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1. Introduction

The notion of an isotropic submanifold of a Riemannian manifold was intro-
duced by B. O’Neill ([2]), who studied the general properties of such class
of submanifolds.

These submanifolds, which can be considered as a generalization of the total-
ly geodesic submanifolds, have been nearly always studied under the additional
hypothesis of parallelism of the second fundamental form. When the ambient
space is a sphere, this study was made by K. Sakamoto ([3]); in the case of
the complex projective space by H. Naitoh ([17).

In this paper, we study n-dimensional isotropic totally real submanifolds
of a complex n-dimensional Kaehler manifold without assumptions about the
parallelism of the second fundamental form. So, we prove that a strong restric-
tion exists on the dimension so that a Kaehler manifold admits non-zero isotro-
pic minimal totally real submanifolds (Theorem 1). Also, we prove that under
the assumption that the submanifold is curvature-invariant, the isotropic condi-
tion implies that the second fundamental form is parallel (Proposition 1). Then,
using the results given by H. Naitoh ([1]), we classify the isotropic totally real
submanifolds in a complex space form (Corollaries 2 and 3).

2. Preliminaries

Let M" be an n-dimensional totally real submanifold isometrically immersed
in a complex n-dimensional Kaehler manifold M”. We denote by <,) the metric
of M" as well as that induced on M". If ¢ is the second fundamental form
of the immersion and A, the Weingarten endomorphism associated to a normal
vector &, then it is well known that

Ay Y=—Jo(X,Y), @.1)
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for vectors X, Y tangent to M", where J denotes the complex structure of M™.
From (2.1) we have that F(X, Y, Z)=<a(X, Y), JZ) is a symmetric tensor. We
denote by R the curvature tensor of M".

Now we suppose that M™ is a curvature-invariant submanifold of M*, ie.,
R(X,Y)ZeT,M" for X,Y,ZeT,M", where R is the curvature tensor of M”".
Then, if ¥ and V?¢ denote the first and second covariant derivatives of o,
respectively, we have that V¢ is symmetric and V2 ¢ satisfies the relation

(V2a)(X, Y, Z, W)=(V20)(Y, X, Z, W)+ JR(X, Y) A, W
—6(R(X,Y)Z, W)—0o(Z,R(X, Y) W). 2.2)

We recall the notion of isotropic submanifold. A submanifold M in a Rie-
mannian manifold M is called isotropic if there exists a positive function A:
M — R such that |o(v,v)|=A(p) for any unit tangent vector veT, M and for
any pe M. If 1 is constant we say that M is constant isotropic.

Finally we prove a Lemma which will be used later.

Lemma 1. Let M" be a totally real submanifold in a Kaehler manifold M". If
p is a point of M", S, the unit sphere in T, M" and f: S,— R the function given
by f(v)={a(v,v), Jv), then there exists an orthonormal basis {e, ..., e,} of T, M"
satisfying

a) gle;,e)=4Je,i=1, ..., n,where 4, is the maximum of f.
b) A =24;,i=2, ..., n,and if Ay =24, for some je{2, ..., n}, then f (e;)=0.

Proof. Let e; be a vector of S, where f attains its maximum. Then for any
unit vector v orthogonal to e;, we have,

0=df, (v)=3{a(e,,e;),Jv), (2.3)

and
0=d?f,,(v,0)=6{a(v,v),Je;>—3 f(ey). (2.4)

From (2.3), we obtain that o(ey,e;)=21, Jey, where A, =f(e;). Using (2.1),
this implies that e, is an eigenvector of A;,,. So we can choose an orthonormal
basis {e;, ..., e,} of T, M" which diagonalizes 4,,,, ie., 4;., ¢;=4;¢;. So using
(2.1) we prove a).

Now, using (2.4) one has that 4, =24, for ie{2, ..., n}. If 1, =24;, for some
je{2, ..., n}, then d*f, (e;,e)=0, and so d’f, (¢;,e;,¢)=0. But using (2.3),
d? f, (e;, e;,e)=6f (¢)). So, we prove b).

3. Statement of Results

Let M be a minimal totally real surface in a Kaehler manifold M>. Then using
Lemma 1, we have at any point p of M an orthonormal basis {e, e,} of T, M
such that a(e;,e;)=1,Jey, oley,e;)=—2, Je, and o(e,,e;)=—4i, Je;. Then
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lo(v,v}]=41,, for any unit vector v tangent to M ap p. So, we have that “Every
minimal totally real surface in a Kaehler manifold M? is isotropic”.
For higher dimension, we can prove the following:

Theorem 1. Let M"(n>3) be a minimal totally real submanifold isometrically
immersed in a Kaehler manifold M™. If M" is isotropic, then either M" is totally
geodesic or n=35,8, 14 or 26.

Proof. We suppose that M" is not totally geodesic. Then there exists a point
p of M" such that |o (v, v)| = A0 for any unit vector v tangent to M”" at p.

Then, using that the submanifold is isotropic, we have for any orthonormal
vectors v and w of T, M" that

(o (v,0),0(v,w)>=0, (3.1)
2|a(v, W) +<{a(v,v), o (w, w)> =A% (3.2)

Now, if {ey, ..., e,} is the orthonormal basis given in Lemma 1, then using
(3.1) and (3.2) we have that 1, =4, and 4;, i=2, ...n, satisfies the following
equation 242+ A1;=A% So, 4, is either —1 or 1/2. Let V; and V, be the eigen-
spaces of A,,, corresponding to the eigenvalues —A and /2 respectively. As
M" is a minimal submanifold we have that Trace A4,., =0, and so it is trivial
to see that dim V, is even, i.e., dim V,=2p, where p+ 1 =dim V;.

Let x be any unit vector of V;. Then from Schwartz inequality one has

A2=La(x,x), Je; > <o (x, x)[? =12
and then o(x, x)=—A1Je;. So
o(z,w)=—A{z,w) Je, (3.3)

for any vectors z,w of V.

As dim V=1, let x, be a fix unit vector of V;. Then using (2.1) and (3.3)
we have that A4,, applies V, into itself, and so there exists an orthonormal
basis wy, ..., w,, of ¥, such that A, w;=p;w;, i=1, ..., 2p. But Trace 4;, =0,
and then using (3.3) we obtain p;+...+p,,=0. Again, using (2.1) and (3.2)
we have p?=34%/4 and so p,= i]ﬁl/ﬁz, i=1,...,2p. So, if ¥," and V, are
the subspaces of V, corresponding to the eigenvalues ]/51/2 and - ]ﬁlﬂ respec-
tively, we get dim V," =dim V, =p. Then if V' is the orthogonal complement
of {xqy in V;, we have that dim V' is also p.

In order to finish the proof, we are going to define a map u

p VXV, oV
which will be bilineal and will satisfy the following condition
e, x ) =x x|

for any x* and x~ in V' and V, respectively. Then, using a very well-known
result, we get that p=1,2, 4 or §, and then the Theorem will follow.
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First, using Lemma 1, we have that for any vector x of V,, f(x)=0, and
SO

(o(x, 1), T 2> =0 (3.4)
for vectors x, y,zeV,. Then, if x* eV, and x~ &V, , using (3.4) we obtain
a(x*,x)eJV’ (3.5)
and
o(x*,x )=/ |xH > Tey +(/34/2)x* 1> T xq
o(x ™, x7)=(/D)Ix* > ey —(/34/2)1x 1> T x,. (3.6)
From (3.2) and (3.6) we get
lo(x™, x7)>=(3/4) A*|x* 1*|x7 % (3.7)

Finally, using (3.5), we can define u as

pix*, x7)=2/)/3) Ja(x*,x7).

It is clear that u is bilineal and from (3.7) also satisfies {pu(x™, x )| =[x"*||x"|.
So, the Theorem is proved.

When M" is a complex space form of constant holomorphic sectional curva-
ture ¢, the assumption in Theorem 1 implies, using (3.2), that

(n—“l)c_#zz)@’w>

Ric(v, w) =(

where Ric is the Ricci tensor of M" So, as n=3, A% is constant and M” is
constant isotropic. In general, it is not true when M" is any Kaehler manifold.

Now, we study constant isotropic totally real submanifolds. First, we prove
the following:

Proposition 1. Let M" be a curvature-invariant totally real submanifold in a
Kaehler manifold M". If M™ is constant isotropic, then M" has parallel second
Sfundamental form.

Proof. As |6(v,v)|? is a constant function on the unit tangent bundle, we have
{(Vo)x,v,0),0(v,v)>=0 (3.8)
for any tangent vector xe T, M", pe M". In particular
{Vo)w,v,0),0(v,0))=0 (3.9)

for veS,, peM™ So, if w is a unit vector at p orthogonal to v, we have using
the symmetry of Vo

0=3{(Fo)(w,v,v), 6(1,v))+2{(V 0) (v, v, v), 7 (v, W),
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and then, (3.8) and (3.9) imply
0=V o), v,0v),0(v,x)) (3.10)

for vectors veS§,, xeT, M", peM". Taking in (3.10) x=A4,,v and using (2.1)
and (3.1) we obtain

0=22{(Vo)[v,v,v), Jv)

for veS,, peM" So, either A=0 and M" is totally geodesic, or
{(Vo)v,v,v), Ju)=0 for all veS,, pe M", and using again the symmetry of Vo
we obtain that Vo =0.

Corollary 1. Let M" be a curvature-invariant totally real submanifold in a non-
positively curved Kaehler manifold M. If M" is constant isotropic, then M" is
totally geodesic.

Proof. From Proposition 1, M" has parallel second fundamental form. Then,
at any point p of M", let {e,, ..., e,} be the basis of T, M" given in Lemma
1. Then using (2.2) we get

0=K(e,ne)(A —24), i=2,..,n, (3.11)

where K (e; A e;) is the sectional curvature of the two plane spanned by {e,, e;}.

Now, using the same argument as in the proof of the Theorem 1, we have
that 4, is either — A, or 4,/2.

If A;= — 4, for some je{2, ..., n}, then from (3.11) we have that K (e, Ae;)=0,
and using Gauss equation we get K(e, Ae)=243, being K the sectional curva-
ture of M". As K is non-positive, we have that A, =0 and then M" is totally
geodesic.

On the other hand, if A;=4,/2 for all i€{2, ..., n}, then from Lemma 1,
we obtain that f(x)=0 for any vector x orthogonal to e;. Then o(x, x)=(1,/2)
Je, for x orthonormal to e,. As the submanifold is isotropic, 1,=0 and M"
is totally geodesic.

Now, let M"(c) be a complex space form with constant holomorphic sectional
curvature c¢. If M" is a totally real submanifold of M"(c), then M" is curvature
invariant. So, from Corollary 1, we have

Corollary 2. Every n-dimensional constant isotropic totally real submanifold of
M"(c), with ¢ <0 is totally geodesic.

Finally, using the classification of the constant isotropic totally real submani-
folds with parallel second fundamental form of a complex projective space given
by H. Naitoh ([1]), we obtain

Corollary 3. Let M" be a complete constant isotropic totally real submanifold
of CP"(c). Then either M" is totally geodesic or M" is locally isometric to S*
x 8" 1 (n=2); SUB)/SO3), n=5; SU(3), n=8; SU(6)/Sp(3), n=14; E/F,, n
=26.

Except S x $"7!(n>3), all these examples are minimal submanifolds. So,
Corollary 3 proves that the result given in Theorem 1 is the best possible.
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