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0. Introduction

In L,(IR"), n=2, we study the operator —4+ ¢ defined on CT(R") with a real-
valued geL, ,,.(R"). Under further assumptions on g, this operator will be
essentially self-adjoint.

There are many connexions between the asymptotic behavior at infinity
of non-trivial solutions wvelL, (R"”) of the equation —Av+qv=A4iv (ie.
Voe CERM: fv(—4+g—2)¢=0) and the location of AeR with respect to the
different parts of the spectrum of the operator —A+gq (for the notation of the
spectrum, see [9]). A trivial prototype of this kind of statements is

v decays very rapidly = deo,.

Many results concern the other direction: if Aec,, then every eigenfunction
decays, depending on the behavior of g near infinity, more or less rapidly. See
[5] for some examples. In that paper, however, it was pointed out that in
general eigenfunctions need not go to zero pointwise if g is not bounded from
below (Example 1 in [5]). On the other hand, if A€oy, then the pointwise decay
of eigenfunctions is usually exponential (i.e. faster than any negative power of
|x]). For potentials ¢ which are bounded from below, this has been proved by
Shnol’ (Theorem 2 in [3], p. 179; cp. Satz 0 in [4]). In Corollary 2 we will show
that the same is true, if g(x)= —o(x|?). An application lies in the manifestation
of the existence of embedded eigenvalues for a special kind of operators with a
potential unbounded from below (Example 1). To arrive at these results, we
establish, in Theorem 1, the connexion between the decay of eigenfunctions and
the distance of 4 to o,.

The same method will be used to yield links between dist(4,0,) and the
growth of solutions which are not in L, (Theorem 2). It is generally believed
that the following is true:

Jvel  ,(R"N\{0}, —dv+qv=Av = Aeo. (%)
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Again Shnol’ (Theorem 5 in [3], p.182) provided a proof for the case of
potentials which are bounded from below. This was generalized by Simon [7]
to potentials the negative parts of which lie in K,. By Theorem 2, we can
establish (x) if g(x)= —o(]x|?) (Corollary 3) (The latter result has also been
obtained by Shnol’, but in a non-quantitative way; see Shnol’’s original works
as cited in [3].). We are, however, led to believe that (%) in general fails if
q(x)~ —0(x|?) (Conjecture).

Another consequence of Theorem 2 are lower bounds for non-L,-solutions
of the equation —Adv+qv=Av if A¢o, (Proposition), which fit perfectly with
earlier results. This fact provides some hope to find lower bounds for eigen-
functions by a similar method.

1. Some Tools

In Lemmas 1 to 3 we will give some abstract tools necessary in the proofs of
Theorems 1 and 2. Because of the structure of our problems here, we can
assume, throughout this paper, every appearing function to be real-valued.

Lemma 1. Let T be a self-adjoint operator on a Hilbert space, AcR.
If there is a sequence (u),.<=D(T) with |u,||=1 VkeN, u, 0 as k— o0,
and a:=li{n inf ||(T—A) u, || < o0, then dist(4, 6,(T))Za.

Proof. Assume that ¢,(T)n[A—a,A+a]=&. Then by Theorem 7.24 in [9] and
compactness of [A—a, A+a] we have (E being the spectral family of T):

3e>0: dimR(E(A+a+e—E(l—a—eg))< o0,
so that, using Theorem 6.3 in [9],
(E(A+a+e)—E(A—a—g)u,—0 as k—oo. (1)
On the other hand
(T— 2w = [le— A AIEQ@) w ]
2(a+e’[JAIEOu)*~fz @)  dIE®]"]
N—a—e, A+a+e]l
=(a+e’u >~ I(Ed+a+e)—E(l—a—e)u,*].
By (1), the right-hand side tends to (a+¢)* as k—00, s0 liin inf [(T—A)u)*=(a+8)?
which is in contradiction to the assumptions of the lemma.
Lemma 2. Let v, 9;veL, ,,.(R"), ye C*(R"). Then 0,(vy)=0;vy +v ;Y.
Proof. YpeCTR"): — (oY d,¢p=—[vd,(y d)+ [v i,y §.
Lemma 3. Let 2<p=<oco. If vel, ,.(R"), d4vel_p . (IR"), then
p—1

a) Vie{l,...,n}: d;veL, ,,.(R",
b) A(W?)=24vv+2|Vv|*
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Proof. a) Let R>0 and define

=1, Ix|<R
t(x)!1ef0,11, REZ|X|L2R}eC2(R").
:=0, Ix|Z2R

Then (v, being the mollified v, see {1])

— [0, 4@W) (= [IV@)I* C+ 3 V(3)- V¢
= [V {—3f o2 AL,
so that
§ V@R £ fIV)? (=5]v2 40— [v,4()(
B(0, R}
<1 “Us“fz(B(o.R)) 1480 2
+ HUs“L,,(B(O,R)) (4 U)a”L;fT(B(O,R)) HC”LQO(Rn) Zconst(R).
Theorem 4.25 in [9] guarantees the existence of a subsequence (0;(v,, ). and a
v,€L,(B(0, R)) with 8,(v, )~ v; as k— 0.
Thus
Ve CP(B(O,R)): —vd,¢p= —klim jvsk6i¢———klim [o,(v,)p={v,¢.
Therefore d,v=v, on B(0, R). :
b) Ve CM"): [ dvo,¢=fvA(v,¢)
=[vdA)d+2fv V() -Vo+ [vv 49
=—[vA@)dp—2{Vv-V(v)p+ [vv,A¢
with the aid of Lemma 2.

For ¢—0 on a subsequence as in the proof of a), we arrive at the conclusion
of b).

2. Decay of Eigenfunctions and the Essential Spectrum

Westart with the principal result of this chapter. (For the definition of M, ;. (R"), see
(51)

Theorem 1. Let geM, . (R"), fulfilling q(x)= — B|x|?" outside a ball B(0,R,) for
a >0 and a y€[0,1]. Suppose leaP(T—Fq) with an eigenfunction v having the
property: there is a u>0 such that

e | lo(y)I*dy is unbounded in [R,, o[, if 0<y<1;
ylzr
r* [ [v()I*dy is unbounded in [R,, o[, if y=1.
Iylzr

Then
dyp?+d, YV (B+A), n, 9=0

dist(4, o, (= 4+ @) ={d(1— VB, 0<y<1
]/E(dlﬂu—l_le/ll_l)a V=1



176 AM. Hinz
(B+A), :=max {0, B+ A}; the constants d, d,, d, can be given explicitely and do
not depend on any of the quantities appearing in the assumptions.)

Remark. For y=0, f is allowed to be non-positive.

Before the proof of Theorem 1, we will present two important con-
sequences.

Corollary 1. Assumptions on q as in Theorem 1. Let Ao, {—A+q) with eigen-
Sunction v. Then there is a u>0 and a ¢>0 such that for all xeRR":

ce kXY 0Zy<1;
< =
|U(x)|_{c(1+|x|)(n—u)/2, y=1.

Proof. As in the proof of Theorem 1 in [5], we have for [x|Z4R,+4:
PP Sy x| lv(y)*dy
1

B(x’ 2|x|v)

Sclx™ [ Jo()I*dy

1
bz~ 5
—Zu( 1 )1—3’ 0< 1
-— y = <
o) T2 '
Scp X" { \-k
T Al 5 :13
(lxl 2|x|> ’

the last inequality is true for a small p, depending on the distance of A to
o,(—A4+¢q), by Theorem 1.

This, together with the continuity of v (Lemma 1 in [5]), proves the corol-
lary.

Corollary 2. Let geM,  (R") with q(x)=—o(|x|*). Let Aco,(—A+q) with
eigenfunction v. Then v decays exponentially.

Proof. As VB>0 3B(0,R,): q(x)= — B|x|* outside B(0, R,), we see that we can
find p as large as we wish in Corollary 1, case y=1.

Proof of Theorem 1. A. By Satz7 in [6], —A4+¢q is essentially self-adjoint on
Cy(R". Let T:=—A4+q.
B. Define

=0, r<0
@(r){e[o, 1], ogrgl}ecw(m).
=1, rz1

Let §>0 be fixed (will be specified later). For all R>0 we define

VxeR": Oy(x):=6 (|x| _R)

SR?

and vg:=0Ozv.
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As v is an eigenfunction, vzeL,(R") and Ve Cg(R":
fvg(—4+q) ¢p=[Avgd+[(g—AvOgp— [ AOgP)+ [v4Orp+2[0VEOR-V
=[Avgp—fvd4Oxp—2[Vv-VOL P,
where we have made use of Lemmas 2 and 3a) (by Lemma 1 in [5], ve C°(R™).
So we have vpeD(—A4+q*)=D(T) and (T—ADvg=—-v40x—2Vv-VO;.
Therefore

(T2 vgli* <20 46> +8 Vv - VO *. @

Lemma 3b) says that Viye Cg(R"):

[v* Ay =2{(qg—2) >y +2[1Vo|*y.
So, putting ¥ :=|VOg|*, we get
[Vo- VO |2 =4[ v* A(VORI*) ~ [ v*(q— ) VORI,
and with (2) we arrive at
I(T—2)vgll* < [ v* {2(4OR)* + 4 A(1VOR|*) — 8(q — 1) VOR|*}

< [0 {2(4605)* +44(1VORI") +8(B- 17+ 1) [VOR|*}

< 100%—1—801c3+12(n—1)clc2 2(n—1)2cf+8(ﬂ(R+SRV)2V+A)+c‘f
= S4R4y SSR3y+1 S2R2V+2 SZRZV

v2(y) dy, 3)

R=|y| SR+SRY

where ci:=m%{x{@(“(r)}, RZ=R,.
Observing that | v?(y)dy=0 by the assumptions of the theorem, we get

r=ly|
HI v?(y)dy
T— D vell><{...} (R) B2l =R+ SR ol
I( Yol £{..}(R) [ 2oy l[vgll
R+SR? <y

Let ug:= " H Then (ug)g s, D(T), llugll =1, and uz—>0 as R— oo, because
Ug

suppug < [ B(0, R).

So in order to complete the proof of the theorem with the aid of Lemma 1,
we just have to find estimates for

11m 1nf {..3(R)

B
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C. Observing that
10¢3+ 8¢, ¢4 N 8(B+ 1), 2

s4 sz =0
. 8fct
lim ..} (R)= 5 0<y<l
88(1+98)?c?
putere i,

we only have to investigate liI{n inf L
Let R=R,, be fixed and define
| 2*O)dy

b:=inf r<ly|sr+Sry 1
rzk [ v(y)dy

r+Sr7 |yl

Then b1 and Vr=ZR: | v*(y)dy=b [ v*(y)dy.
r=lyl r+S5r7 <y
Let ry:=R and 1, ;:=r+Sr}. Then by induction,

VkeNy: | o*(n)dy=db™* [ v*(y)dy.

L Rzlyl

Also by induction we see that

Inr,—InR
wEen
> n(S+1)
T —Ry 0 )
o 9sy<l
S(1=y)

(For y=1 this is immediate; for y+1, we observe that r[]—r ~7=
with a &e[r,n, ], so that 7 <=7 +S(1—y).)
So we find for y=1 that

VkGNOZ j‘ DZ(y)dyéb——lnrklln(S+1)blnR/1n(S+1) j‘ vz(y)dy,
_ e <yl Ryl
1L€.

YkeN, Vr Srsn.

rZu j’ UZ(y) dysrlu j‘ UZ(y) dyS(l_i_S)Zu rkZu—lnb/ln(S+1) blnR/ln(S+1)

AM. Hinz

)

Sri(l=y) ™

| v*(dy,

r=ly| re <yl R=y|

which for b2 (S+1)** would lead to a contradiction, because r** [ v*(y)dy

r=|y|

was supposed to be unbounded. So b<(S+1)**. A similar procedure for
0<y<1 yields b<e?*51~"  As these bounds for b do not depend on R, we

arrive at

limin
R~ § lo)*dy

R+SRY 2yl

v(y)*d
o (L ST P
SUS+ D —1,  y=1.
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D. Combining the results of B and C and putting

1
s V¥l
2p(1 =)
S=1{etlr—1, y=1 and u=1
1, y=1 and u<l1,

we have
dy 2 +d, V(B+A s 7=0

dist(4, 0, (=4 +a)<{d(1—9)1/Bu, 0<y<l

VB, u+d, V), y=1.

As an application of the results of this chapter, we prove the existence of an
embedded eigenvalue for an operator with the potential not bounded from
below.

Examplel. Let gq:=p with the p as in Examplel of [5]. Then
Oco (—4+q)no,(—4+9).

Proof. In [5] it was shown that Oeg,. For the eigenfunction v constructed
there, we found a sequence x;,— oo with :

v(x)>|x'"* (>0 small).
Now assuming Oco,(—A4+¢), Corollary 1 tells us (as g(x)= — f|x|):
Ju>0, ¢>0 VxeR"™: |U(x)|§ce_’”/m,

in obvious contradiction with what we said before.

In a similar way, a related theorem for one dimension could be used to
prove the statements in [2], p. 91f, that their eigenvalue p is embedded in the
essential spectrum if k <2. For k=2, however, it scems possible that ueo,!

3. Growth of Solutions and the Essential Spectrum

The analogue of Theorem 1 for non-L,-solutions is

Theorem 2. g as in Theorem 1. Suppose for a AR we have a solution
veL, ,(R"N\L,(R") of —Av+qv=Aiv,
having the property: there is a p>0 such that
e #' Y veL, R, if 0<y<l;
(14D *veL,(R", if y=1.
Then the same estimates for dist(4, ¢,(— A +q)) as in Theorem 1 hold.

Remark. As after Theorem 1.

Again we continue with some interesting consequences.
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Corollary 3. Let geM, ,,,(R") with q(x)= —o(|x|*); AeR. If there is a bounded
solution v£0 of —Av+qv=_2Av, then Aco(—A+q).
Proof. Without loss, veL \L,(IR"). We apply Theorem2 with y=1, ,u>g,
>0, and find dist(4, ¢,)=0 for f—0.

More precisely we have

Corollary 4. Let g be as in Theorem 1. If for a AelR we have a solution
veL, 1, (R")\L,(R") with the property
Yu>0: e *I''""pel, (R, if 0<y<l;
(L4 )"*vel,(R7), if y=1,
then leo,(—A+q).
Proof. This follows immediately from Theorem 2, letting u—0.

The fact that our method fails to yield the conclusion of Corollary 3 in the
case of g(x)~ —O(|x|?), leads us to the following

Conjecture. There is a geM, . (R") with g(x)= —O(x|?) and a LeR\o(— 4 +q)
such that a bounded solution v£0 of —Av+qv=Av exists.

An example of Halvorsen in [8], pp. 373-382, for one dimension supports
this idea.
We now come to the

Proof of Theorem 2. A. We can follow nearly completely the proof of Theo-
rem 1.

B. Instead of vy we will use Dz:=v—vg. We observe that freLl,(R")
because veL, | (R"), and as before we see that §,eD(T) with (T—1) b=
—vAO@rg—2Vv-VO,, and following the steps up to (3),- we arrive at
( | v*(y)dy=+0 for r large enough):

[yl=r
v*(y)dy
T—A)Tg)?<{...} (R)R2BI=RESRY Bl
HT—=Agl*<{...} (R) [ 20)dy DR
[y=R
We define aR:“gR“. Then (iig)gsr, <D(T), liigl =1, and iiz—>0 as R— oo,
R

(v, )

[
by the assumption v¢L,(R"). So this time we have to estimate

v (y)dy

lim inf RS/ R+SRY
R—-w j‘ Uz(y)dy

|yl £R

because Ve Cy(R"): (iig, ¢)=

for R large enough and ||#z]| > o0 as R—» o0
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C. Let R (large enough) be fixed and define

[ v*dy
b::inf'él3’|§l‘+8r? 1
r2R f Dz(y)dy
vl=r

Then b=1and VrzR: | v*(y)dy=b | v*(y)dy.
[yl Sr+Sr7 [yl =r
Defining ry: =R, 1, : =1, +Sr] we see by induction

VkeNy: | v*(ndyzb* | v*(y)dy.

[yl sre lyi=R

Using (4), we have for y=1:

VkeNy: | (1+[y)~**0*(y)dy

[yl Sre

g(l_l_rk)—zublmk/ln(SH)b—lnR/ln(s+1) j vz(y)dy,
ly| =R

from which we conclude b<(S+1)**, because otherwise the left-hand side
would be unbounded for k— co.

A similar argument for 0<y <1 yields b <e2#51=7 ip that case.

Again, this does not depend on R, so that we arrive at

v*(y)dy
lim inf REDISR+SR” {ez"s‘l‘”—l, 0<y<1

e [ 2g)dy CUS+D*-1, p=1

Iy =R

D. The rest of the proof is the same as for Theorem 1.

4. Lower Bounds for Generalized Solutions

As a modest approach to lower bounds of solutions of the equation

—Av+qv=24v, we finally give as a further application of Theorem 2 the
following

Proposition. Let ge M, | (R"), fulfilling outside a ball B(0, Ry} with a f>0:

(i) q(x)= —BIxI*" for a ye[0, 1]
or

(ii) gx)zBIxI*"  for a y>0.
Let 1eR\o, (—A4+¢q).

Then there is a u>0 such that for any solution veL, (R")\L,(IR") of
—Av+qu=_47v:

(@) A+ v¢L,R7), if y=1

e I g LR, if 0Sy<1
or
(i) e " p¢L,(R"), respectively.
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Proof. A. Case (i) is a consequence of Corollary 4.
B. Case (i) follows from Theorem?2 in [5]. In fact, if we put

oc(r):=£/f 7+l

r and assume
v+ i
Yu>0: e """ peL,(R"),

then the assumptions of that theorem are fulfilled and we get from it: veL,(IR").
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