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1. Introduction 

The notion of an isotropic submanifold of a Riemannian manifold was intro- 
duced by B. O'Neill ([-2]), who studied the general properties of such class 
of submanifolds. 

These submanifolds, which can be considered as a generalization of the total- 
ly geodesic submanifolds, have been nearly always studied under the additional 
hypothesis of parallelism of the second fundamental form. When the ambient 
space is a sphere, this study was made by K. Sakamoto ([-3]); in the case of 
the complex projective space by H. Naitoh ([1]). 

In this paper, we study n-dimensional isotropic totally real submanifolds 
of a complex n-dimensional Kaehler manifold without assumptions about the 
parallelism of the second fundamental form. So, we prove that a strong restric- 
tion exists on the dimension so that a Kaehler manifold admits non-zero isotro- 
pic minimal totally real submanifolds (Theorem 1). Also, we prove that under 
the assumption that the submanifold is curvature-invariant, the isotropic condi- 
tion implies that the second fundamental form is parallel (Proposition 1). Then, 
using the results given by H. Naitoh ([-1]), we classify the isotropic totally real 
submanifolds in a complex space form (Corollaries 2 and 3). 

2. Preliminaries 

Let M" be an n-dimensional totally real submanifold isometrically immersed 
in a complex n-dimensional Kaehler manifold M". We denote by (,> the metric 
of M" as well as that induced on Mn. If o" is the second fundamental form 
of the immersion and Ar the Weingarten endomorphism associated to a normal 
vector 4, then it is well known that 

A s x  Y = - -  J a (X,  Y), 
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(2.1) 
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for vectors X, Y tangent to M", where J denotes the complex structure of M". 
F rom (2.1) we have that F(X, Y, Z ) =  (a(X, Y), JZ )  is a symmetric tensor. We 
denote by R the curvature tensor of M". 

Now we suppose that M" is a curvature-invariant submanifold of M", i.e., 
I~(X, Y)Z~ Tp M" for X, Y, Z~ Tp M", where /~ is the curvature tensor of M". 
Then, if Va and vZa denote the first and second covariant derivatives of a, 
respectively, we have that V a is symmetric and V2a satisfies the relation 

( V e a)(X, Y, Z, W) = (V 2 a)( Y, X, Z, W) + JR (X, Y) Asz W 

--a(R(X, Y) Z, W)--a(Z, R(X, Y) W). (2.2) 

We recall the notion of isotropic submanifold. A submanifold M in a Rie- 
mannian manifold M is called isotropic if there exists a positive function )~: 
M ~ R  such that  la(v,v)l=,Vp) for any unit tangent vector w T p M  and for 
any peM. If  2 is constant we say that M is constant isotropic. 

Finally we prove a Lemma which will be used later. 

Lemma 1. Let M" be a totally real submanifold in a KaehIer manifold M". I f  
p is a point of M", Sp the unit sphere in Tp M" and f:  Sp ~ R the function given 
by f (v) = (a(v, v), Jr) ,  then there exists an orthonormal basis {el , . . . ,  e,} of T v M" 
satisfying 

a) a ( e l  , ei)=2~ J ei,  i =  1, . . . ,  n, where 21 is the maximum of f .  
b) 21 > 2 2  i, i=2 ,  ..., n, and if 2a =22j for some je{2, ..., n}, then f (ej)=O. 

Proof Let el be a vector of Sp where f attains its maximum. Then for any 
unit vector v or thogonal  to el ,  we have, 

0 = dfe~ (v)= 3 (a(el, el), Jr),  (2.3) 

and 

0 > d 2 f~, (v, v) = 6( a(v, v), J el } - 3 f(eO. (2.4) 

F rom (2.3), we obtain that a(el,e1)=21 Jel ,  where 2 1 = f ( e 0 .  Using (2.1), 
this implies that el is an eigenvector of Aj~ 1. So we can choose an or thonormal  
basis {el, ..., e,} of T v M" which diagonalizes A jet,  i.e., Aje  1 ei= 2i el. So using 
(2.1) we prove a). 

Now, using (2.4) one has that 21 >221 for i~{2, ..., n}. If 21 =22 i ,  for some 
j e{2  . . . . .  n}, then dZf~,(ej, ej)=O, and so d3fe,(ej, ej, ej)=O. But using (2.3), 
daft, (e i, ej, e j)= 6f(e~). So, we prove b). 

3. Statement of Results 

Let M be a minimal totally real surface in a Kaehler manifold ~r2. Then using 
Lemma 1, we have at any point p of M an or thonormal  basis {el, e2} of T v M 
such that a ( e l , e l ) = 2 1  Jel ,  o-(el, e2) = - 2 1 J e 2  and o ' ( e 2 , e 2 ) = - 2 1  J e t .  Then 
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la(v, v)I =21,  for any unit vector v tangent to M a p  p. So, we have that "'Every 
minimal totally real surface in a Kaehler manifold ~ 2  is isotropic". 

For  higher dimension, we can prove the following: 

Theorem 1. Let M"(n>3)  be a minimal totally real submanifold isometrically 
immersed in a Kaehler manifold _~I". I f  M" is isotropic, then either M" is totally 
geodesic or n = 5, 8, 14 or 26. 

Proof We suppose that M" is not totally geodesic. Then there exists a point 
p of M" such that ]o-(v, v)l = 2 + 0  for any unit vector v tangent to M" at p. 

Then, using that the submanifold is isotropic, we have for any orthonormal  
vectors v and w of Tp M" that 

(~(v, v), ~(v, w ) ) = 0 ,  

2 I~(v, w)l 2 + (G(v, v), ~(w, w)) = 2 2. 

(3.1) 

(3.2) 

Now, if {e 1 . . . . .  e,} is the or thonormal  basis given in Lemma 1, then using 
(3.1) and (3.2) we have that 21=2,  and 2i, i = 2 ,  ...n, satisfies the following 
equation 22~+22~=22.  So, 2z is either - 2  or 2/2. Let V 1 and V2 be the eigen- 
spaces of Ajo  corresponding to the eigenvalues - 2  and 2/2 respectively. As 
M n is a minimal submanifold we have that Trace Ale1 = 0 ,  and so it is trivial 
to see that dim V2 is even, i.e., dim V2 =2p ,  where p +  1 --dim 1/1. 

Let x be any unit vector of 1'11. Then from Schwartz inequality one has 

2 2 = (O-(X, X), Je l )  2 <= Io-(x, x)] 2 =)~2 

and then a(x, x )= --2 Je l .  So 

a(z, w)= - -2 (z ,  w} Je  1 (3.3) 

for any vectors z, w of V 1 . 
As dim V1 > 1, let Xo be a fix unit vector of V1. Then using (2.1) and (3.3) 

we have that Asx o applies V 2 into itself, and so there exists an or thonormal  
basis w 1 . . . .  , w2p of V2 such that Asx o w i = Pi wi, i = 1, ..., 2p. But Trace As~ o = O, 
and then using (3.3) we obtain p l + . . . + p 2 p = O .  Again, using (2.1) and (3.2) 

we have p2=322/4  and so p i=  +V32/2 ,  i = 1 ,  . . . ,2p .  So, if V + and Vz- are 

the subspaces of Ve corresponding to the eigenvalues V~2/2 and - V ~ 2 / 2  respec- 
tively, we get dim V2 + = dim V2-=p. Then if V' is the orthogonal complement 
of (Xo} in V1, we have that dim V' is also p. 

In order to finish the proof, we are going to define a map # 

~ : VZ x V i - - ,  V' 

which will be bilineal and will satisfy the following condition 

[~(x +, x- ) l  = Ix+l - Ix-I  

for any x + and x -  in V2 + and V f  respectively. Then, using a very well-known 
result, we get that p = 1, 2, 4 or 8, and then the Theorem will follow. 
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s o  

(~(x, y), Jz)  =0 

for vectors x, y, z e V2. Then, if x + e V2 + and x -  ~ V2,  using (3.4) we obtain 

and 
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First, using L e m m a  1, we have that  for any vector  x of V2, f ( x ) = 0 ,  and 

(3.4) 

~r(x +, x - ) eJV '  (3.5) 

a(x +, x - ) =  (2/2)Ix + I 2 Jel + (V3R/2)Ix + 12 JXo 

o-(x-, x - ) =  (2/2) 1x + 12 Je 1 - ( ] / ~ 2 / 2 ) I x - ]  2 Jx  o. 

F r o m  (3.2) and (3.6) we get 

]a(x +, x - ) l  2 = (3/4) 2 2 Ix + 12 Ix-12. 

Finally, using (3.5), we can define # as 

u(x+, x-)  = (2/1/3~) J~(~+, x-). 

(3.6) 

(3.7) 

(3.8) 

for any tangent  vector  x e Tp M", p ~ M". In par t icular  

((v ~)(v, v, v), ~(v, v)) =0 (3.9) 

for v~Sp, p~M". So, if w is a unit  vector  at p o r thogona l  to v, we have using 
the symmetry  of  g o- 

0 = 3 ((V ~r)(w, v, v), ~7 (v, v)) + 2 ((V a)(v, v, v), ~r (v, w)), 

<(V ~)(x, v, v), G(v, v)> =0 

Ric(v,w)=((n41)c n+2222) ( v ' w )  

where Ric is the Ricci tensor  of M". So, as n >  3, 22 is constant  and M" is 
constant  isotropic. In general, it is not  t rue when M" is any Kaehler  manifold. 

Now,  we s tudy constant  isotropic totally real submanifolds.  First, we prove  
the following: 

Proposition 1. Let M" be a curvature-invariant totally real submanifold in a 
Kaehler manifold M". I f  M" is constant isotropic, then M" has parallel second 
fundamental form. 

Proof As la(v, v)l 2 is a constant  funct ion on  the unit tangent  bundle,  we have 

It is clear that  # is bilineal and from (3.7) also satisfies [#(x +, x- ) ]  = Ix+l �9 Ix-].  
So, the Theorem is proved.  

When  M" is a complex space form of constant  ho lomorph ic  sectional curva- 
ture c, the assumption in Theorem 1 implies, using (3.2), tha t  
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and then, (3.8) and (3.9) imply 

O=((Va)(v,v,v),~(v,x)) (3.10) 

for vectors veSp, x eTvM " ,  peM".  Taking in (3.10) x = A j v v  and using (2.1) 
and (3.1) we obtain 

0 = 2 2 ((Vcr)(v, v, v), Jr )  

for vsSp, peM".  So, either 2 = 0  and M" is totally geodesic, or 
((Va)(v, v, v), J r ) = 0  for all v~Sp, peM",  and using again the symmetry of Va 
we obtain that V a = 0. 

Corollary 1. Let M" be a curvature-invariant totally real submanifold in a non- 
positively curved Kaehler manifold if1". I f  M ~ is constant isotropic, then M" is 
totally geodesic. 

Proof. From Proposition 1, M" has parallel second fundamental form. Then, 
at any point p of M", let {el . . . . .  e,} be the basis of Tp M" given in Lemma 
1. Then using (2.2) we get 

0 = K ( e  1/x ei)(21 --22i) , i = 2  . . . .  , n, (3.11) 

where K(el  ^ el) is the sectional curvature of the two plane spanned by {el, ei}. 
Now, using the same argument as in the proof of the Theorem 1, we have 

that 21 is either - 2 1  or 21/2. 
I f 2 j =  -21  for someje{2 . . . .  , n}, then from (3.11) we have that K(el /x  e/) =0,  

and using Gauss equation we ge t / ( (e l /x  e j)=222,  be ing / (  the sectional curva- 
ture of )~t-. As / (  is non-positive, we have that 21=0 and then M" is totally 
geodesic. 

On the other hand, if 2i=21/2 for all ie{2 . . . . .  n}, then from Lemma 1, 
we obtain that f ( x ) = 0  for any vector x orthogonal to el. Then a(x, x)= (21/2) 
Je  1 for x orthonormal to el. As the submanifold is isotropic, 21=0 and M" 
is totally geodesic. 

Now, let ]~t"(c) be a complex space form with constant holomorphic sectional 
curvature c. If M" is a totally real submanifold of M" (c), then M" is curvature 
invariant. So, from Corollary 1, we have 

Corollary 2. Every n-dimensional constant isotropic totally real submanifold of  
2fI"(c), with c <= 0 is totally geodesic. 

Finally, using the classification of the constant isotropic totally real submani- 
folds with parallel second fundamental form of a complex projective space given 
by H. Naitoh ([-1]), we obtain 

Corollary 3. Let M" be a complete constant isotropic totally real submanifold 
of  CP"(c). Then either M" is totally geodesic or M ~ is locally isometric to S 1 
x S"- 1 (n > 2); S U (3)/S0 (3), n = 5; S U (3), n = 8; S U (6)/Sp (3), n = 14; E6/F4, n 

=26. 

Except S i x  Sn-l(n__>3), all these examples are minimal submanifolds. So, 
Corollary 3 proves that the result given in Theorem 1 is the best possible. 
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