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Abstract. Two approaches for defining common knowledge coexist in the literature: the infinite 
iteration definition and the circular or fixed point one. In particular, an original modelization of the 
fixed point definition was proposed by Barwise (1989) in the context of a non-well-founded set theory 
and the infinite iteration approach has been technically analyzed within multi-modal epistemic logic 
using neighbourhood semantics by Lismont (1993). This paper exhibits a relation between these two 
ways of modelling common knowledge which seem at first quite different. 
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1. Introduct ion 

The notion of common knowledge was probably first introduced by Lewis (1969). 
It is often defined by means of an infinite hierarchy of reciprocal knowledge. Say 
that ~ is common knowledge among two agents a and b if the following infinite 
sequence of assertions is true: 

a knows 

a knows b knows 

a knows b knows a knows 

�9 b knows 

| b knows a knows ~p 

| b knows a knows b knows 

�9 . . . 

Probably the first to have formalized this concept, Aumann (1976) proposed this 
iterative definition together with a circular or fixed point definition, making it 
possible to condense the infinity of assertions into a single one. His model is set- 
theoretic. Individual knowledge (or belief) relates to "propositions" understood as 
subsets of states of the world. This universe is partitioned by each individual: he 
cannot differentiate between the states of the world which are in the same element of 

* A first version of this paper was written while the author was an assistant at the Universit6 
Catholique de Louvain. It was part of a doctoral thesis presented in June 1992. Address of the author: 
Rue des l~coles 46, 1490 Court-Salnt-t~tienne, Belgium. 
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his partition. Aumann's circular definition (in the case of two persons) is: "an event 
is common knowledge if it contains an event in the meet of the two partitions". 
He shows the equivalence between this admittedly not very intuitive definition and 
the infinite iterative one. Thus, the duality of the common knowledge - infinite 
iteration and fixed point-- is visible right from the beginning of its formalization. 

Following Hintikka (1962) modal epistemic logic was at first concerned with 
individual knowledge and belief, and used a propositional modal language in which 
the classical necessity and possibility operators were replaced with individual 
knowledge or belief operators (usually: Ka or Ba for a in the finite set of persons). 
Starting perhaps with Fagin, Halpern, Moses and Vardi, modal epistemic logic has 
been extended to the multi-agent framework [see for example Halpern and Moses 
(1984, 1985), Fagin, Halpern and Vardi (1984), Fagin and Vardi (1985)]. Here the 
duality between the infinite iterative approach of common knowledge and the fixed 
point one also exists, but at two different levels. 

On the one hand, the duality just mentioned appears at a purely semantic level. 
Take the case of Kripke models. In this semantics models consist of a set of 
possible worlds and accessibility relations to describe each person's knowledge or 
belief. Using this framework, common knowledge is defined in terms of an infinite 
iteration. But this definition can immediately be restated in terms of the transitive 
closure of the union of all individual accessibility relations, and transitive closure 
can be seen as a fixed point of some sort. 

On the other hand, we can semantically define common knowledge using the 
countable infinity of formulae 

Ka~ �9 Kb~ 

KaKb~ �9 KbKa~a 

KaKbKa~ �9 KbKaKb~ 
. . .  �9 . . .  

but in the context of afinitary logic, common knowledge cannot be characterized 
syntactically by the infinite conjunction of these formulae. This problem is solved 
by introducing a fixed point axiom schema and an induction rule. Halpern and 
Moses (1992) prove a determination theorem with respect to the class of Kripke 
models for a modal system that includes these two components. [In these models 
common knowledge is equivalently defined in terms of either infinite iteration or 
transitive closure.] The duality here reflects the semantics-syntax polarity.l 

The problem of axiomatizing common knowledge in a more general modal 
framework than Kripke's, i.e., Scott's neighbourhood semantics, was tackled by 
Lismont (1993) and Lismont and Mongin (1993a and 1993b). The neighbourhood 
semantics makes it possible to model knowledge and belief under weak epistemic 
constraints on the individual knowledge or belief operators .2 Here we shall use this 
semantics for the following reason: it is the suitable one to highlight the connection 
between modal epistemic logic and Barwise's (1989) semantics. Starting again 
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with the infinite iteration definition in the neighbourhood framework, a fixed point 
neighbourhood system can be obtained. Remarkably, in contradistinction with the 
Kripkean case a transfinite iteration may be required - depending on the cardinality 
of the models - to reach the fixed point. These facts will be explained in detail in 
section 3. 

Barwise (1989) also arrives at this transfinite iteration but in a totally different 
framework, starting as he does with a fixed point definition of common knowledge. 
The latter can be expressed using one ciruclar sentence only: 

A situation in which ~r is common knowledge 
is a situation in which 
each person knows ~r 

and in which 
each person knows that situation in which cr is common knowledge. 

Barwise has proposed to model this definition using a non-well-founded set 
theory known as ZFC-AFA (AFA for Anti-Foundation Axiom). In this set theory 
the foundation axiom is replaced with an anti-foundation axiom, which was first 
introduced as axiom X1 by Forti and Honsell (1983), and is better known today 
as axiom AFA [see for example Aczel (1988), Barwise and Etchemendy (1987) or 
Hinnion (1992)]. In section 2 we shall present this modelling in detail. 

The aim of this paper is thus to show how to connect the ZFC-AFA fixed 
point approach with the modal approach that uses neighbourhood semantics. This 
connection will be made explicit in section 4. Our main results are theorems 6 and 
8, which state a semantic equivalence of the two approaches. Section 5 is devoted 
to some general comments. 

2. The fixed point approach 

We work here within ZFC-AFA set theory. We shall mainly use two results from 
this theory (see Aczel, 1988): 

Fixed Points: For each continuous class operator ~, the class U{c E V ] c _C 
~5(c)}, where V is the universe of all sets, is the largest fixed point of ~. 

Solution Lemma: The universe of all sets is extended considering a class X of 
atoms. 3 For all z E X,  let ax be a set constructed on X. The equation system 
z = ax(z E X)  has a unique solution within the universe of pure sets. 

To present Barwise's (1989) modelling of common knowledge, the important 
concepts are infons and situations. There is a finite set A of agents, a set C of 
objects, and two relation symbols H and K.  The class INFON of infons is the 
largest class such that if 0 E INFON, then 0 is either a set: 

- ( H ,  a, c) where a E A and c E C; 

or a set: 

- ( K ,  a, ~r) where a E A and cr C_ INFON and o- is a set. 
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The existence and uniqueness of the class above is proved by showing it to be 
the largest fixed point of a continuous class operator. The infons of type (H, a, c) 
are called basic infons. 4 SIT, the class of all situations, can then be defined as 
follows: 

~r E SIT iff (7 INFON and cr is a set. 

The notion of an infon can be interpreted as follows: (H, a, c) means that agent a 
has the object c, for example a playing card. Clearly, we could have taken a much 
larger class of basic infons. Infons (K, a, s) can be read: agent a sees, knows or 
believes the situation s. 

The class 1NFON contains well-founded infons, i.e., infons that are well-founded 
sets, but also non-well-founded infons. Similarly, there are well-founded as well as 
non-well-founded situations. It can easily be shown that the class of well-founded 
infons is the smallest fixed point of the operator of which INFON is the largest 
fixed point. 

We can then define partial satisfaction relations to be sub-classes ~* of SIT x 
INFON such that if s ~* 0, then 

- i f 0 =  {H,a,c),then (H,a,c) E s; 
- if 0 = (K, a, so}, then there exists Sl E SIT such that (K, a, sl} E s and for 

all cr E so, Sl ~* o-. 
The satisfaction relation ~ is the largest of all partial satisfaction relations. The 
existence of partial satisfaction relations and of the satisfaction relation is also 
proved using a continuous class operator. If Sl and s2 are situations, we shall write 
81 ~ 82 when V0 E s2, sl ~ 0. 

Let us consider a well-founded situation so. The corresponding shared situation 
is the situation 

s~= {(K,a,s~Uso}la E A}. 

This situation always exists and is unique from the Solution Lemma. It models 
the common knowledge of situation So; we shall say that in a situation s, there is 
common knowledge of so iff s ~ so(so). 

Barwise defines shared situations only for first order situations So, i.e., those 
containing only basic infons. We shall consider shared situations for any situation 
so, provided that it is well-founded. 5 To establish a connection with modal logic, we 
should introduce the notion of approximations of shared situations. Since we have 
a larger collection of shared situations than Barwise, we have to adapt Barwise's 
notion of approximations. 

With regard to shared situations Sc = { (K, a, so Usc) I a E A}, where so is well- 
founded, we shall denote the infon (K, a, so Usr by 0a. We define approximations 
of those infons 0a by well-founded infons: 

- 0 ~ = ( K ,  a ,  so) ;  

- for all ordinal ?7 > 0 �9 O~ = (K, a, so U s<O), 
where s <" = {0~ la  E A,r  < ?7}. 
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The only difference with Barwise's approximation concept is that he defines: 

- OOa = <K, a, 1 stord(so)) 

where lStord(so) is the set of all basic infons of so. 
Having broadened the notion of shared situations and correspondingly modified 

the notion of approximations, we may restate Barwise's theorem 5 of chapter 9: 

LEMMA 1. - s ~ Oa iff for any ordinal 7}, s ~ O~a . 

Proof. We shall first prove necessity by induction on the ordinals. 

- 7 } = 0 :  s ~ <K,a, s0 u s~> ~ s ~ <K,a, so>. 

- 7 } > 0 :  ~ <K,a, so U s~> 3<K,a,s~) E s,s~ ~ soUsc  

3(K, a, Sa> E s, Sa ~ so and V~ < 7}, 

Vb E A, sa ~ Ob ~ (induction hypothesis) 

:=~ ~<K,a, Sa) E 8, Sa ~ SoUS<c ~ 
s ~ <K, a, so u s<~>. 

To prove sufficiency, we define a relation ~* adding to ~ all pairs {s, 0a> such 
that for all ordinals 7}, s ~ 02. We shall show that ~* is a partial satisfaction 
relation. To do this, we must check that for the added pairs, the relation ~* satisfies 
the condition 

s ~* <K, a, T> ~ 3<K, a, s') E s such that s' ~*  7-. 

Let s be a situation in which all approximations of an infon 0a = (K, a, so Usc) 
hold. For any ordinal 7}, there exists (K, a, sv > E s such that s~ ~ soUs <~. We shall 
later show that this implies the existence of a situation s' such that (K, a, s') E s 
and s' ~ so U s <'7 for any ordinal 7}. Consequently, Vb E A, VT}, s' ~ 0~ and thus 
Vb E A, s' ~* Ok. So we have s' ~* sc. Because s ~ ~ so, we have s' ~*  so and 
thus s' ~*  so U so. 

Hence, ~* is a partial satisfaction relation. Since ~ is the largest partial satis- 
faction relation, the pairs that we have added to ~ were already in ~ .  

To conclude, we only have to show that a situation s' exists. Let us assume that 
there is no such situation. We inductively show that, for all ordinals ~, there is an 
ordinal 7}(s such that 

V~ < ~, s,(~) g= so u s~ <'(r 

Define 7}(0) = O. For ~ > O, assume that we have defined 7}(~) for all ~ < ~. From 
the nonexistence of s', we know that for each ~ < ~ there is an ordinal ~* such 
that s~(~)~: so U s <C. Define next 7}(~) = sup{~* [ ~ < C}. For all ~ < C, s~(~)~= 
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<,7(() since so USc <& C s <~(~) By definition of sv(() , sv(r ~ so U s<V(i); 8 0 U 8c 

consequently, V~ < ~, s~(~) ~ s~(r We thus have a sequence of situations %(0 
such that ~ :~ ( =~ s~(~) ~ s,~(r From the Substitution Schema, the collection 
of %(r is not a set. This contradicts the fact that all s,~(~) come from the set 
{s" [ <K,a,J '> s}. " 

3. The iterative approach within neighbourhood semantics 

In this section we work with a modal language constructed on a set PV of proposi- 
tional variables, a finite set A of agents, a modal operator Ka for each agent a E A, 
modal operators E and C, and the usual logical connectives. The formula Ka~ will 
informally be interpreted as "agent a knows or believes 6 ~", E ~  as "everybody 
knows or believes ~" and C~  as "there is common knowledge or common belief 
that ~". 

The models of the neighbourhood semantics, which will be called Scott models, 
are tuples 

M = ([,);,Na,NE,NC)a~A 

where I is a set of possible worlds, V a valuation function, i.e., a mapping from I x 
PV to {0, 1 }, ?Ca, NE and Arc are mappings from [ to 2 2z (each of which associates 
a set of subsets o f / t o  each o~ E D. We call Na, NE and Nc neighbourhoodsystems. 
The idea of this semantics is that a proposition can be semantically identified with 
a subset of possible worlds, namely those in which that proposition is true. So if 
o~ E I,  Na(~) will contain all the propositions that agent a thinks are true in world 
Os 

In this semantics we define the satisfaction of formula ~ in world a of model 
.M, which we denote A4 ~ a  ~, by induction on logical complexity: 

- i fp  C PV then.A4 ~ p ~ V(a,p)  = 1; 
_ 

- M ~c~ ~ A ~ ~ . A d  ~ ~ and M ~'~ ~; 
- 

- M ~ a  ~ - - ~ , r  i f M  ~ a  ~ t h e n A 4  ~ a  ~b; 

- M trai t  where 

# = K~, E or C and ll ll = {/~ c s l M  v}. 7 

This is a general framework for studying knowledge and common knowledge. 
What we need now is to establish relations between the systems Na representing 
individual knowledge and systems NE and _N c.  

This is easily done for NE: taking NE as ~a~A Na, 8 we see that 
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It is not so obvious how the system NE should be related to common knowledge. 
Let us consider for example the formula KaKb~.  We have 

M ~ K~Kb: ~ {~ ~ I I II:II ~ Nb(~)} ~ No(~). 

Such expressions are not easy to manipulate, and since studying common knowl- 
edge requires formulae of arbitrary length, it is convenient to introduce an algebraic 
operation on neighbourhood systems. Let us define 9 

P ~ N~ o N2(~) ** {/~ ~ , r i P  ~ N2(~)} ~ NI(~). 

where N1 and N2 are neighbourhood systems on I. It is easy to check that 

./~ ~c~ lr~alT~b ~ ~ [[~11 e Na o Nb(O~). 

n t i m e s  n t i m e s  
r A 

If we write E n p  for E . . .  E p and N~ for NE o . . .  o NE, it is also easy to check 
that 

: ~  ~ Z n ~  ~ H~[[ e :V~(~). 

This operation has various interesting properties. Let Ind be any set of indices. 
Let N and, for all i E Ind,  Ni be neighbourhood systems on I. 

LEMMA 2. - 1. The operation o is associative. 
2. The system s defined by 

P E 8(5)  ~ a C P 

is neutral for  this operation. 
3. N 1 C _ N 2 ~ N l o N C N 2 o N .  
4. (Ui6Ind Ni) o N = U i 6 t n d ( N i  o N).  
5. (r)~ei~ Ni) o N = rTi~i~d(Ni o N). 

Assuming systems that are closed under supersets, i.e., if P C Q c I and 
P ~ N(a )  then Q C N(a) ,  additional properties follow: 

LEMMA 3. - I f  N is closed under supersets, then: 
1. N 1 C  N 2 ~  N o N ~  C _ N o N 2 .  
2. Uic• o Ni) C_ N o (Ui~z~a N~). 
3. N o (NicInd Ni) C (']iEZnd(N o Ni). 

Note also that $ is closed under supersets and that if N1 and N2 are closed under 
superstes then N1 o N2 is also closed under supersets. 

To have enough algebraic properties, we shall consider only systems N~ closed 
under supersets. Obviously the system NE will also be closed under supersets. A 
consequence of this is the validity in our models of the monotonicity rule 

#~ ---+ ,u~ 

where # is either Ka or E. 
The following points will prove useful for the sequel: 
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(i) To define common knowledge of ~ we shall consider the infinite hierarchy of 
crossed knowledges as follows: 
�9 everybody knows qo; 
�9 everybody knows that everybody knows ~; 
�9 everybody knows that everybody knows that everybody knows ~; 

(Note that this is not quite the same as the infinite hierarchy of crossed 
knowledges discussed in the introduction.) 

(ii) Within our models it is not the same to say: "agent a knows or believes qo 
and ~"  and: "agent a knows or believes ~ and agent a knows or believes ~". 
This is because our neighbourhood systems are not necessarily closed under 
intersections. Thus E~ A EE~p and E(r A E~)  are not equivalent. What 
we really need is the second formula. This leads us to modify the infinite 
hierarchy once again. To be able to say that ~ is common knowledge in world 

of model 3,4, we want the following infinite sequence of formulae to be true 
in world o~: 

�9 Ecp; 

�9 E ( ~  A E ~ ) ;  
�9 E(cp A Eqo A E ( ~  A Ecp); 

, . . 

We can easily check that these formulae will be true in world oz if, respectively, 

I1~11 c lvE(~); 

l[~ll e N~ o ((NE o (NE n E)) a N .  a e)@); 

(iii) To conclude these remarks, let us point out that if ~ is common knowledge 
among the agents, then every agent knows that it is. Relating this to the 
fact that if there is common knowledge of ~, then everybody knows ~, the 
formulae 

should be valid in our models�9 These formulae are called fixed point formulae. 
From the point (ii), define by induction on the natural numbers the sequence of 

neighbourhood systems that occur in the iteration: 
- No  = NE; 
- N~ = NE o (Nk<~ Nk a E). 

We could then define 

Nc = N N~. (1) 

The problem with this definition is that the fixed point formula is not valid in the 
class of models where Nc  would be so defined: 
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PROPOSITION 4. - T h e r e  exists a Scott model jtd where N c  is defined as in (1) 
anda formula ~ such that Ad~= Cqo -+ E ( C ~  A qo). 

Proof. Define .A4 as follows. Let I be the real interval [ -2,  2]. For each real 
r, define ~ to be the smallest integer strictly greater than r and r to be the largest 
integer strictly less than r. For each a E A, define then Na by saying that, for each 
P C_ I and o~ E I, 

~ + r  s + s  
P E Na(a)  ~ - -  < c~ < - 

2 - 2 ' 

where r = inf(P) and s = sup(P). The fact that Na is closed under supersets 
is trivial. Define next N c  as in (1). Let T be an abbreviation for p V -~p where 
p E P V .  We have that A,4~ C T  --+ E ( U T  A T): 

- We show by induction that, for n < aa, 

[ 1 2@+1 ] IEN,~ (c~ )e~c~E  - 1  2n+l , 1 +  

f E NE(oO 
( - 2 )  + ( - 2 )  2 + 2 < _< o~ 

2 2 
3 3 

- -  < c e < - .  
2 -  - 2  

.a • ~ NEo( N Xk ng)(oO 

< {5 ,'v e N n xz(o0 
k<n 

~:# [ - 1 - ~ n , l +  1 ]  2, ~ E N E ( ~ )  

4=> ( - 1 - 1 ) + ( - 1 - ~ )  <o~< 
2 

1 1 
r - 1  - 2,~+----- T _< c~ _< 1 + 2n+--- T. 

( 1 + ~ ) + ( 1 + ~ ) 2  
2 

- T h u s ,  

z c Nc(o0 ~ v~ < ~, z E Nn(o0 

r Vn<co ,  a E [ - i  1 1 ] 
2n+1 , 1 + 2-747 

1 1 1 

.~ oz E f~ [--1 2n+1 ,1 §  j 
n, (w 

c~ E [ - 1 , 1 ] .  

- I t  is easy to see that [-1,11E N~(a )  eV a E [ _ 1 1 ] .  
- We are now able to see that .Ad~ 1 C T  --+ E ( C T  A T): 
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�9 M t= 1 CV:  IITII = I and I E N o ( l ) .  
�9 j ~ [ , ~ = l  E(C-] -  A -]-): ] lCV A Vii = IlGVll n IITII = [ - 1 , 1 ]  and [ - 1 , 1 ]  

NE(1). �9 

The idea is then to proceed with a transfinite iteration and to broaden the 
construction of N c  by induction on the ordinals. Let ~ be any ordinal: 

- N o = N E ;  
- ~ > o: N ,  = NE o (Nr  Nr n c). 

LEMMA 5. - Let ~7 and ~ be two ordinals, If  ~ < rl, then Nv C_ N~. 
This lemma ensures that for each a E I, the sequence Nv (a) is a decreasing 

sequence of sets. Thus, there exists a smallest ordinal mind such that for all 
ordinals V >_ min~, Nv(a)  = Nmin. (a). Taking min = sup{min~ I a E I}, we 
get Nn = Nmi. for all r / >  rain. 

Next define S to be the class of Scott models 

M = (z, v, N~, N~, Nc)a~A 

where the systems Na are closed under supersets, ArE = Aa~A N~ and N c  = Nmjja. 
This class of models satisfies all of our criteria concerning the iterative approach to 
common knowledge. The only condition that we imposed in addition is the closure 
under supersets of the systems N~. As a consequence we get the same closure of 
NE and Nc.  

Lismont (1993) proves that the theory of the above models, i.e., the set of all 
valid formulae in that class S, is axiomatized by a modal logic system called MC. 
This system consists of the axiom schemata and inference rules of propositional 
logic, and the following axiom schemata and rules: 

Definition of E : E ~  ~ A Kay.  
aEA 

Fixed Point Axiom" C~ ~ E(C~  A ~). 

Induction Rule �9 cp ~ E ~  
E ~  ~ C~" 

Monotonicity Rules �9 (n # E). 

4. Relating the two approaches to each other 

We start with a set S of situations that have closure properties and a modal language 
constructed on a set P V  associated with all basic infons in the transitive closure 
of S. Using these elements, we shall construct a Scott model that is related to S 
and a mapping from well-founded infons and situations occurring in S to the set of 
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modal formulae. This mapping will enable us to compare the satisfaction relations 
defined in each semantics respectively, hence the two modellings of common 
knowledge. 

To secure the coherence of further definitions we should make sure that the sets 
of situations that we are considering have sufficient "stability". We want that for 
any such set S, if s E S and (K, a, J )  E s, then s t E S - obviously this is not 
always the case. Furthermore, if some well-founded situation so is in S, then the 
corresponding shared situation sc(so) should also be in S. Let us begin by showing 
that sets with the desirable properties exist. 

Let So be a set of well-founded situations. We shall construct a set S that 
contains So and the set of shared situations associated with the situations occurring 
in So, in such a way that S will satisfy the required stability property. We define 

C(So) = {s E S I T  [ 3a E A and so E So such that (K, a, s) E so}, 

and 

H(So) = U 
n<to 

We then define 

c (So). 

s =//(So) u I s E/-/(So)} u {s u s (s) I s E H(So)}. 

It can easily be shown that if s E S and (K, a, s t) E s, then s t E S. There are three 
possible cases: 

- s E H(So):  3n < w,s  E Cn(So); if ( K , a , J )  E s, then s E 

C ~+1 (So) and s t E H(So). 

- s = sc(so) with so E H(So):  if (K ,a , s / )  E 8, then s t is so U 

Sc(S0), which is in S. 

- s = So U so(so) with so E H(So):  if (K, a, s l) E s, then (K, a, s t} E 
so or (K, a, s t) E so(so); the conclusion then follows from the two first 

points. 
From now on we shall work with such a stable set S containing at least all 

shared situations constructed from any well-founded situation of S. 
Before introducing further notions, we have to define the rank of well-founded 

infons or situations. 
For basic infons 0 = (H, a, c): 

rank(0) = 0. 

For a well-founded infon 0 = (K, a, 8): 

rank(0) = sup{rank(a) + 1 I~  E s}. 

In the same way, if s is a well-founded situation: 

rank(s) = sup{rang(~r) + 1 [~z E 8}. 
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Let us consider a modal language based upon a set P V  of propositional variables 
that is large enough to have one variable associated with any basic infon occurring 
in S. Let P(H,a,c) stand for the variable associated with basic infon (H, a, c). By 
induction on the rank of well-founded infons, we can then define a mapping ~p from 
the set of well-founded infons occurring in S to the set of formulae of our modal 
language. 

-- ~ ( ( g ,  a, c)) = P(H,a,c}; 

- s > )  = K o  

This definition can be extended straightforwardly to well-founded situations: 
~(s) = Acres ~(~)" This enables us to write 

- 8>) 
The finiteness of situations is not required in the definition of this mapping. 

Infinite formulae would be obtained in the case of infinite situations. This is not a 
problem since we are only considering a semantic context. 

Let us now construct a Scott model .Ad. We take I, the set of possible worlds, 
equal to S. 1~ 

We next define the valuation and neighbourhood systems. We are looking for 
the equivalence between satisfaction of an infon in terms of situation semantics 
and satisfaction of the associated formula in the corresponding Scott model. The 
valuation is then defined by 

]2(s,p<g,a,c)) = 1 r <H,a,c) e s. 

The neighbourhood systems Na are defined as follows: 

Na(s) = {P  �9 P( I )  I ?s' �9 P such that (K, a, s') �9 8}. 

These definitions immediately yield the followign result: 

THEOREM 6. - Let c~ be a well-founded infon and so a well-founded situation. 
1. A4 ~s  ~(cr) ~ s ~ ~r. 

2. M h 

Proof. 
1. By induction on the rank of a well-founded infon. We 

assume that the property is true for all well-founded infons 
the rank of which is strictly less than the rank of o-. 

- If cr = (H, a, c), the property holds trivially from the definition 

of F. 

- ~r = (K, a, so). We know that ~((r) = Kaqg(So). 

.A/[ ~ s  K a y ( 8 )  ,~ IIq0(80)]] C Na(8)  

<::} ~81 C ]]~(80)]1 suchthat (K,a,  sl) E s 
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'4=)" ~81 EII A ~(~)11 suchthat (K,a,  sl) C s 
"rEs 0 

r 3(K,a,  sl) E s suchthat W E s0,3,4 ~ a  ~(~-) 

r 3(K,a,  sl) suchthat W E so, s1 ~ ~- 

(induction hypothesis) 

*~ s p (K, c~, so). 

The proof uses that the rank of all infons of so is strictly less than the rank 
of so, which is the same as that of a. It also uses the fact that, in situation 
semantics, ~ was defined as a fixed point and that the implications in 

the definition of ~ can thus be replaced with equivalences. 

2. s ~ so '~  Vo- E so, s ~ a *V Va E so, Ad ~s  ~(a)  e* .A,4 ~ 

A,~e~o ~(") ~ M ps ~(s0). [] 
Notice that the neighbourhood systems that we have defined are closed under 

supersets: l e t P  E Na(s) and P C_ Q; ifthereexists sl E P suchthat (K, a, sl) E s, 
then sl E Q as well. Using the previous theorem we see that the monotonicity rule is 

implicitly valid in Barwise's situation semantics. In the sequel, a S cr~ corresponds 
to Barwise's entailment, as restricted to the set S: 

a ~ a ' i f fVs  E S ,s  ~ a ~ s ~ a'. 

The following theorem confirms that monotonicity underlies Barwise's anti- 
founded situation semantics: 

THEOREM 7 . -  I f a  S T, then (K,a, {a}) S (K,a, {T}). 

Proof. Let s E S such that s ~ (K, a, {a}). We know that there exists 
(K,a ,  sl) E s such that Sl ~ a. As Sl E S, we have sl ~ T. Consequently, 
s p (K,a , r  [] 

What about common knowledge? 

THEOREM 8. - Let so be a well-founded situation and sc = { (K, a, so U sc) Ia E A }. 
Then 

s b sc r ~4 b s  C~(so). 

Proof. We inductively show that, for any ordinal % 

(Va E A,s  ~ OVa) ~ I1~r e N,(s), 

where (as before) 0a = (K, a, so U so). 
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= 0: (va �9 A,s ~ <K,a,  s0>) ~ II~(s0)ll �9 Ng(s) = 
No(S) (theorem 6). 

> O" Va �9 A,s ~ 0 2 

r V a � 9  A, s p (ff, a, soUs <~} 

r Va �9 A,~(K~a, Sa} �9 s such that Sa ~ so U s c 

r Va �9 A, B(K, a, 8a) �9 8 such that s~ p so 

and Vb E A, V~ < 7, Sa ~ O~b 
r Va �9  A, 3(K,a, Sa} �9 ssuchthatsa �9 [[(fl(so)H 

and Ilk(so)I] �9 r-~ N~(sa) 

(theorem 6 and induction hypothesis) 

~=~ V a �9  A, 3(K,a, Sa) �9 s suchthat Ilcp(so)l I �9 N Nr162 
~<~ 

(definition of C) 

r V a � 9  �9 I I  II~(so)ll �9 ~ Nr n$(s ' )}  �9 N~(s) 

{s' �9 z I II~(so)ll �9 A nc(J)}  �9 :v~(s) 

r  II~(so)ll �9 NEO([" I  NCnE)(s) = Nd8 ). 

The conclusion then immediately follows from lemma 1. 

5. Final comments 

To summarize, theorems 6 and 8 tell us that the link between the two semantics 
preserves their validation relation - most importantly, their knowledge clauses. 
Theorem 6 demonstrates the similarity between the two epistemic structures. We 
highlighted the role of monotonicity in the situation semantics (theorem 7), whereas 
it was expl!cit from the beginning in the neighbourhood semantics of this paper. 
Theorem 8 shows that the inductive definition of the neighbourhood system ?76 
exactly corresponds to the notion of common knowledge in anti-founded situation 
semantics. 

We shall here analyze the correspondence between the two semantics in some 
more detail. We will look first at the languages, second at the semantics them- 
selves. 

The two languages differ in their modelling of the "objective level": the objec- 
tive information units in situations are given by basic infons, which are structured 
objects. The corresponding units in propositional modal languages - i.e., propo- 
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sitional variables - are left unanalyzed. This sets us thinking that the situational 
language would be more adapted to deal with problems such as the following one. 
Suppose that we impose the requirement that whenever somebody has a playing 
card, he knows that he has it. Such a property can be expressed by a single schema in 
the situational language but not in the modal language. In the former, one solves the 
problem by requiring the validity of the formulae {H, a, c) ~ (K, a, { (H, a, c)}). 
The latter language calls for a slightly more complicated analysis: if p is the vari- 
able corresponding to "agent a has the card c", then for any a E A and any a E I, 
whenever l,'(a,p) = 1, it should be the case that {/3 E I[12(/3,p) = 1} E Na(a) .  
This exemplifies the general difficulty that some semantic requirements cannot be 
adequately expressed in the given formal language: they can only be rendered as 
properties of a relevant class of models.11 

Let us give another example that has to see with contradictory objective pieces 
of information. Within classical modal languages it is impossible to validate p 
and -~p at the same time. But this clearly does not exclude contradictions that are 
external to the language itself. For example suppose that the playing card we are 
considering has only one ace of spades. Any situation having two infons indicating 
that two different players have an ace of spades would be contradictory and thus 
eliminated by the modeller. Similarly, within the modal language he would forbid 
any valuation that gives the value 1 to the corresponding propositional variables p 
and q. This is once again an example of the fact that the modeller can overcome 
the limits of the formal languages. Notice, however, that it clearly is the modeller's 
role to establish what is such an external contradiction. 

Another problematic situation would be to express the requirement that when- 
ever somebody knows that a person has the ace of spades, then he knows that th is  
person has an ace. This is the well-known problem in computer science of how 
to deal with "general" facts when some "particular" facts are available, a problem 
which is reminiscent of the current discussion on non-monotonic logics. Given the 
languages used here, the only answer seems to go as follows. Suppose that we 
are working within the modal framework. Let the propositional variables p and q 
stand for "a has the ace of spades" and "a has an ace". We want that the semantics 
describe the reality; thus we have to restrict the valuations so that whenever p 
is true, q also is. That is to say, the implication p ~ q is valid in our class of 
models. By the closure of the neighbourhood systems under supersets, for any 
b E A, Kbp --+ Kbq will also be valid. To formalize the above requirement in the 
situational language, we should be able to express facts such as "a has an ace", and 
therefore enrich the class of basic infons. From there the analysis would parallel 
that made in the modal case. 

Now, let us consider the semantics themselves. A difference is that the 
semantics-syntax distinction is explicit in modal logic but not in the situation 
semantics. We chose here to take infons as syntactical items and situations as 
semantic items. This seems a natural choice given the validation relation defined 
between situations and infons. In this connection, the anti-founded semantics turns 
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out to be related to the "knowledge structures" introduced by Fagin, Halpern and 
Vardi (1984) and the "belief worlds" introduced by Vardi (1986). Both the knowl- 
edge structures and the belief worlds are constructed from subsets of propositional 
variables - in effect from syntactical items. 

There is one more way in which Barwise's anti-founded situations can be 
connected with alternative epistemic structures. Barwise's construction is close to 
the hierarchical structures just mentioned as well as to the hierarchical construction 
of the "universal probabilistic belief spaces" (Mertens and Zamir, 1985). In all of 
these structures, worlds are constructed inductively, adding at each level epistemic 
information on the preceding level. To be specific, define situations of level zero 
(or equivalently of rank zero) as all possible sets containing only basic infons. 
Then, the situations of rank ~? > 0 are all possible unions of situations of rank zero 
with any set containing infons of the kind (K, a, s), where s is a situation of rank 
less than 7. This construction delivers all well-founded Barwise situations. The 
main difference here 12 is that Barwise's construction is co-inductive rather than 
inductive. In the same spirit Lismont (1992) offered a co-inductive construction of 
belief spaces d la Mertens and Zamir. The present construction can be seen to be 
the co-inductive analogue of Vardi's (1986) already-mentioned structures,13 once 
the following two conditions are met: one has to (i) make the same correspondence 
as we made here between situations and neighbourhood systems, and (ii) add a 
monotonicity requirement to Vardi's construction. 
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Notes 

I Notice also that there is a relation between Aumann's approach and these Kripke models. The 
partitional models can be seen as particular case of Kripke models where the individual accessibility 
relations are equivalence relations [see for example Bacharach (1993), Binmore (1991) or Lismont 
and Mongin (1983b)]. 

2 More should be said on the properties of neighbourhood semantics. On their connection with 
Kripke semantics, hence indirectly with Aumann's partitional model, the reader is referred to Chellas 
(1980, ch. 7-9). As an example of their flexibility in epistemic applications Mongin (1993) offers a 
neighbourhood semantics interpretation of the sets having probability 1 or belief function (in Shafer's 
sense) 1. 

3 This extension is useful only to simplify the lemma. As shown by Aczel, the Solution Lemma 
can in fact be proved within the universe of pure sets. 

4 Barwise calls these infonsfacts. 
s This condition seems required to relate shared situations to Scott semantics within classical 

modal logic. 
6 We make no formal difference here between knowing or believing something. Many authors 

seem to consider that knowing something is believing something that is true. In our opinion, this is 
a philosophically weak consideration: someone can believe something true but for wrong reasons 
and then not know it. Formally, these authors consider a modal operator K,~ to be a knowledge 
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operator if all formulae K a ~  --+ ~ are valid. In the semantics proposed here such formulae will 
not be automatically valid. One can always add a semantic condition to the models and make the 
formulae valid. 

7 We should write [[p][~ since this set is related to a particular model. For the sake of readability, 
however, we will not do so. 

8 Formally this means that for each c~ C I, NE (c~) = A,~eA N,~(cQ. 

9 This operation was first introduced by Th. Lucas and R. Lavendhomme, Universit6 Catholique 
de Louvain (unpublished work). 

10 One could object that this set is not well-founded. We could then take as the set of possible 
worlds the cardinal of S, which is in the well-founded universe. This choice is not a problem since 
we are assuming the axiom of choice. 

11 Notice that the requirement that if an agent has a card, he knows that, has not a universal 
epistemic character unlike the requirement that if an agent knows something, then he knows that he 
knows it. The latter can be easily expressed by the modal schema K~o ~ K a K ~ .  

i2 Another minor difference is that the above mentioned inductive constructions of knowledge and 
belief structures involve an induction on the natural numbers only. It can be seen (but will not be proved 
here) that these constructions could have been extended to the transfinite unproblematically. 

13 It is also possible to rely directly Mertens and Zamir's construction to Vardi's one: see Mongin 
(forthcoming). 
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