g(V) p) V t ieR 1 (T), 

d~=d img(V)  ~ fi~RI(T). 

The map:  f l~d~,  R I ( T ) ~ N  * gives the part i t ion:  

R I ( T ) =  RI(T)pI • ... ~ RI(T)p~ 

where Pl < . . -<Pq,  RI(T)v.4=~ and RI(T)e= {fi~R~(T): d~=p}. 
Let  s~=~R~(T)p, and' s = s l + . .  +sq; we number  the elements of R~(T) 

={fl l , . . . , f i s}  in such a way that:  

Rl(T)m={f i l  .... ,fis}, R~(T)p2={fis~+l .. . . .  flsl+~2} . . . . .  

Let  di=d~ , ~i=~,  and F = t ~ i + . . .  +t~s (one checks that ~=dimg(V)/[g(V) ,  
g(V)]). Let  P~ ...... ~ be the group of permutat ions  of {1 . . . .  ,s} which leaves 
{1 . . . . .  sl}, {s 1 + 1 . . . .  ,s 1 +s2} . . . .  invariant.  

Lemm aS .4  ([16], 1.5). The integers m,q, pl . . . . .  pq, s 1 . . . . .  Sq, d 1 . . . . .  ds, ~1 .. . . .  ~s, 
defined above are invariants of isolated hypersurface singularity (V, 0). 

The map 0 induces a bijection between: R(T) and R(T'), RI (T)  and RI(T'),  
RI(T)p, and RI(T')p, 1 < i<q;  thus there exist~--~P~ ...... ~ such that  

o'~o=~;o l <_a<_s. 

Therefore,  if T, T' are two maximal  torus on _g(V), then there exists O~Autg(V) 
and ~eP~ ....... such that Og_(V)~=g_(V)~L 1 <_a<_s. Let f :  {1 . . . . .  ~} ~ {1 . . . . .  s} be 
defined by 

! if 1~i_<~ 1 

if E1 ~ i ~ 1  -t-~ 2 
f ( i )  = 

if f1+ ... +{s_l  <i=<E. 
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For  a e P  s ...... ,, we lift a to ~ P ~ - ( P e r m u t a t i o n  group  of E elements) such that  
f o ~ = a o f  Define an act ion of PJI"~, on the set of ( x  ( matr ices  by setting 

O'(Cij)l < i , j < f  = (C#i#j)l  <_ i,j<_g" 

Theorem 5.5 ([161, 1.7). For i,j{1 .... ,~}, i+j; let 

f 
- cij(T ) = Min ~ - h e n  w {0}" ( a d v ) - ' +  1 w = 0 

with ( a d 0 ) ~  and let ci i(T)=2 for i = 1  .... ,~. Then 

v v~g_(v)~s,,, ] 
v w~g(v)~s,~J 

C(T)=(cij(T)) a <i,j<=e is a generalized Cartan matrix. 

For any aEP s ...... ~, the action of a on C(T) is independent of the lifting ~ of 
a. Furthermore the P~ ....... orbit of C(T) is an invariant of (V,O). 

Definition 5.6 ([16], 1.8). We choose arbi t rar i ly  A in P~ ........ orbit  of C(T) (which 
has at mos t  s!/sa!.. ,  sq! elements) and we say by an abuse of language:  "_g(V) 
is of type C" or " C  is the Car tan  mat r ix  of g(V)". We denote:  

i v ( C )  = {T: T is a max ima l  torus on _g(V), C(T)= C}, 

P~ ...... q(c)= {~P~ ....... : ~ c = c } .  

L e m m a 5 . 7  ([161, 1.9). I f  T, T '~Jv(C) ,  then there exist 0~Aut_g(V) and 
zsP~ ...... q(C) such that: 

O~g(V) aa =g(V)  a;" V a = 1, .. . ,  s. 

We denote  by msg(g_(V)) the set of  min imal  systems of generators  of g(V); 
by [ (Bourbaki ;  Lie Algebra,  Chap.  I), Sect. 4, p. 1191: (xl,x2.. .)emsg(g_(V)) if 
and only if (x l+[_g(V),_g(V)l, x 2+[g(V),_g(V)l  . . . .  ) is a basis of 
g_(V)/[g_(V),g(V)l. Therefore  each e lement  of msg(g_(V)) is an f - t r ip le  (x 1 . . . .  ,xe) 
where ~ = dimg_(V)/[g_(V),g_(V)]. 

Let T~Cv(C ) and denote:  

msg(T)=msg(g(V))~((g(V)Pl)  tl x ... x (g(V)Ps)~s). 

Fo r  all (x 1 .... , xc ) smsg(T)  one has: 

(adxi)-c'J+lxj=O l<i+j<=f .  

We shall now apply  the above  theory to s tudy Lie algebras of ra t ional  
double  points.  We list the results in a table in the appendix.  

We include the following propos i t ion  as an example:  

Proposition 5.8. Let V = {(x, y, z)O123: z 4 + y3 + X 2 = 0}  be the E 6 singularity. Then 
A ( V ) = ( 1 , z ,  ze, y, yz, z2y)  with multiplication rules: z 3 = 0 ,  y e = 0  
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e ,yz ,y Z o ,y ,yzU, yz 

_g(v)= (z2 0 0 --Oz' yz  ~Tz' yz  ' YZ2 Oz YZ2~y with multiplication rules 

I[ H [I II II 
X 1 X 2 X 3 X 4 X 5 

[-X1,X2]= --X4, [-X1,X3]=X5, [-X1,X4 ~]=0, [Xx,X5]=O, [X2,X3]~--- --X4, 

[-X2,X4"]-I-0, [-X2,X5]=0, [-XB,X4]-~-0, [X3,X5]=0,  [X4,X5]=0.  

The type of the E 6 singularity: = dim g/[g,  g] = 3. 
The nilpotency of the E 6 singularity: = min  { p e n  u {0} : _gP+ 1 = 0} = 1. 

Let  a: g + g  be a der ivat ion such that  6(xl)=aiz  x 1+ai2 x 2 +ai3 x 3 +ai4x 4 
+a~5 x s for 1 < i <  5. Then  the mat r ix  A representing 6 is of the following form 

A =  

i 1 al2 al3 al~ al5 ] 
21 a22 a2a a24 a25 / 

31 a32 (ax1+a3a-a13) a3~ a35 I .  

0 0 0  0 (a11+a22--a13) --a21 / 

0 0 - ( a 1 2 + a 3 2  ) (2a l l+a31-a13)A  

Clearly c5 is semisimple if and only if A A * = A * A .  Let t l , ta , t  3 be the three 
derivat ions of _g(V) defined by 

t i(xi)=xl,  t,(x2)=O, tl(x3)=x3, tl(x4)=x4, tl(xs)=2x s, 

t2(Xl)= 0, t2(X2)=X2, t2(x3)=0, t2(x4) =X4, t2(x5) =0, 
t3(xl)=X 3, t3(X2)=O, t3(X3)=X1, t3(X4) = --X4, t3(x5)=O. 

Then  T = C t l G I I 2 t 2 Q I E t  3 is a torus of g(V). Since d im T = 3 = t h e  type of 
E6, T is a max imal  torus of_g(V). Let /? i :  T ~  C be a linear m a p  wi th /? i ( t j )= f i j  
for i,j = 1,2, 3. Then 

g(V) = g  '82 @g 2/31 @ g/~l +/~3 @ g/~1-/~3 @ g/~l+/~2-/~3 

={~x2@{~_.x 5 @[~(x 1 -}- x3) (~ ([~ (x I - x 3 )  (~ ~ x  4. 

(X 1 -}-X3, Xl--X3, X2) is a T-minimal system of generators.  The  generalized 
Caf t an  mat r ix  associated to E 6 singularity is 

[! 1 0] 
C(E6)= 2 - 1 . 

- 1  2 
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dimA(V) dimL(V) dimg(V) Type of Nil- 
g(V) potency 

of g(V) 
Mostow 
number  

Generalized 
Cartan matrix 

A 4 4 3 2 2 0 2 (2 0 ~) 

A s 5 4 3 2 1 2 ( ~ -12) _ 

A 6 6 5 4 2 2 2 ( ~ - 2 2 )  _ 

A k k k - 1  k - 2  2 k - 4  1 
k__>7 k odd 

D 4 4 4 2 2 0 2 

D s 5 5 4 2 1 2 

O 6 6 6 5 3 2 2 

D 7 7 7 6 3 2 2 

D k k k k - 1  3 

k__>8 
k - 5  1 

E 6 6 7 5 3 1 3 

E 7 7 8 7 3 4 1 

E 8 8 10 8 4 2 2 

k even 

(k22 3 -- (k2- 4) ) 

(( -(k -4)' 
2 

- -  2 - 

- 1  

- t  2 - 

0 - i  

2 - 2  0 \ ,) 1 2 - (~-5  
0 - ( k  - 6 )  

-1 2 - 

0 - 1  

- 2  2 - 

- i  - 1  

- 2  - 1  2 

2 - 1  - 2  
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Added in Proof. Theorem 4.1 is now being generalized to any isolated hypersurface singularities in 
IE" for n<5.  This can be found in our new article "singularities defined by s•(2,11?) invariant 
polynomials and solvability of Lie algebras arising from isolated singularities". 


