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1. Introduction
1.1. Physical Motivation

a) One of the fundamental assertions in quantum mechanics is as follows: For
every selfadjoint operator H representing an observable quantity, any state func-
tion f has an expansion in the generalized eigenfunctions of H (cf. [Sch], Chap. 3,
Sect. 10, and [J], Chap. 2, Sect. 2.6.3.1),

f)=Y a, @,(x)+ Ju(d) Fy(x) d 1. (1)

Here the ¢,eL, are ecigenfunctions corresponding to cigenvalues a(n) of H,
and the ¥,¢L, are “generalized eigenfunctions” corresponding to values a(4)
in the continuous spectrum of H. The coefficients in (1) are

%, =[@,(x) f(x)dx={D,, >, @

respectively

a(D)=[H(x) f(x)dx= ¥, [). ©)

Let a guantum mechanical system be in the normalized state f; measuring the
observable quantity which is represented by H, we have the probability |a,|?
to find the value a(n) and the probability density to find a(4) in the continuous
spectrum is |e(4)|2.

b) Let for example H= —4+V be a one-body Hamiltonian (ie. V(x)—0
for [x| > o0). We expect the ¥, to be bounded or at most slowly increasing
(plane waves for V'=0). On the other hand, for values E¢o(H) the solutions
Y of (— 4+ V)P =EVW should grow fast (exponentially) at infinity. These conjec-
tures can be summarized to

o(H)={E: thereis an at most slowly increasing
solution of (— 4+ V) ¥ =EY¥}. 4)
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1.2. Approach to a Mathematical Treatment

If the operator H has an orthonormal basis of eigenfunctions, i.c. the spectrum
is pure point, the assertion in a) is correct; in this case the integral term in
(1) vanishes. Now let H be an arbitrary selfadjoint operator in a Hilbert space
# and E(-) its spectral resolution. For every fe# we have

f= 1 dEW)f. ®)

o(H)

Suppose that the (B(s#)—valued) function A+— E(4) is differentiable in some
sense with derivative E'(1); then formally (5) becomes

f= | E@Mfdir where HE'(3)f=iE'()f, 6)

o(H)

i.e. f can be expanded in the “generalized eigenfunctions” E'(4) f of H.

This idea has been developed rigorously in [B] for abstract selfadjoint opera-
tors and in [S], Chap. CS5 for Schrédinger operators.

In this paper we will use another {more direct) approach to expansions
in eigenfunctions; in the case of ordinary differential operators this method
was used in [W 2], Theorem 8.4.

Our approach is motivated by the following example: Consider the momen-
tum operator p= —id/dx in L,(R); the inverse Fourier transform is an expan-
sion for p in the sense of a):

fl)=lim. | f(he,(x)di  forall feL,(R), (7
where e, (x)=(2n) " /2!~ —iie =Je, and
A - s dx A 2
N
f(i):l};[i;m. | e f(x)dx. 8

The Fourier transform is a spectral representation for p.
Actually, every selfadjoint operator H possesses a spectral representation

U=(U): # > DL,R,dp), [fr>(U,f)
j
([W 1], Theorem 7.18). It should be possible to write this representation in
a form similar to (8), i.e.
(U;/)(A=<e;(4),f> forsuitable f and all . 9
Inserting a Hilbert-Schmidt operator Ae B(#), we get

(U;Ag)(A)=<u;(A), g> forall ge#’ (10)
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([W 1], Th. 6.12). If A4 is invertible we get formally
U NA)=LA" Y uy(2),f>  forall feD(4™) (11)

which is the desired result.

In general the (4™ ')*u;(4) will not be elements of #, and therefore the
meaning of the right hand side of (11) needs some explanation.

In Sect. 2 we introduce the generalized inner product which will be used
to justify (11); then we construct a special form of the spectral representation
reflecting the spectral multiplicities of the operator.

Our eigenfunction expansion for selfadjoint operators H is formulated as
Theorem 1 in Sect. 3. There we use A=y(H)T !, where T is selfadjoint, T>1
and y is continuous and bounded with |y|>0 on ¢(H). Our result coincides
with those of [B] and [S]. However, our method of proof seems to be new
and it has essentially two advantages: it leads more directly to the expansions
and it allows to prove Theorem 2 which shows some additional properties
of the generalized eigenfunctions.

Section 4 deals with applications to Schrodinger operators H= —A4+V in
L,(R™). The aim of this section is merely to give some examples for realizing
the assumptions of our theorems in concrete cases and to give a concrete form
of our abstract expansion. More general resuits can be found in [S]; see also
the literature cited there. As an application of Theorem 2 we get the weak
differentiability of the generalized eigenfunctions without using any results on
the regularity of weak solutions of the Schrédinger equation. Applications to
more general Schrodinger operators than those studied in [S] will be presented
in [St].

In addition to the cited results on spectral representations, we use some
basic facts from the theory of the Bochner-integral without further reference
(cf. [HP], Ch. IIL.1).

2. Preliminaries

Let (#,{-,->) be a separable Hilbert space, T a selfadjoint operator in s with
T = 1. With the scalar product <u, v) , :={Tu, Tv), D(T) is a Hilbert space which
will be denoted by 4, (T). We have T~ *>0 so that {f,g)>_=(T £, T g
defines a scalar product on . For the completion of (#, <-,->_) we will write
H_(T). The triple o, (T)= H < #_(T) is called the T-triple of H#.

Lemmal. a) Let ues#,(T),fes#_(T); for every sequence (f,)=H with
| fu—=F1l == O the limit { f, uy:=lim < f,, u) exists and it is independent of the choice
of the sequence.

b) Let T be T considered as an operator with values in #_(T); the closure
T of Tis an isometric operator from H# into H_(T).

c) Forues, (T) and fe H# we have {Tf, ud>=f,Tud.

Proof. a) From

[Kfa=tomr I =KT T (fo= 1), W= [KT ™ (fy—fouh T S|l fu—Foull - | T
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it follows that ({f,, u>) is a Cauchy-sequence, hence it is convergent. The inde-
pendence of the choice of the sequence can be shown by mixing two such
sequences.

b) We have | Tu]l_—HTuH_—[[ T Tu[i-—[\ul\ so that T is isometric and
densely defined. Hence T has an isometric closure Te B(o#, #_ (T)).

¢) Choose a sequence (f, )=, (T) with ||f,—f]|—0; consequently
| Tf,—Tf| - = 0. We conclude

S, Tuy =lim < f,, Tuy =lim{ Tf,, uy =lim<{Tf,, ud) =<{Tf, u>
where we use part a) for the last equality. [

Let H be a selfadjoint operator in # with spectral resolution E(-). A Borel
measure p on R is called a spectral measure of H (cf. [S], p. 501) provided
that for Borel sets A the following equivalence holds:

p(4)=0<E(4)=0. 12)

Let U be a unitary operator of the form

U=(Uj):'}f_)®L2(]R’dpj)= Uf=U;f)j=1,2,..5x (NeNuU{co}) (13)

=1

with bounded Borel measures p; which are different from zero. U is called
a spectral representation of H if UHU ~'=M,4. For every selfadjoint operator
there exists a spectral representation. In fact it is possible to chose the p; such
that p;,, is absolutely continuous with respect to p; for j=1,2,...; in this
case U is called an ordered spectral representation of H {cf. [W 2], Theorem
8.1).

The spectral multiplicity of H is the least number of elements u,, ..., u,e #
for which the span of {E(t)u,: k=1, ..., i; telR} is dense in #. For an E-measur-
able set MR (i.e, M is measurable with respect to the measure d|E(+)f|>
for every fes#’) we define the spectral multiplicity of H on M as the spectral
multiplicity of H|g g

Lemma 2. a) Any two spectral measures p and p of H are mutually absolutely
continuous.
b) For every selfadjoint operator H there exists a spectral measure.

c) For every spectral measure u of H there exists a spectral representation
of H of the form

U=(Uj)3 H— @Lz(]Rs Xdeﬂ)= @LZ(Mja du), (14)

j=1 j=1

where the sets M; are u-measurable with M;,. <M ;(j=1,..., N—1). The M;
are uniquely determined (up to u-nullsets ) and independent of the spectral measure .

d) If wiM\M;,,)>0 then H has spectral multiplicity j on M\M;, for
j=0,1, ... (here My:=R).
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Proof. a) is clear from the definition.
b} Consider an ordered spectral representation

V=(V): £ > PL,(R, dp)

j=1

of H. p; is absolutely continuous with respect to p:=p,(j=1, 2, ...); therefore
we have dp;=h;dp with hjeL, ,,.(R, dp) and h;=0(p—a.e.).
p is a spectral measure of H: Using

TAIEA S = [ dIVEQY V| = Zfin(z)PdpJU)

j=14
we conclude

E(A)=0<={{d|EMX)f|>=0Yfe}

N
e{z [lg?dp,=0Yg=(g,, g3, ... ) e DL (R, dp,-)}
- J

< {pj(4)=0VYj}<p(4)=0.

c) First, we construct a spectral representation of the desired form for the
spectral measure which we have found in b):

For every h; we choose some representative with h;(4)=0 for all AcR and
set M;:={AelR: h;(4)>0}; M; is measurable. The absolute continuity of p;.,
with respect to p; yields M;,, cM; (where we change the M; by p-nullsets
if necessary).

Then the map U;: L,(R,dp;)— L,(M;, dp), U;g:=h}?g is unitary; we have
UM, 0, =M, (the M;4 on the left hand 51de is in L,(R,dp)), the other
one in L,(M;, dp)).

Let Up=U;V;: #— L,(M;, dp); then U's=(U): #—@PL,(M;,dp) is a
spectral representatlon of the desired form. J

For an arbitrary spectral measure p of H we have du=hdp with h=+0 (p-a.c.).
W;: L,(M;, dp)—L,(M;,dp), W;g:=h~'?g is unitary; taking U;=W,;U}, the
map U=(U;) has all the properties stated in c).

The uniqueness of the M; and their independence of the spectral measure
u are consequences of part d) which we will prove now.

d) Without loss of generality we may assume that u(R)< oo (if necessary,
multiply ¢ with a suitable weightfunction).

J
Hlg s, o IS unitary equivalent to My on #5:= L,(M\M; ., dp)
k=1

=L,(M\M,, 1Y, therefore the two operators have the same spectral multiplici-
ty. For the latter one, the spectral multiplicity is equal to j:

Define hy, ..., he i, =1y )=, by hy =1 and hy ,=0 for k+n; then the
span of {y_, qh:teR; k=1, ...,j} is dense in #;. On the other hand {h,: k
=1,...,j} is a minimal system. To prove this, let f;, ..., fie #; with i<j. For
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/

AeMA\M;, ( let P(4)%0 be the orthogonal projection on span {f; (1), ..., fi(A)}*
in ©. P(-) is measurable, and (Pf)(1):=P(4) f (1) defines an orthogonal projec-
tion P in ;. There exists an me{l, ..., j} with Ph,'+0; otherwise we would
have P(4)=0 for u-a.e. A. Since by construction of P we have (Ph,,, X~ w.q /> =0
for all teR and k=1, ..., i, the span of {y_,, 4 fi: teR; k=1, ..., i} is not dense.

This proves d), from which the independence of the M of the spectral mea-
sure follows. [

A spectral representation of the form (14) is called a p-spectral representation
of H.

3. The Expansion Theorem

Theorem 1. Let #, (T < #_(T) be a T-triple and H a selfadjoint operator
in #. Let u be a spectral measure for H, U a p-spectral representation of H
and &:={fe#, (T)nD(T): H fe #, (T)}. Suppose there is a bounded continuous
Sfunction y: R —» € with |y|>0 on ¢(H) such that y(H)T ! is a Hilbert-Schmidt
operator. Then there exist p-measurable functions ¢;: M;—#_(T), j=1,2, ...,
such that

a) (U ) (A)=<o;A).f> for fe #,(T) and p-ae. Le M.

b) Lo;(A), Hf>=A{p;(A),f) for fe& and p-a.e. Ae M.

¢) For every g=(g,)e (P L,(M;, d ) we have

J

n

U™'g=lim } I g e;(Hdu), (15)
[ G SRR EIES T 78

and therefore for every fe #

n

f=lm 3 [ (UNHGeRdrG) 6
PON =1 (21BN M

The limit is taken in #; the integrals | (U (D) o;(A)d (i) represent
(AL M;
elements of #, although the ¢;(1) are contained in H#_(T) only.

Remarks. (i) Because of b), the ¢;(2) are called generalized eigenfunctions corre-
sponding to 4, but this notion makes sense only if & is a core for H; then
(16) is the eigenfunction expansion. (15) is a generalization of the Fourier inversion
formula.

(i) Theorem 1 holds similarly for an arbitrary spectral representation of
H. We have chosen a special U to emphasize the connection between the spectral
multiplicity and the eigenfunction expansion.

(i) One can always find an operator T of the desired form such that
y(H)T ! is a Hilbert-Schmidt operator: Choose for T~ ! a selfadjoint injective
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Hilbert-Schmidt operator with 0< T~ < 1. For a bounded function y, the opera-
tor y(H) is bounded and therefore y(H) T~ ! is a Hilbert-Schmidt operator, too.

(iv) On the other hand, if y(H)T ™! is a Hilbert-Schmidt operator for every
selfadjoint operator H then T ! itself must be a Hilbert-Schmidt operator:
Take a bounded selfadjoint operator H, then y(H)™ ! is bounded and therefore
T 1=y(H)"*(y(H)T ') is a Hilbert-Schmidt operator.

In our applications to Schrédinger operators we will only have the product
y(H) T ™! to be a Hilbert-Schmidt operator, i.e. we will make use of some proper-
ties of H. This will yield a connection between properties of H and the form
of its generalized eigenfunctions.

Proof of Theorem 1. For continuous functions y: R — € we have ([W 1], Theo-
rem 7.15)

UyH)U '=M,.
For every j, M,U;T~'=U;y(H)T " is a Hilbert-Schmidt operator from # into
L,(M;, dy) (since U; is bounded and y(H)T ' is Hilbert-Schmidt). Therefore
by [W1], Theorem 6.12 there exists a measurable function u;(*): M;—#,
()| €L (M, dp, satisfying
YDUT (W)=, UT (W)= u(i), g> for ge#, pae. 2eM,,
Setting w;(4):=y (1)~ ' u;(1) we get
(UT 'g)()=<wi(4), g> for ge# and p-ac. iecM;.

Then ¢;(4):= ij(i)eéf_ (T) are the desired functions: For fe#, (T) and y-a.e.
A€M ; we conclude

(UN)D= T WA= wild), T > = Tw(A), 1> =<0, f >-

The function ¢;: M i #_(T) is measurable since u;: M;— # is measurable,
1/y is continuous and T: 5 — #_(T) is bounded.
b) From part a) it follows for fe& and p-a.e. e M;

(oD, Hf >=Tw;(d), Hf >=<w;(#), THf >=(U;T~")(THf)(2)
= (U HN) D)= UU ) A= 2@;(A), [ ).

c) First we show that
Wj(')ELz,loc(Mja dp; #) and @j(')ELz,loc(Mja du; #_(T)):
We know already that w;(-) and ¢,(-) are measurable. From 1/yeL, 1,.(R)

and  |u;(")leLy(M;, dp) it follows  that  [[w;(-)|=[y()I™" lu;(-)]
€L, 1o(Mj, dp), j=1, ..., N. The statement for ¢;(+) now follows from

o5 == 1Tw; (I - Z N TN flw ()l
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Now let ve#, (T), g=(g)e PL,(M;, dy) with g;=0 for j>j, and g;(1)=0 for
i

[A|>R,j=1, ...,j,. We have

U g oy=Lg Und=Y | gDURdut)=Y | <o, 05 duld)

i=1 My =1 M;

’gf B AT = 3§ 20w Din.T)

Jj=1 M;

(where we have used that g;(+) w,(+) is Bochner-integrable)

=<7’§ [ 8wy dui v>=<§ [ g()o,hdu, v>.

=1 M; j=1M;

Since 4, (T) is dense in s this implies
Jo
Z | &Me;du),
J=1M;

and the integrals on the right hand side represent elements of . Part ¢) of
the theorem follows by a limiting argument. []

With an additional assumption, we get more information about the generalized
eigenfunctions:

Theorem 2. In addition to the assumptions of Theorem 1, let S be an injective
operator in A such that S™ '€ B(#) and y(H) T~ 'S is the restriction of a Hilbert-
Schmidt operator to D(S). Then the generalized eigenfunctions ¢;(4) lie in the
range of T(S™H*.

Proof. Using the argument in the proof of Theorem 1, we get the existence
of functions #;(+): M; —» # with ||ii;(+)|€L,(M;, du) and

YU T~ Sg)(A)=<i;(4), g> for geD(S).
With w;(A)=y(4)" "#;(4) and ¢;() from Theorem 1 we have for fe #, (T)

oM f>=U; )A=U,;T 1SS~ TN (A)=w(2), 7 If
= (ST, T =<T(S™)*W;(A). >,

ie. ;=T Y*w;. O

4. Applications to Schrodinger Operators
We define k,: R™ - R by k,(x):=(1 +[x}*)*? for zeC and

L, (R™:={fR™">C with k,feL,(R™)} for seR.
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In our applications, T will be the multiplication by k(s>0). With s#=L,(R™)
this yields #, (T)= L, (R™) and #_ (T)= L, _,(R™). In this case the generalized
scalar product for feL, _,(IR™) and ueL, (R™) (see Lemma 1) is of the form
frudy=[f(x)u(x)dx. By B,(L,([R™) we denote the set of Hilbert-Schmidt oper-
ators in L,(R™).

The following lemma verifies the assumptions of Theorem 1.

Lemma 3. Let m<3, V: R” >R 4-bounded with relative bound less than 1,
H:=—A+Vin L,(R™ and s>m/2. Then (H—z)"'k_,eB,(L,(R™) for every
zep(H).
Proof. We have

(=4+1) " k_eB,(L,(R™): (17)

For m£3, g(x)=(jx|* +1)"'eL,(R™) and therefore the convolution theorem for
L,-functions yields

(—4+ D)7k ))=F 1 (@F (k_, ) (x)=(h* (k_s ()
=[h(x—y) k-, f()dy,

where h=F 'geL,(R™); thus (—4+1)"'k_, has the integral kernel t(x, y)
=h{x—y)k_,(y). Since t(-,") lies in L,(R™"xR™ dxxdy), (—4+1)"1k_ is a
Hilbert-Schmidt operator. Now the lemma follows from the second resolvent
identity:

H—z)"k_j=(—A+10)"Yk_—(H—z) ' (V—z+1)(—A+1)"k_,.
The first term on the right hand side is Hilbert-Schmidt by (17), the second

is a product of a bounded operator and a Hilbert-Schmidt operator. []

By k,(p) we denote the Fourier transform of the multiplication by k,(+), ie.
k,(p):==F 'k, F; we will use Theorem 2 with S =k, (p) to prove regularity proper-
ties of the generalized eigenfunctions.

Lemma 4. Let Vand H be as in Lemma 3 and ucp(H); then k,(p)(H—u)~ 1k, (p)
is bounded.

Proof. Let f, ge C§ (R™); for 0<Rez=1 we use the abbreviation

Frg(@)={f ko (D H—) " ky_ 5. () 8> =<k (p) f; (H— 1) " k3 5.(P) 8-

F; . is analytic in {z: 0<Rez<1} and continuous on the closure of this strip,
since the maps z—k, .(p) f and z+—k, _,,(p) g have these properties. Using

ky@H—p) ' =(—A+ D) H—p) '=H+1)H—p ' —V(H-—p!
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H—pw "

and taking adjoints we see that k,(p)(H—u)~ ! and k,(p) are bounded.

We have

IFr @IS fIIH—0) k()] gl =Cl fll gl for Rez=0,
and

IFy @IS k@) H—p I lgl=Cl s lgl  for Rez=1.

Now Hadamard’s Three-Line-Theorem ([RSII], appendix to IX.4) yields for
0<Rez=1

1Fy @IS 1Sl IH =0 e (0I5 ko (p)H =) R =C [ f] 1]

The boundedness of k,,(p)(H—u) ™ 'k, _,,(p) follows from

koo (D)(H—1) ™ ka—2.(p)| =sup{|F;,,(2)]: £, g€ CT R™), || fll=lgll =1} =C;
taking z=1/2 yields the lemma. []

Now we are in the position to verify the assumptions of Theorem 2 for the
Schrodinger operator of Lemma 3.

Lemma 5. Under the assumptions of Lemma 3, let zep(H) and s>m/2; then we
have

(H—z)"k_ sk, (p)e B, (L, (R™)).
Proof. Restricted to CJ (R™), the following equality holds:

(H—2)"2k_sky(p)=(H—2)""k_(H—2)" "k (p)
+(H=-2) ' [(H—2)"" k- 1k (p).

The first term on the right hand side is (the restriction of) a Hilbert-Schmidt
operator. Next we calculate the commutator in the second term and get

[(H—2 "k J=H-2)"'[4,k_JH-2z)""
=(H—z)"*{(4k_)+2{(grad k_), grad)>} (H—z)"".

Thus it suffices to show that
(H—z)"*(4k_)(H—2)""ky (p)+2(H—2)"*<(grad k_), grad ) (H —2) " 'k, (p) (18)

is a Hilbert-Schmidt operator. Following the argument in the proof of Lemma 3
and using {Ak_|<ck_,_,, we see that the first term in (18) is Hilbert-Schmidt.
For the second term we examine (H—z)~1(d;k_) 0;(H—2) "'k, (p) (j=1, ..., m).
These operators are in B,(L,(IR™) since by [0;k_ =<ck_; this is true for
(H~z)"1(8;k_,) and 0,(H—z)" 'k (p)=08;k_ (p) k; (p)(H —2)~ 'k, (p) is bounded
by Lemma 4. []

Now we can formulate the following theorem on the expansion in generalized
eigenfunctions of Schrdédinger operators:
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Theorem 3. Let m=3, V: R™ > R uniformly locally in L,(R™), and Hi=—A+V
in L,(R™); let p be a spectral measure of H, U a u-spectral representation of
H, and s>m/2. Then there exist p-measurable functions ¢;; M
=Ly - R™) AW, 1 10(R™), with:

a) UHD=Lim. [ ¢&¥S()dx feLs R

T x|SR
b) ¢;(4,%) is a weak solution of Hp = A¢ (for y-ae. leM)).
c) For felL,(IR™) we have

j

n

f@= Lim Y [ (UNHD e x)dul).

PN ER @ j=1 (AlE My

d) For p-measurable sets I cR and for fe L,(IR™) we have

Su@Ef>=% | IUGSDPdu).

J=1 MynT

Proof. Vis A-bounded with relative bound zero ([RSIV], Theorem XII1.96)
so that the Lemmas 3, 4 and 5 are applicable. Using Lemma 5 we see that
the assumptions of Theorem 2 are fulfilled with y(1)=(1—2z)"2 for a zep(H)
and S=k;(p). Therefore Theorem 1 is applicable with functions ¢;(4,*)e
kW, ;(IR") <L, - \R™nNW, {1@R™). a) and c) follow immediately. Part b)
follows from Theorem 1.b) since we can check easily C¥ (R™) < &. Part d) follows
from

S = S IP=1VuE ) f1?=IM,,Uf|%. O

Remarks. (i) All statements of Theorem 3 except ¢;(4,*)eW, 1 1,(R™) are al-
ready consequences of Theorem 1 and Lemma 3.

(i1) Theorem 3 is the mathematical version of the fundamental assertion
in quantum mechanics which was formulated in Sect. 1.1.a), when the observable
is chosen to be the energy: Part c) corresponds to Eq. (1), part b) expresses
the fact that the functions ¢;(4,-) are generalized eigenfunctions, and part a)
corresponds to the Eq. (2) and (3). Part d) is just the statement about the proba-
bility densities: For a system in the state f the probability to measure an energy
value in I is given by < f, x;(H) f ), i.e. the function ) ;|x,, U, f |? is the probability
density with respect to u.

In the case of a typical one-body potential V we have o,(H)={4;: jeN}
with ;<0 and ;-0 for j - w0, ¢,.(H)=[0, ) and o, (H)=9, so that we can
choose

dliz Z élj+x[0,oo)di

i=1

as a spectral measure. In this case the expansion in ¢) has the same form as
the corresponding one in Eq. (1), except for the additional sum in front of the
integral.
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