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O. Introduction 

In L2(~:l.n), n>2,  we study the operator - A  +q  defined on C~(N") with a real- 
valued qEL2,1oc(~_n). Under further assumptions on q, this operator will be 
essentially self-adjoint. 

There are many connexions between the asymptotic behavior at infinity 
of non-trivial solutions vEL2,1oo(R") of the equation - A v + q v = 2 v  (i.e. 
VqS~C~(~"): S v ( - A  +q- ) . )~b=0)  and the location of 2 ~ R  with respect to the 
different parts of the spectrum of the operator - A  + q (for the notation of the 
spectrum, see [9]). A trivial prototype of this kind of statements is 

v decays very rapidly ~ 2~ap. 

Many results concern the other direction: if 2~av, then every eigenfunction 
decays, depending on the behavior of q near infinity, more or less rapidly. See 
[5] for some examples. In that paper, however, it was pointed out that in 
general eigenfunctions need not go to zero pointwise if q is not bounded from 
below (Example 1 in [5]). On the other hand, if 2~cr~, then the pointwise decay 
of eigenfunctions is usually exponential (i.e. faster than any negative power of 
Ix[). For potentials q which are bounded from below, this has been proved by 
Shnol' (Theorem 2 in [3], p. 179; cp. Satz 0 in [4]). In Corollary 2 we will show 
that the same is true, if q(x)> -o(Ix12). An application lies in the manifestation 
of the existence of embedded eigenvalues for a special kind of operators with a 
potential unbounded from below (Example 1). To arrive at these results, we 
establish, in Theorem 1, the connexion between the decay of eigenfunctions and 
the distance of 2 to a e. 

The same method will be used to yield links between dist(2, ae) and the 
growth of solutions which are not in L 2 (Theorem 2). It is generally believed 
that the following is true: 

3v~L~(F.")\{O}, - a v + q v = 2 v  ~ 2~a. (*) 
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Again Shnol' (Theorem 5 in I-3], p. 182) provided a proof for the case of 
potentials which are bounded from below. This was generalized by Simon [7] 
to potentials the negative parts of which lie in K,. By Theorem2,  we can 
establish (,) if q ( x ) > - o ( I x l  2) (Corollary 3) (The latter result has also been 
obtained by Shnol', but in a non-quantitative way; see Shnol"s original works 
as cited in [3].). We are, however, led to believe that (,) in general fails if 
q(x) ..~ - O(ixl 2) (Conjecture). 

Another consequence of Theorem 2 are lower bounds for non-L2-solutions 
of the equation - A v + q v = A v  if ~ 0 "  e (Proposition), which fit perfectly with 
earlier results. This fact provides some hope to find lower bounds for eigen- 
functions by a similar method. 

1. Some Tools 

In Lemmas 1 to 3 we will give some abstract tools necessary in the proofs of 
Theorems 1 and 2. Because of the structure of our problems here, we can 
assume, throughout this paper, every appearing function to be real-valued. 

Lemma 1. Let  T be a self-adjoint operator on a Hilbert space, 2sF,.. 
w 

I f  there is a sequence (Uk)k~N~D(T) with IlUkll =1 VksN, Uk---+O as  k- ,oo,  
and a: =l im inf H(T-2) Ukll < ce, then dist(2, ae(T)) <a. 

k ~ o o  

Proof. Assume that a~(T)c~ [ 2 - a ,  2 + a ]  = J~. Then by Theorem 7.24 in [9] and 
compactness of [ 2 - a ,  2 + a] we have (E being the spectral family of T): 

3e>0 :  dim R(E(2 + a + e ) - E ( ) ~ - a - O ) <  ~ ,  

so that, using Theorem 6.3 in [9], 

(E (2 + a + e) - E (2 - a - e)) u k ~ 0 

On the other hand 

as k - ~ .  (1) 

I[( T -  2) Ua] 12 = ~ It -),12 d liE(t) Ukll 2 

>=(a+e)2[~d]IE(t)UkH2--~Z (t) dl[E(t)ukl[ 2] 
])~--a--e,A +a+e] 

= (a-t-  e) 2 [tluk[I ~ -  II(E(2+a+e)--E(2--a--e))Ukll2]. 

By (1), the right-hand side tends to ( a + 0  2 as k~oe,  so lim inf j[(Z--2)Ukll2~(a+O 2 
k---> oo 

which is in contradiction to the assumptions of the lemma. 

Lemma 2. Let v, 0iv~L2,1oc(R"), ~b~C~(~'). Then ~i (v~)=Oiv~ + v~iO. 

Lemma 3. Let 2 < p<  ~ .  I f  v~Lp, loc(~.n), Av~L p , loe(~n) ,  then 
p - - 1  

a) Vi~{1 . . . .  ,n}: 8iveL2,1o~fN'), 
b) A(v2 )=2Avv+  21Vvl 2. 



Asymptotic Behavior of Solutions of - A v + q v = 2 v 175 

Proof a) Let R > 0 and define 

~(x)/~[O, 1], 

[ : = 0 ,  

Ixl<R } 
R<=IxI<2R eCg(IR"). 
Ix l>2R 

Then (v~ being the mollified v, see [1]) 

- S ~ A(v0 ~ = S I v(v312 ~ + �89 v(v~) �9 v~ 

so that 

1 2 S lV(vOl2<SlV(vOl2~-~Sv~ A~- Sv~A(v~)~ 
B(O, R) 

<=�89 IIA~IIL~-) 
+ II v~llLo<~<o, R))ll(a v)~ll L_~_(8<o,~)) II ~ I1~.)_-< const (R). 

p--1 

Theorem 4.25 in 1-9] guarantees the existence of a subsequence (C3~(V,~))k~ ~ and a 
v~ eL z (B (0, R)) with ~3~(v,~) ~ v~ as k ~ oo. 

Thus 
V ~b e C~ (B (0, R)): - S v ~, ~b = - lim ~ v~ t?, q5 = lira S ~,(v~) ~b = S v, 4). 

k--*m k m 

Therefore 3~v=v~ on B(0, R). 

b) VqS~C?(IR"): yavv~(o=yvA(v~(a) 

= SvA(v~)(o+2~v V(v~). VO+ ~vv~AO 

= - SvA(v , ) r  Vv. V(v,) ~b + Svv, A4) 

with the aid of Lemma 2. 
For  g + 0  on a subsequence as in the proof of a), we arrive at the conclusion 

of b). 

2. Decay of Eigenfunctions and the Essential Spectrum 

We start with the principal result of this chapter. (For the definition of M2.1oc(~"), see 
[53.) 

Theorem 1. Let qEM2,1oc(]Rn), fulfilling q(x)>= - /~lxl  2~ outside a ball B(O, Ro) for 
a fl> 0 and a gel0,  1]. Suppose 2e t rp ( -A  +q) with an eigenfunction v having the 
property: there is a I~ > 0 such that 

Then 

eZurl ~ S [v(y)12dy is unbounded in [Ro, 00[, /f 0__<7<1 ; 
lyl>=r 

r 2u ~ ]v(y)12dy is unbounded in [-Ro, 00[, /f 7=1 .  
lH~r 

[dl/~2 +d9 ~ #, y=O 

dist (,~, 6e(-A + q ) ) < / d ( 1  - y ) # p ,  O< 7 < 1 

[ l /~(da # + d2 ]/~), 2=1 .  
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((fi+2)+ :=max{0,  f i+2}; the constants d, dl, d 2 can be given explicitely and do 
not depend on any of the quantities appearing in the assumptions.) 

Remark. For ~ =0, fl is allowed to be non-positive. 

Before the proof of Theorem 1, we will present two important con- 
sequences. 

Corollary 1. Assumptions on q as in Theorem 1. Let 2~ad(--d+q) with eigen- 
function v. Then there is a # > 0  and a c > 0  such that for all xE~": 

~ce -~ixl1-~, 0 < ~ <  l; 
Iv(x)l<(e(l +lxl)("-")/2, ~--1. 

Proof As in the proof of Theorem 1 in [5], we have for Ixl _-> 4R0 + 4: 

Iv(x)[ 2 _-<cl [xl"' ~ [v(y)l 2 dy 
.(x ,,-~) '21xr 

<cl lxl"' ff Iv(y)IZ dy 
1 

lyO --> I x l - - -  21xlw 
1 1-? 

0_-<7<1 

--<c2lxl "~ '  1 ' - u  

the last inequality is true for a small #, depending on the distance of 2 to 
a e ( - A  +q), by Theorem 1. 

This, together with the continuity of v (Lemma 1 in [5]), proves the corol- 
lary. 

Corollary2. Let qeM2,1oc(~, n) with q(x)>=--O(lX]2). Let )~etTd(--A+q) with 
eigenfunction v. Then v decays exponentially. 

Proof As Vfl>0 3B(0, Ro): q(x )>- f l i x f  2 outside B(0, Ro), we see that we can 
find # as large as we wish in Corollary 1, case y = 1. 

Proof of Theorem I. A. By Satz 7 in [6], - A  + q  is essentially self-adjoint on 
C~(IR"). Let T : = - A + q .  

B. Define 

O(r) 
:=0,  r<O } 
e[O, 1], O < r < l  e C~(IR). 
:=1,  r > l  

Let S > 0 be fixed (will be specified later). For all R > 0 we define 

(Ix I - R t  and VR:=O av. VxelR": OR(X):=O \ SR ~ ! 
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As v is an eigenfunction, 12 R ~L 2 (IR") and V 4) e C~ (IR"): 

~VR(--A +q)  q~ = $2 VR q5 + I(q--)c)VOR(O-- ~vA(ORO)+ ~VAORO+2~vVO R. V(o 

= ~ 2 v , ( a -  S v A O g ( p - 2 ~  Vv. VOR~) , 

where we have made use of Lemmas 2 and 3a) (by Lemma 1 in [-5], veC~ 
So we have V R ~ D ( ( - A + q ) * ) = D ( T  ) and (T- -2)VR=--VAOR--2Vv.  VOR. 

Therefore 
Ir(r-- ;,)VRrl2 < R [lv AORll2 + 8 Il Vv . VORII 2 (2) 

Lemma 3b) says that VO~ C~(~")" 

~ v2 AO= 2 ~ (q-  Z) v2~9 + 2 ~ lVvl2~. 

So, putting ~ : =  [VORI 2, we get 

II vv .  voRII ~ - ~  r ~ d (i VO~I~)_ j" v2(q-- 2)IVO~I ~, - - 2 J  

and with (2) we arrive at 

It(T-Z) VRII 2 ~ ~ V2 {2(A OR)2 + 4A(IVORI 2) _ 8(q --Z)IVORI 2 } 

< ~ v 2 {2(A OR) 2 + 4A (I VoRI 2) + 8(ill. 12~ + ;OIVORI 2} 
f lOc~+8ClC3 t_12(n-1)ctc2 2(n-1)2c 2 8(f l (R+SRD2'+2)+c 2) 

--<l S ~  S3R3'+I + S~R2~2  + ~ ; 

j" v 2 (y) dy, 
R_-<Iyl < R + S R V  

(3) 

where c i, =max  { O(i)(r)}, R >=R o. 

Observing that S v2(y)dy4=0 by the assumptions of the theorem, we get 
r_-<lyl 

j" v 2 (y) dy 

II(T-)OVRII2<{.. .}(R) R<=l'l<=R+sR~ IIVRII 2, 
v 2 (y) dy 

R + s e v  <= lyl 

w VR . Then (UR)R>RoCD(T), ]IURH =1, and u R ,0 as R~oo ,  because Let UR:-- ilVRl[ 

suppu R c ~B(0, R). 
So in order to complete the proof of the theorem with the aid of Lemma 1, 

we just have to find estimates for 

~ " 
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C. Observing that 

l im  {.. .} (R) = 

10c2 + 8cl c3 . 8(fi+d,)+c 2 
�9 ~ ' 

S 4 

8 fi 
S 2 ' 

8fl(l + S)~ c~ 
S 2 

we only have to investigate lim inf ~''" 
R ' - * m  I 

Let R > R  o be fixed and define 

v 2 (y) dy 
b :=  inf r--<lyl<r+Sr~ 

,>R y v2(y)dy 
r + SrY <= lyt 

Then b __> 1 and Vr__> R: 

+1. 

Y v2(y)dy>=b ~ v2(y) dY. 
r__< lyl r+SrY  < [Yl 
�9 - ~ Then by induction, Let ro'.=R and rk+ a . - rk+Sri .  

VkeNo: ~ v2(y)dy<=b -k ~ v2(y)dy. 
rk--<]yl g_-<[yl 

Also by induction we see that 

7 = 0  

O < y < l  

7=1,  

[ lnrk-- lnR 
k > J  l n ( S + l )  ' 7=1  

=14-,_R1-, I ~ ' 0 < 7 < 1 "  

(4) 

(For 7=1 this is immediate; for 7=~1, we observe that ri+~-r i ~ - ~  ~-~--Sri(1-7) ~ -~ 
with a ~e[rk, rk+~], SO that ri+ al-~ < r ~ - ~ + S ( 1 -  7 ) . ) _  

So we find for ? = 1 that 

VkeN0: S v2(y)dy <--b-lnrk/ln(s+l)blnR/ln(s+l) ~ v2(y)dy, 
rk  _-< lyl R _-< ]Yl 

i.e. 
V k e N  0 Vrk<r<rk+l: 

rZu ~ vZ(y)dy <--r2" ~ v2(y)dyK=(lq-S)2#r: #-lnb/ln(s+l)blnR/ln(S+l) I vZ(y)dy, 
r_-< lyl rk_-< lyl R =< [yl 

which for b__>(S+l) 2" would lead to a contradiction, because r 2u ~ v2(y)dy 
r_-<]y[ 

was supposed to be unbounded. So b<(S+l )  z~. A similar procedure for 
0__<y<l yields b<e 2~s~ As these bounds for b do not depend on R, we 
arrive at 

Iv(y)[ 2dy (eZuS(a_,) , 
lim inf g--<lyl- -<R+sR" < )  - ' ,  0 < 7 < 1  
R~o I [v(y)12dy = [ ( S +  1)2"-  1, y = l .  

R + SR~' <= Iy] 
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D. Combining the results of B and C and putting 

1 , 
2 # ( 1 -  7) Y * 1 

S = ~ e l / ~ - l ,  y = l  and # > 1  
l 

[1,  y = l  and # < 1 ,  
we have / dl#Z-{-d2 (]/(fl+~)+#, 7 = 0  

dist (2, ae( -A  +q)</d(1  - 7) l /~  #, 0 <  7 < 1 

[V~(dl#+dzl /~) ,  2=1. 

As an application of the results of this chapter, we prove the existence of an 
embedded eigenvalue for an operator  with the potential not bounded from 
below. 

Example 1. Let q : = p  with the p as in Example 1 of [5]. Then 
O~6p(-- A + q) NO'e(----~).  

Proof In [5] it was shown that 0eap. For  the eigenfunction v constructed 
there, we found a sequence x i--* oo with 

v(xi)>[xll 1-~ ( e>0  small). 

Now assuming Osad(--A +q), Corollary 1 tells us (as q(x)> -/~lxl): 

3/~>0, c>0  VxelR": Iv(x)l<ce -"rr 

in obvious contradiction with what we said before. 
In a similar way, a related theorem for one dimension could be used to 

prove the statements in [2], p. 91f., that their eigenvalue # is embedded in the 
essential spectrum if k < 2. For  k = 2, however, it seems possible that #~ad! 

3. Growth of Solutions and the Essential Spectrum 

The analogue of Theorem 1 for non-Lz-solutions is 

Theorem 2. q as in Theorem 1. Suppose for a 2~]R we have a solution 

v~L2,1oo(IR")\L2(~ n) of - A v + q v = 2 v ,  

having the property: there is a # > 0 such that 

e-~J'il-~ vELz(F,"), /f 0<_-7<1; 

(l +l.])-Uv~L2(~n), if 7=1.  

Then the same estimates for dist(2, ae( -  A +q)) as in Theorem 1 hold. 

Remark. As after Theorem 1. 

Again we continue with some interesting consequences. 
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Corollary 3. Let qeM2,1oe(R n) with q(x)>-o(]x[2);  2~R. I f  there is a bounded 

solution v~sO of - A v + q v = 2 v ,  then 2 c ~ ( - A  +q). 
n 

Proof Without loss, v e L ~ \ L 2 ( N "  ). We apply Theorem2 with 7=1, # > ~ ,  
fl>0, and find dist(2, ere) =0  for f l~0.  

More precisely we have 

Corollary 4. Let q be as in Theorem 1. I f  for a 2 ~  we have a solution 
veL2,1oc(1Rn)\L2(]R n) with the property 

Vp>0: e-ul'l~-~v6L2(P,f), i f  0=<7<1 ; 

( l+ l ' l ) - "veg2(R") ,  /f y = l ,  

then )LStT e(-- A + q). 

Proof This follows immediately from Theorem 2, letting #~0 .  

The fact that our method fails to yield the conclusion of Corollary 3 in the 
case of q(x) ~ - O([x[2)s leads us to the following 

Conjecture. There is a q~M2,1oe(~.~ n) with q(x)> -O(]x[ 2) and a 2 ~ I R \ a ( -  A +q) 
such that a bounded solution v @ O of  - A v + q v = )~ v exists. 

An example of Halvorsen in [8], pp. 373-382, for one dimension supports 
this idea. 

We now come to the 

Proof of Theorem 2. A. We can follow nearly completely the proof of Theo- 
rem 1. 

B. Instead of v R we will use ~R'.=V--VR. We observe that ~R~L2(N ") 
because vffLz,loe(]R.n), and as before we see that 5ReD(T) with (T--2)~R= 
- -VAOR--2Vv.  VOR, and following the steps up to (3),-we arrive at 
( ~ v2(y)dy#O for r large enough): 
lyl _-<~ 

j" v 2 (y) dy 
I[(T--2)~R]]E<(...}(R) R<=IyI<R+sR~ II~gll 2 

v2(y)dy 
lYI_-<R 

~ ~ R  ~ w 
We define UR:= ~ .  Then (fiR)R>RoCD(T), HfigU =1, and UR----*O as R~oo ,  

because Vq~C~(IR"): (fig,~b) (v, q~) T , = ~  for R large enough and I[~RII--'oo as R ~ o o  

by the assumption v~L2(N" ). So this time we have to estimate 

I v 2 (y) dy 
lim inf R =< lyl <= g + SR, 
R-*~ f vZ(y) dy 

lYI_-<R 
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C. Let R (large enough) be fixed and define 

Then b=>l and Vr>=R: 

v 2 (y) dy 

b.'= inf "<lyl<~+s~" 
~>=R ~ v2(y)dy 

[y[_-<r 

4-1. 

v2(y)dy>= b ~ v2(y)dy. 
lyl <=~+Sr~ lyl <r 

Defining ro :=R , rk+~: =rk+SrT, we see by induction 

VkeNo: ~ v2(y)dy>=b k ~ v2(y)dy. 
[Y[ __<r~, lyl <R 

Using (4), we have for 7 = 1 : 

Vk~No: S (I+IyD-2Uv2(y)dy 
lyl _-<rk 

~=(l-]-rk)-2ublnrk/ln(S+l)b-lnR/ln(S+l)S v 2 ( y )  d y ,  

lyl-_<R 

from which we conclude b=<(S+l) 2u, because otherwise the left-hand side 
would be unbounded for k~oe .  

A similar argument for 0<  7 < 1 yields b <= e z~s~l-~) in that case. 
Again, this does not depend on R, so that we arrive at 

v2(y)dy fe2uSO-~)_ 1, 0=<7<1 
lim inf R:< lYl <=R+SR~ 
R-*~ ~ v2(y)dy --<~(S+ 1)2"-  1, 7=1.  

lYl<R 

D. The rest of the proof is the same as for Theorem 1. 

4. Lower Bounds for Generalized Solutions 

As a modest approach to lower bounds of solutions of the equation 
- A v + q v = 2 v ,  we finally give as a further application of Theorem 2 the 
following 

Proposition. Let q~Mz, loo(lR"), fulfilling outside a ball B(O, Ro) with a/8>0: 

(i) q(x)>__ - f l [xl  2~ for a re[0 ,  1] 
or 

(ii) q(x)>fi[xl 2~ for a 7>0.  

Let 2 e l ( \ a e ( - A  +q). 
Then there is a # > 0  such that for any solution veL2,1oc(R")\L2(N" ) of 

- A v + q v = 2 v :  

(i) (l +l.I)-Uv(~Lz(Nn), if 7=1 

e -"r'll "vCL2(llf), if 0_-<7<1 
o r  

(ii) e-"l'll+'VCLE(P,n), respectively. 
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Proof A. C a s e  (i) is a c o n s e q u e n c e  o f  C o r o l l a r y  4. 

B. C a s e  (ii) fo l lows  f r o m  T h e o r e m 2  in [5].  

= ~ i -  a n d  a s s u m e  

V # > 0 :  e - " l ' l l + "  v ~ L 2 ( ~ n ) ,  

In  fact, if we pu t  

t hen  the  a s s u m p t i o n s  of  t ha t  t h e o r e m  are  fulf i l led a n d  we get  f r o m  it:  v e L 2 ( R "  ). 
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