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1. Introduction 

Let H a be the three-dimensional Heisenberg group, consisting of the lower- 
triangular matrices 

g = 1 = (x, y, z), 

Y 

where x, y, z are real numbers. The product  in H1 is the ordinary matrix product, 
so that 

(x, y, z)(x', y', z')= (x + x', y + y', z + z' + yx'). (1) 

We are interested in studying some maximal operators on Ha associated 
with the two-parameter  family of (automorphic) dilations 

D~,~(x, y, z)=(fix,  e y, fez) ,  (2) 

and in determining their LV-boundedness properties. 
The Heisenberg group Ha is just the simplest example of a nilpotent Lie 

group with a mult iple-parameter family of dilations. The most  interesting groups 
of this type are those which appear  in Iwasawa decomposit ions of semisimple 
groups with real rank larger than one. In this way, H1 appears  in connection 
with SL(3, N.). The rank of the semisimple group is the number  of parameters  
for the dilations on the nilpotent group. 

The operators  we consider in this paper  have relevance in the analysis on 
SL(3, N.). Some of them actually arise in the study of the boundary  behaviour 
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of Poisson integrals on the symmetric space SL(3, ~)/S0(3), see Sj6gren [8, 
Sect. 6]. 

The first maximal operator to be considered is obtained by fixing some 
nice bounded set Q in H1, e.g. 

O= {(x, y, z): Ix [< l ,  l y l < l ,  l z [< l}  

and defining, for g~H1, 

MQf(g) = sup ~ [f(g(b x, ey, 6ez)-l[ dx dy dz. 
6,~>O Q 

(3) 

It is easily seen that MQ is bounded on LP(H1) for l < p < m .  We sketch 
the proof, which is given, in a more general context, in Korfinyi [5, Sect. 3]. 
It follows from the multiplication law (1) that 

so that 
(x, y, z) = (x, O, 0)(0, y, 0)(0, O, z), 

MQ f (g) 
1 1 1 

= s u p  ~ ~ ~ [f(g(O,O,-bez)(O,-ey, O)(-c~x,O,O))ldxdydz 
& e > 0  - 1  - 1  - 1  

1 1 1 

=< sup ~ ~ ~ [f(g(O,O,--pz)(O,-ey, O)(-bx, O,O))ldxdydz 
6 '~ 'P>0- -1  --1 --1 

= Ms f (g). 
If we define 

1 

Mxf(g)=su p ~ ] f ( g ( - b x ,  O,O))ldx (4) 
6 > 0  - 1  

and My, M~ similarly, we see that 

MQ f (g) =< M s f (g) =< Mz My Mx f (g). 

Since Mx, My, and M~ are Hardy-Litt lewood maximal operators along one- 
parameter subgroups, each of them is bounded on LV(HO, 1 < p < ~ ,  by transfer- 
ence methods, see Coifman and Weiss [3] and Ricci and Stein [7]. The 
LV-boundedness of M e and the strong maximal operator M s follows. 

The next operators we consider are obtained by integrating along appro- 
priate dilation-invariant embedded submanifolds of Ha. 

The embedded curves that are invariant under the D6, ~ are the three one- 
parameter groups {(x, 0, 0)}, {(0, y, 0)}, and {(0, 0, z)}, and their positive and 
negative halves. The associated maximal functions are Mx, My, M~, respectively, 
which we have already discussed. 

One finds that the invariant embedded two-dimensional manifolds are 
{x = 0}, {y = 0}, {z = e x y}, e eN,  and unions of their "quadrants".  Among these, 
{x=0}, {y=0}, {z=0}, and {z=xy}  are products of two of the three one- 
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parameter groups above. There are four such products because of the lack of 
commutativity. The two-parameter maximal operators connected with these spe- 
cial cases are dominated by products of two of the operators Mx, My, Mz, 
so that L p boundedness in the range 1 < p < oo is easy to establish. 

What  remains is to consider the surfaces {z = c~ x y} with e 4= 0, 1. As a margin- 
al remark, we observe that a coordinate change x '= x, y' =y, z' =z  + r x y  (such 
as the passage to canonical coordinates of the first kind) preserves the formula 
for D6,~ and the family of surfaces {z = exy} .  However, the values of e for which 
the surface "degenerates" into the product of two one-parameter groups depend 
on the choice of the coordinates. For  simplicity, we restrict ourselves to the 
quadrant  {x > O, y > O} and define for ~ 

I 1 

(M~f)(g)= sup S S l f (g (6x ,  eY, f e c ~ x y ) - l ) l d x d y  �9 (5) 
~>0,~>0 0 0 

The aim of the present paper is to prove the following result. 

Theorem 1. For every ~ I R ,  the operator M~ is bounded on LP(H1) for 1 < p< or. 

If convolution on the Heisenberg group is replaced by convolution in N 3 
in the definition of M, ,  the resulting maximal operator is bounded on LP(IR 3) 
for 1 < p  < oo, as shown by Carlsson, Sj6gren and Str6mberg [2]. 

After completing this work, we learned about  a recent paper by M. Christ 
[10]. Our Theorem 1 can also be derived from his Theorem 2.3, proved by 
a method entirely different from ours. 

We prove Theorem 1 by adapting to the present situation a rather standard 
complex interpolation argument (cf. Geller and Stein [-4] and Stein and Wainger 
[9]). The basic measure defining M~, i.e., the measure dx dy concentrated on 
a compact portion of the surface {z=c~xy}, is embedded in an analytic family 
of distributions depending on a complex parameter s. For  Re s > 0 one obtains 
more regular maximal operators, which can be proven to be bounded on LP(HO 
for p >  1. The operators corresponding to Re s < 0  are more singular than M~, 
but still they are bounded on L2(H1) if Re s is close to zero. 

This last result will follow from L 2 estimates for some singular integral opera- 
tors which are of independent interest. The class of operators we consider con- 
tains the double Hilbert transform along the surface z = ~ x y ,  as well as other 
operators given by kernels with a singularity on this surface and higher order 
singularities on the x and y axes (see Sect. 2). It is interesting to observe that 
certain of these operators are bounded on L 2 only in the nondegenerate case 

4= 0, 1. In turn, the proofs of these estimates use representation theory and 
the analysis of some integral operators in P,. 

2. Some Singular Integrals 

We consider a class of convolution operators on H I which commute with the 
dilations Da,~. They are defined by means of a kernel concentrated on the surface 
{z=~xy} ,  possibly composed with a fractional derivation in the z direction. 
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For  Re s>0 ,  let D s be the fractional derivative on the real line, having F((1 
+ s)/2)-~[~ ]s as its Fourier transform. We then define the fractional derivation 
in the z direction on HI  as (O~f)(x, y, z )=(OSf(x ,  y, .))(z). Explicit examples 
of our operators are 

+or +Go 
(T~f)(g)-- ~ ~ ]xl~-~]y[S-~[D~f(g(x,y,z)-~)] . . . .  y d x d y  

- o o  - o o  

for 0 < Re s < 1 and s 4 0, and the double Hilbert transform 

~OD + cO 

(Hf) (g)= ~ l~ f ( g ( x , y ,  a x y ) - l ) d x d y .  
-oo -oo x y  

Hilbert transforms of this kind in N2 have been considered by Nagel and 
Wainger E6]. 

More generally, when 0 < Re s < 1, we consider two locally integrable func- 
tions K] (t), K~ (t) on the line, such that for t :t= 0 and j = 1, 2. 

IK}(t)l<Cltl ~'-~, lY.}(t)l<CltI-R% (6) 

If Re s = 0, we assume that K] ,  K~ are tempered distributions which are locally 
integrable away from 0 and 

]K~(t)[<=Clt[ -~, [/(~(t)[=<C, d K~(t) <=C]t[ -1 (7) 

If Re s = 1, we assume instead that K] and K~ are bounded functions whose 
Fourier transforms are locally integrable away from the origin, and such that 

IK}(t)l~C, d K}(t) <=Cltl-', I/~j(t) I <= c I t I- 1 (8) 

Theorem 2. Assume that e o e0, 1, 0 < R e  s <  1, and that K],  K~ are as above. 
Then the operator 

(T~f)(g) = ~j" K~I (x) K~2 (y)[D~f(g(x,  y, z ) -  1)] . . . .  y dx dy = f *  Ks(g), (9) 

initially defined on 5~ is bounded on L2(H O. 

In the proof  of Theorem 2, we need the following generalization of Schur's 
boundedness criterion. It was proved by Brown, Halmos, and Shields [1]. 

Lemma 1. Let K > 0 be a measurable function on IR 2. Assume that there exists 
a function g~L~oc(~ ) with g > 0 a.e. such that 

(Tg)(x) = SK(x,  y) g(y) d y <  Cg(x) a.e. 
and 

(T* g)(x)= SK(y,  x) g(y) d y <  Cg(x) a.e. 

Then the operator T defined by the kernel K is bounded on L 2 (IR). 



Heisenberg Group 569 

Proof of  Theorem 2. We verify the norm estimate, assuming that K] and K~ 
are in 5e. Since K]  and K~ can be approximated in the distribution sense by 
functions in 5 ~ satisfying uniformly the same conditions (6), (7), or (8), respective- 
ly, we can assume that our kernels are in 5 a. 

For 24:0, let rc~ be the Schr6dinger representation of H~ in L2(IR) given 
by 

(n~(x, y, z) f)(4) = e ~<z- Cr-xr)f( 4 + x). (10) 

By Plancherel's formula, we need only prove that the operators rex(Ks) given 
by 

na (Ks) f = ~ K] (x) K~ (y) [D~ (Tz~ (x, y, z)-I f ) ]  . . . .  y d x d y 

are bounded on L z (~), uniformly in 2. We have 

(rca (Ks) f )  (4) = J'I K] (x) K~ (y) [O~ (e ' ~ -  z + cy) f (4 -- x)] . . . .  , d x d y 

F (  1 2s) -a l2 lSSSK](x )K~(y)e - ia<~xY- 'Y) f (~-x )dxdy  

= F(I+s--]-II2ISSK] ( x ) K ~ ( 2 ( ~ x - 4 ) ) f ( 4 - - x ) d x .  
\ / z  (11) 

Assume first that 0 < Re s = p < 1. By (6), 

I(~c~(Ks)f)(4)l~CsI. Ix[ p-x I ~ x - ~ l - P l f ( 4 - x ) l  dx  

< Cs ~14-  xl ~- ~ 1(~- l ) 4 - , x l - O  l f (x)l dx. 

Applying Lemma 1 with K(4, x)=  14-x l  p- 1 [(~__ 1)4_Txl-P  and g(x)= Ix I- 1/2, 
we conclude that 

117cz(Ks)f II z ~ C Ilftl 2, 

where C does not depend on 2. This settles the case 0 < p < 1. 
Assume now that Re s=0.  By (11), 

(Tr~ (Ks) f )  (4) = r((1 + sff2) - 1 ] 2]s ~ K] (x) g.~ (2 (a x - 4)) f (4 - x) d x 

= 1"((1 + s ) /2 ) -1121  s R~ ( -  24) ~ K] ( x ) f  (4 -- x) d x 

+ F((1 + s)/2)-1 ] 2 ]s 5 K] (x) (/(~ (2 (a x -- 4)) - g~ ( - 24)) f (4 - x) d x. 

Since 121 s has absolute value one and bo th / s  and/s  are bounded functions, 
the L 2 norm of the first term is dominated by the L 2 norm of f, independently 
of 2. As to the last term, we have 

S IK~(x)l I g ~ ( R ( ~ x - 4 ) ) - ~ ( - 2 4 ) 1  [ f ( 4 - x ) l  dx  

= S + S 
Ix[<21~l Ixl>21~l 
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If Ix I< 14 I/2 I~ l, we can use the smoothness of/s away from the origin: 

I /~(2(c~x-~)) - /~( -2~)1  ~C 12~xl =C Ixl 
1241 141" 

This estimate also holds if [ ~ 1/21 el < I xl < 21 ~ l, because/s  is bounded. There- 
fore, since [K~ (x) l < C Ix I- 1, 

S ~cI41 -~ ~ ]f(r 
[x1<21r Ix1<21r 

where M is the Hardy-Li t t lewood maximal operator  on the line. 
For  the remaining integral we have 

<-_ ~ [ x [ - l [ f ( 4 - x ) [ d x  
Ix[>2lr Ixl>21r 

< C  ~ [ t l -~ l f ( t ) ld t .  
Itl>l~l 

Now the L 2 maximal function estimate and Hardy 's  inequality give the desired 
L 2 estimate for rex(Ks). 

Let now Re s = 1. Making the change of variable t = x -  ~/c~, we have 

(ha (K,) f ) ( { )  = V((1 + s)/2)-'  [21 ~ 5 K{ (x) R~ (2 (c~x- ~ ) ) f ( ~  - x) dx 

-t-]'(12s--)-l,~,S~(KSl(t-l-~)-KSl(~))KS2(~o~t)f(~ 1 

The first term is a convolution operator  followed by multiplication by a bounded 
function. Since K~ is bounded, the convolution operators with kernels 
121/s are uniformly bounded on L2(N) with respect to 2. It  follows that 
the L 2 norm of the first term is dominated by the L 2 norm of f ( ( e - 1 ) 4 / e ) ,  
and thus by that of f, uniformly in 2. The last term is controlled in the same 
way as in the case Re s = 0. 

Theorem 2 is proved. 
What  will be needed in the sequel is already contained in Theorem 2. How- 

ever, we also present a result regarding the degenerate cases c~ = 0 and e = 1. 

Theorem 3. Assume that c~=0 or 1, 0 < R e  s <  1/2, and that K~I, K~ satisfy (6) 
or (7) according to the value of s. Then the operator T~ defined by (9) is bounded 
on L2 (H0.  
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A simple example shows that Theorem 3 is false for s =  1/2. Let e = 0 ,  
Kl/Z(t)=Kiz/Z(t)=lt[-1/2 and f=ZQ, where Q is the unit cube defined in the 
introduction. Then 

(T~/2f)(g)=c ~ [x[-1/2[y[-1/2lzl-3/2 dxdydz  
g(x,y,z)- X~Q 

for any point geHx such that the closure of Q - l g  does not intersect the plane 
{z=0}. Let g = ( x l ,  Yi, zi) with Ix1]< 1, 10<z  1 < 11, ]Yl[ large. Then ]T1/zf(g)[ 
__>const. ]Yl ]-~/2, so that TI/2fCLZ(HO. 

Proof of Theorem 3. Assume first that ~ = 0. Then by (11), 

( ~  (K~) f)(4) = F((1 + s)/2)-1 [ ,~ i S ~:~ (_,~ ~)(K1 .f)(4) .  

If Re s=0 ,  the assumptions (7) imply that Tc~(K~) is bounded on L20R) uniformly 
in 2. 

If 0 < Re s = p < 1/2, then by (6) 

I ffcz(K~)f)(~)l _- < Cs~l~l -p i x - ~  [P-l[f(x)ldx. 

We now apply Lemma 1 with K(~, x) = I~[-P Ix-- ~ I~ 1 and g(x) = Ix[- 1/2. This 
ends the case Re s > 0. 

If ~ = 1, we observe that 

z~a (K~) f (~) = F((1 + s)/2)-1 [ 2 [' (K] �9 (g~ ( - 2.) f ) )  (~), 

and this operator  is the transpose of one of those arising in the case ~ = 0. 

3. Proof of Theorem 1 

Instead of M~, we consider a modified maximal operator. First of all, we can 
restrict ourselves to the non-degenerate case a 4= 0, 1. Let ~ > 0 be a C ~176 function 
on IR supported on [1/4, 2], never vanishing on [1/2, 1]. If f > 0 ,  as we can 
also assume, we have 

M~f(g) < C sup S~f(gD2,,2J(x , y, ezxy) - i )  ~(x) ~(y) dx dy 
i, jeZ 

= C  sup ~Sf(g(x,y,~xy)-a)2-i-J~p(2-ix)~(2-Jy)dxdy. (12) 
i, je2~ 

by 
For  a distribution T on Ha, we denote by T u the dilated distribution given 

<T/j, q)> = ( T ,  (P ~  2J>. 
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If # is the measure on the surface { z = ~ x y }  given by O ( x ) ~ ( y ) d x d y ,  then 
#it is supported on the same manifold and given by 2 ~ i - jO  (2- ix)  ~ (2 - j  y) d x d y. 
We are then led to consider the maximal operator  

(M~, f )  (g) = sup I ( f*  #it) (g) l. (13) 
i,j~Z 

Let P be the fractional integration kernels c~ It] ' -  1 on the real line, with 
Re s>O and c~=2-src-1/aF(s/2) -1. Its analytic extension in s to the complex 
plane is such that I ~  o and I - ~ = D  ~ for Re s>O. 

For  a distribution S on the line, we define Sz on H1 as 

(sz, ~o)= (s, ~o(o, o,-)). 

We want to estimate the operators  that are obtained by replacing Pij in (13) 
by (# .  IS)i j, with Re s both  positive and negative. This is done in the following 
three lemmas, whose proofs are postponed to the end. 

Lemma 2. Let 0 < Re s__< 1. The operator 

f--+ sup I f  * (#* D~)ijl 
i, j~TZ 

is bounded on LZ(H0, and its norm increases at most exponentially in Im s for 
Re s fixed. 

Take 0 < q ~ C~ ~ (N) with t /= 1 near zero and supp r / c  [ -  1, 1]. 

Lemma 3. Let Re s > 0. The operator 

f ~  sup If*(#*(~lP)z)ij[ 
i, j e Z  

is bounded on LP(H1) for 1 <p<= ~ ,  and its norm increases at most exponentially 
in Im s for Re s f ixed. 

Lemma 4. Let Re s > 0. The operator 

f ~  sup If*(#*((1--rl)D~)z)ij] 
i , j ~ Z  

is bounded on LP(H O for 1 < p <  oo, and its norm increases at most exponentially 
in Im s for Re s f ixed. 

We can now complete the proof  of Theorem 1. F rom Lemmas 2 and 4, 
we see that 

sup I f*  (#* (17 P)z)ijl 
i , j  

defines a bounded operator  on L 2 for --1 < Re s <0.  Lemma 3 says that the 
same operator  is bounded on L p, p >  1, when Re s > 0 .  Since r / I~  complex 
interpolation at s = 0  (worked out as in [2]) gives the L v boundedness for M u 
and, therefore, for M, .  
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Proof of Lemma 2. We use a square-function argument. Observe first that Tij f 
= f , ( # , D g )  u is given by 

T/jf(g) = 2 (~- 1)(i+i) ~ [D~f(g(x, y, z)-t)] . . . .  , ~b (2-ix) O(2-Jy) dx dy. 

Let tq and 2j take values in {+_ 1}. Any finite sum 
form K s * f  with 

K] (x) = ~ ~c i 2 (s- 1)i ~ (2- ix), 
i 

K~ (x) = ~ 2j 2 (s-1)j ~k (2- j y). 
J 

xiZjTuf is of the 
I i I , I J I < N  

Then g ]  (x) = ~ tq 2 ~* ~(2 ~ t), g~ (t) = Y' 2j 2 sj ~(2 j t), and (6) (or (8) if Re s = 1) will 
i j 

be valid, with constants of at most exponential growth in Im s. 
Theorem 2 and Khinchine's inequality now show that 

I1(~ I T/jf  12) 1/2 II 2 ~ G II f II 2, 
i,j 

for finite sums in i,j and thus also for the sum over i, jeTZ. This gives an estimate 
for sup ] T i j f ]  which ends the proof of Lemma 2. 

i,j 

Proof of Lemma 3. We use the method of Lemma 2 in [2]. If Re s > 1, the 
distribution ~/P is a bounded function and the statement is trivial. We therefore 
assume that 0 < Re s < 1. The convolution # .  (t/P)z is supported in the set {0 < x, 
y<2, Iz--~xyl < 1}. Its absolute value is bounded by Cslz-o~xy] Res-1, where 
Cs grows at most exponentially in Im s. Hence, 

I ['l*(~s)z[~cs 2 2"(1--Res) z " '  

m>~O 

where X" is the characteristic function of the set {0<x, y < 2 ,  ]z-c~xy[<2-"}. 
This set is contained in a union of boxes I'~•215 O<k, / < 2  "+1. Here 
I~'= {k2-",  (k+ 1)2-"} and similarly for I7', and Ik~= { t : l t -~k t2 -2" l  < C2 -m} 
with a suitable C. 

We obtain 

sup lf,(l~,(riP)z)u(g)]<_Cs ~ 2"~l-R~ sup 
i,j ">=0 k,l i,j 

~I [f(gD2i.Ej(x,Y,Z)-l)[dxdy dz. 
v~ • I? • i,y~ 

Define operators 

(14) 

M ~ x f ( g ) = s u p  2" ~ ]f(g(-2ix, O, 0))[ dx, 
ieZ I~ 
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M m similarly, and l ,y  

Mk~t,~ f (g)= sup 2 '~ ~ If(g(O, O, --2qz))l d z. 
q e Z  l~n  z 

They are one-dimensional operators transferred to H1. The three corresponding 
operators in ~ are bounded on L p with norm at most C(l+m) lip for p > l ,  
because of Lemma 4 in [2]. The transfer does not increase the norm, see e.g. 
[7, Prop. 5.1]. 

The integral in (14) equals 

dz ~ dy ~ dx If(g(O, O, -2i+Jz)(O, -2~y,  O)(-2~x, O, 0))1 
i~3 x? r~ 

- -  3 m  m m m <2 Mkt, zMl,rMk,~f(g ). 

The L p norm of the operator  in the lemma is then at most 

Cs ~ 2-m(2+Res)(l +m)3/P22m< oo. 
m > O  

This proves Lemma 3. 

Proof of Lemma 4. If Re s>O, the kernel of D s decreases like ]tJ - 1 - R e s  at oo 
(or is supported at 0 when s an even integer). Therefore, 

Hence 

I(1-tt(t))D~(t)t <C ~ 2-'~(z+R~)Zt~I__<2~. 
m > O  

Ilx*((1-~t)D~)~(x, Y,Z)l<-C ~ 2-"<~+R~)X,,, ,  
m > O  

where this time Z,. denotes the characteristic function of the box {0 =< x, y__< 2, 
I zl < c2m}. This gives 

sup If*(/z*((1 -q)DS),)i21 ~ Cs ~, 2 -m(1 +Res)sup If*(Zm),jl" 
i , j  m > O  i , j  

The last supremum here is dominated by 2raMs f, where M s was defined in 
the introduction. The L p estimate of the lemma now follows from the L p bounded- 
ness of M s. 
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