

© Springer-Verlag 1988

Isotropic Totally Real Submanifolds

Sebastian Montiel * and Francisco Urbano *
Departamento de Geometría y Topología, Universidad de Granada, 18071-Granada, Spain

1. Introduction

The notion of an isotropic submanifold of a Riemannian manifold was introduced by B. O'Neill ([2]), who studied the general properties of such class of submanifolds.

These submanifolds, which can be considered as a generalization of the totally geodesic submanifolds, have been nearly always studied under the additional hypothesis of parallelism of the second fundamental form. When the ambient space is a sphere, this study was made by K. Sakamoto ([3]); in the case of the complex projective space by H. Naitoh ([1]).

In this paper, we study *n*-dimensional isotropic totally real submanifolds of a complex *n*-dimensional Kaehler manifold without assumptions about the parallelism of the second fundamental form. So, we prove that a strong restriction exists on the dimension so that a Kaehler manifold admits non-zero isotropic minimal totally real submanifolds (Theorem 1). Also, we prove that under the assumption that the submanifold is curvature-invariant, the isotropic condition implies that the second fundamental form is parallel (Proposition 1). Then, using the results given by H. Naitoh ([1]), we classify the isotropic totally real submanifolds in a complex space form (Corollaries 2 and 3).

2. Preliminaries

Let M^n be an *n*-dimensional totally real submanifold isometrically immersed in a complex *n*-dimensional Kaehler manifold \overline{M}^n . We denote by \langle , \rangle the metric of \overline{M}^n as well as that induced on M^n . If σ is the second fundamental form of the immersion and A_{ξ} the Weingarten endomorphism associated to a normal vector ξ , then it is well known that

$$A_{JX} Y = -J \sigma(X, Y), \tag{2.1}$$

^{*} Research partially supported by CAICYT Grant PR84-1242-CO2-02

56 S. Montiel and F. Urbano

for vectors X, Y tangent to M^n , where J denotes the complex structure of \overline{M}^n . From (2.1) we have that $F(X, Y, Z) = \langle \sigma(X, Y), JZ \rangle$ is a symmetric tensor. We denote by R the curvature tensor of M^n .

Now we suppose that M^n is a curvature-invariant submanifold of \overline{M}^n , i.e., $\overline{R}(X,Y)Z \in T_p M^n$ for $X,Y,Z \in T_p M^n$, where \overline{R} is the curvature tensor of \overline{M}^n . Then, if $\nabla \sigma$ and $\nabla^2 \sigma$ denote the first and second covariant derivatives of σ , respectively, we have that $\nabla \sigma$ is symmetric and $\nabla^2 \sigma$ satisfies the relation

$$(\nabla^{2} \sigma)(X, Y, Z, W) = (\nabla^{2} \sigma)(Y, X, Z, W) + JR(X, Y) A_{JZ} W - \sigma(R(X, Y) Z, W) - \sigma(Z, R(X, Y) W).$$
 (2.2)

We recall the notion of isotropic submanifold. A submanifold M in a Riemannian manifold \overline{M} is called *isotropic* if there exists a positive function λ : $M \to R$ such that $|\sigma(v, v)| = \lambda(p)$ for any unit tangent vector $v \in T_p M$ and for any $p \in M$. If λ is constant we say that M is *constant isotropic*.

Finally we prove a Lemma which will be used later.

Lemma 1. Let M^n be a totally real submanifold in a Kaehler manifold \overline{M}^n . If p is a point of M^n , S_p the unit sphere in $T_p M^n$ and $f: S_p \to R$ the function given by $f(v) = \langle \sigma(v, v), Jv \rangle$, then there exists an orthonormal basis $\{e_1, \ldots, e_n\}$ of $T_p M^n$ satisfying

- a) $\sigma(e_1, e_i) = \lambda_i J e_i$, i = 1, ..., n, where λ_1 is the maximum of f.
- b) $\lambda_1 \ge 2\lambda_i$, i = 2, ..., n, and if $\lambda_1 = 2\lambda_i$ for some $j \in \{2, ..., n\}$, then $f(e_i) = 0$.

Proof. Let e_1 be a vector of S_p where f attains its maximum. Then for any unit vector v orthogonal to e_1 , we have,

$$0 = d f_{e_1}(v) = 3 \langle \sigma(e_1, e_1), J v \rangle, \tag{2.3}$$

and

$$0 \ge d^2 f_{e_1}(v, v) = 6 \langle \sigma(v, v), J e_1 \rangle - 3 f(e_1). \tag{2.4}$$

From (2.3), we obtain that $\sigma(e_1, e_1) = \lambda_1 J e_1$, where $\lambda_1 = f(e_1)$. Using (2.1), this implies that e_1 is an eigenvector of A_{Je_1} . So we can choose an orthonormal basis $\{e_1, \ldots, e_n\}$ of $T_p M^n$ which diagonalizes A_{Je_1} , i.e., $A_{Je_1} e_i = \lambda_i e_i$. So using (2.1) we prove a).

Now, using (2.4) one has that $\lambda_1 \ge 2\lambda_i$ for $i \in \{2, ..., n\}$. If $\lambda_1 = 2\lambda_j$, for some $j \in \{2, ..., n\}$, then $d^2 f_{e_1}(e_j, e_j) = 0$, and so $d^3 f_{e_1}(e_j, e_j, e_j) = 0$. But using (2.3), $d^3 f_{e_1}(e_j, e_i, e_j) = 6 f(e_i)$. So, we prove b).

3. Statement of Results

Let M be a minimal totally real surface in a Kaehler manifold \overline{M}^2 . Then using Lemma 1, we have at any point p of M an orthonormal basis $\{e_1, e_2\}$ of $T_p M$ such that $\sigma(e_1, e_1) = \lambda_1 J e_1$, $\sigma(e_1, e_2) = -\lambda_1 J e_2$ and $\sigma(e_2, e_2) = -\lambda_1 J e_1$. Then

 $|\sigma(v,v)| = \lambda_1$, for any unit vector v tangent to M ap p. So, we have that "Every minimal totally real surface in a Kaehler manifold \overline{M}^2 is isotropic".

For higher dimension, we can prove the following:

Theorem 1. Let $M^n(n \ge 3)$ be a minimal totally real submanifold isometrically immersed in a Kaehler manifold \overline{M}^n . If M^n is isotropic, then either M^n is totally geodesic or n = 5, 8, 14 or 26.

Proof. We suppose that M^n is not totally geodesic. Then there exists a point p of M^n such that $|\sigma(v, v)| = \lambda + 0$ for any unit vector v tangent to M^n at p.

Then, using that the submanifold is isotropic, we have for any orthonormal vectors v and w of $T_n M^n$ that

$$\langle \sigma(v, v), \sigma(v, w) \rangle = 0,$$
 (3.1)

$$2|\sigma(v,w)|^2 + \langle \sigma(v,v), \sigma(w,w) \rangle = \lambda^2. \tag{3.2}$$

Now, if $\{e_1, ..., e_n\}$ is the orthonormal basis given in Lemma 1, then using (3.1) and (3.2) we have that $\lambda_1 = \lambda$, and λ_i , i = 2, ...n, satisfies the following equation $2\lambda_i^2 + \lambda \lambda_i = \lambda^2$. So, λ_i is either $-\lambda$ or $\lambda/2$. Let V_1 and V_2 be the eigenspaces of A_{Je_1} corresponding to the eigenvalues $-\lambda$ and $\lambda/2$ respectively. As M^n is a minimal submanifold we have that Trace $A_{Je_1} = 0$, and so it is trivial to see that dim V_2 is even, i.e., dim $V_2 = 2p$, where $p+1 = \dim V_1$.

Let x be any unit vector of V_1 . Then from Schwartz inequality one has

$$\lambda^2 = \langle \sigma(x, x), Je_1 \rangle^2 \leq |\sigma(x, x)|^2 = \lambda^2$$

and then $\sigma(x, x) = -\lambda J e_1$. So

$$\sigma(z, w) = -\lambda \langle z, w \rangle J e_1 \tag{3.3}$$

for any vectors z, w of V_1 .

As dim $V_1 \ge 1$, let x_0 be a fix unit vector of V_1 . Then using (2.1) and (3.3) we have that A_{Jx_0} applies V_2 into itself, and so there exists an orthonormal basis w_1, \ldots, w_{2p} of V_2 such that $A_{Jx_0} w_i = \rho_i w_i$, $i = 1, \ldots, 2p$. But Trace $A_{Jx_0} = 0$, and then using (3.3) we obtain $\rho_1 + \ldots + \rho_{2p} = 0$. Again, using (2.1) and (3.2) we have $\rho_i^2 = 3\lambda^2/4$ and so $\rho_i = \pm \sqrt{3}\lambda/2$, $i = 1, \ldots, 2p$. So, if V_2^+ and V_2^- are the subspaces of V_2 corresponding to the eigenvalues $\sqrt{3}\lambda/2$ and $-\sqrt{3}\lambda/2$ respectively, we get dim $V_2^+ = \dim V_2^- = p$. Then if V' is the orthogonal complement of $\langle x_0 \rangle$ in V_1 , we have that dim V' is also p.

In order to finish the proof, we are going to define a map μ

$$\mu\colon\thinspace\thinspace V_2^+\times V_2^-\to V'$$

which will be bilineal and will satisfy the following condition

$$|\mu(x^+, x^-)| = |x^+| \cdot |x^-|$$

for any x^+ and x^- in V_2^+ and V_2^- respectively. Then, using a very well-known result, we get that p=1,2,4 or 8, and then the Theorem will follow.

First, using Lemma 1, we have that for any vector x of V_2 , f(x)=0, and so

$$\langle \sigma(x, y), Jz \rangle = 0$$
 (3.4)

for vectors $x, y, z \in V_2$. Then, if $x^+ \in V_2^+$ and $x^- \in V_2^-$, using (3.4) we obtain

$$\sigma(x^+, x^-) \in JV' \tag{3.5}$$

and

$$\sigma(x^+, x^-) = (\lambda/2)|x^+|^2 J e_1 + (\sqrt{3}\lambda/2)|x^+|^2 J x_0$$

$$\sigma(x^-, x^-) = (\lambda/2)|x^+|^2 J e_1 - (\sqrt{3}\lambda/2)|x^-|^2 J x_0.$$
 (3.6)

From (3.2) and (3.6) we get

$$|\sigma(x^+, x^-)|^2 = (3/4) \lambda^2 |x^+|^2 |x^-|^2.$$
 (3.7)

Finally, using (3.5), we can define μ as

$$\mu(x^+, x^-) = (2/\sqrt{3} \lambda) J \sigma(x^+, x^-).$$

It is clear that μ is bilineal and from (3.7) also satisfies $|\mu(x^+, x^-)| = |x^+| \cdot |x^-|$. So, the Theorem is proved.

When \overline{M}^n is a complex space form of constant holomorphic sectional curvature c, the assumption in Theorem 1 implies, using (3.2), that

$$\operatorname{Ric}(v,w) = \left(\frac{(n-1)c}{4} - \frac{n+2}{2}\lambda^2\right) \langle v, w \rangle$$

where Ric is the Ricci tensor of M^n . So, as $n \ge 3$, λ^2 is constant and M^n is constant isotropic. In general, it is not true when \overline{M}^n is any Kaehler manifold.

Now, we study constant isotropic totally real submanifolds. First, we prove the following:

Proposition 1. Let M^n be a curvature-invariant totally real submanifold in a Kaehler manifold \overline{M}^n . If M^n is constant isotropic, then M^n has parallel second fundamental form.

Proof. As $|\sigma(v,v)|^2$ is a constant function on the unit tangent bundle, we have

$$\langle (V\sigma)(x,v,v),\sigma(v,v)\rangle = 0$$
 (3.8)

for any tangent vector $x \in T_p M^n$, $p \in M^n$. In particular

$$\langle (\nabla \sigma)(v, v, v), \sigma(v, v) \rangle = 0$$
 (3.9)

for $v \in S_p$, $p \in M^n$. So, if w is a unit vector at p orthogonal to v, we have using the symmetry of $\nabla \sigma$

$$0 = 3 \langle (\nabla \sigma)(w, v, v), \sigma(v, v) \rangle + 2 \langle (\nabla \sigma)(v, v, v), \sigma(v, w) \rangle,$$

and then, (3.8) and (3.9) imply

$$0 = \langle (V \sigma)(v, v, v), \sigma(v, x) \rangle \tag{3.10}$$

for vectors $v \in S_p$, $x \in T_p M^n$, $p \in M^n$. Taking in (3.10) $x = A_{Jv} v$ and using (2.1) and (3.1) we obtain

$$0 = \lambda^2 \langle (V \sigma)(v, v, v), J v \rangle$$

for $v \in S_p$, $p \in M^n$. So, either $\lambda = 0$ and M^n is totally geodesic, or $\langle (V\sigma)(v,v,v), Jv \rangle = 0$ for all $v \in S_p$, $p \in M^n$, and using again the symmetry of $V\sigma$ we obtain that $V\sigma = 0$.

Corollary 1. Let M^n be a curvature-invariant totally real submanifold in a non-positively curved Kaehler manifold \overline{M}^n . If M^n is constant isotropic, then M^n is totally geodesic.

Proof. From Proposition 1, M^n has parallel second fundamental form. Then, at any point p of M^n , let $\{e_1, \ldots, e_n\}$ be the basis of $T_p M^n$ given in Lemma 1. Then using (2.2) we get

$$0 = K(e_1 \wedge e_i)(\lambda_1 - 2\lambda_i), \quad i = 2, ..., n,$$
(3.11)

where $K(e_1 \wedge e_i)$ is the sectional curvature of the two plane spanned by $\{e_1, e_i\}$.

Now, using the same argument as in the proof of the Theorem 1, we have that λ_i is either $-\lambda_1$ or $\lambda_1/2$.

If $\lambda_j = -\lambda_1$ for some $j \in \{2, ..., n\}$, then from (3.11) we have that $K(e_1 \wedge e_j) = 0$, and using Gauss equation we get $\overline{K}(e_1 \wedge e_j) = 2\lambda_1^2$, being \overline{K} the sectional curvature of \overline{M}^n . As \overline{K} is non-positive, we have that $\lambda_1 = 0$ and then M^n is totally geodesic.

On the other hand, if $\lambda_i = \lambda_1/2$ for all $i \in \{2, ..., n\}$, then from Lemma 1, we obtain that f(x) = 0 for any vector x orthogonal to e_1 . Then $\sigma(x, x) = (\lambda_1/2)$ Je_1 for x orthonormal to e_1 . As the submanifold is isotropic, $\lambda_1 = 0$ and M^n is totally geodesic.

Now, let $\overline{M}^n(c)$ be a complex space form with constant holomorphic sectional curvature c. If M^n is a totally real submanifold of $\overline{M}^n(c)$, then M^n is curvature invariant. So, from Corollary 1, we have

Corollary 2. Every n-dimensional constant isotropic totally real submanifold of $\overline{M}^n(c)$, with $c \leq 0$ is totally geodesic.

Finally, using the classification of the constant isotropic totally real submanifolds with parallel second fundamental form of a complex projective space given by H. Naitoh ([1]), we obtain

Corollary 3. Let M^n be a complete constant isotropic totally real submanifold of $CP^n(c)$. Then either M^n is totally geodesic or M^n is locally isometric to $S^1 \times S^{n-1}(n \ge 2)$; SU(3)/SO(3), n=5; SU(3), n=8; SU(6)/Sp(3), n=14; E_6/F_4 , n=26.

Except $S^1 \times S^{n-1}$ $(n \ge 3)$, all these examples are minimal submanifolds. So, Corollary 3 proves that the result given in Theorem 1 is the best possible.

60 S. Montiel and F. Urbano

References

1. Naitoh, H.: Isotropic submanifolds with parallel second fundamental form in $P^m(c)$. Osaka J. Math. 18, 427–464 (1981)

- 2. O'Neill, B.: Isotropic and Kaehler immersions. Can. J. Math. 17, 905-915 (1965)
- 3. Sakamoto, K.: Planar geodesic immersions. Tôhoku Math. J. 29, 25-56 (1977)

Received July 27, 1987; in final form January 21, 1988