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1. Introduction 

1.1. Physical Motivation 

a) One of the fundamental assertions in quantum mechanics is as follows: For 
every selfadjoint operator/-/representing an observable quantity, any state func- 
tion f has an expansion in the generalized eigenfunctions of H (cf. [Sch], Chap. 3, 
Sect. 10, and [J], Chap. 2, Sect. 2.6.3.1), 

f(x)  = ~ e. (b. (x) + 5 c~ (2) ~ (x) d 2. (1) 

Here the ~ n ~ L  2 a re  eigenfunctions corresponding to eigenvalues a(n) of H, 
and the ~ q ~ L  2 a re  "generalized eigenfunctions" corresponding to values a(2) 
in the continuous spectrum of H. The coefficients in (1) are 

respectively 
c~.=~.(x) f (x)dx= ( ~ . , f ) ,  

c~(2) = ~ ~--~x) f (x) dx = (7";.,f). 

(2) 

(3) 

Let a quantum mechanical system be in the normalized state f;  measuring the 
observable quantity which is represented by H, we have the probability I~.l 2 
to find the value a(n) and the probability density to find a(2) in the continuous 
spectrum is Ic~(2)l 2. 

b) Let for example H = - A + V be a one-body Hamiltonian (i.e. V(x) ~ 0 
for [xJ--.oo). We expect the T~ to be bounded or at most slowly increasing 
(plane waves for V=0). On the other hand, for values E$a(H) the solutions 
T of (--A + V) T = E 7 ~ should grow fast (exponentially) at infinity. These conjec- 
tures can be summarized to 

a(H) = {E: there is an at most slowly increasing 

solution o f ( -  A + V) 7 j = E T}. (4) 
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1.2. Approach to a Mathematical Treatment 

If the operator H has an orthonormal basis of eigenfunetions, i.e. the spectrum 
is pure point, the assertion in a) is correct; in this case the integral term in 
(1) vanishes. Now let H be an arbitrary selfadjoint operator in a Hilbert space 

and E(.) its spectral resolution. For every f e ~  we have 

f =  ~ dE(2)f (5) 
a(H) 

Suppose that the ( B ( ~ ) - v a l u e d )  function 2w-~E(2) is differentiable in some 
sense with derivative E' (2); then formally (5) becomes 

f =  ~ E'(2)fd2 where HE'(2)f=2E'(2)f (6) 
a(H) 

i.e. f can be expanded in the "generalized eigenfunctions" E ' (2 ) fo f  H. 
This idea has been developed rigorously in [B] for abstract selfadjoint opera- 

tors and in IS], Chap. C5 for Schr6dinger operators. 
In this paper we will use another (more direct) approach to expansions 

in eigenfunctions; in the case of ordinary differential operators this method 
was used in [-W 2], Theorem 8.4. 

Our approach is motivated by the following example: Consider the momen- 
tum operator p =  - id /dx  in L2(~-~); the inverse Fourier transform is an expan- 
sion for p in the sense of a): 

N 

f(x)=l. i .m. S f(2)e~(x)d2 forall f~L2(l~), (7) 
N--+ co - N  

d 
where ez (x) = (2 r~)- 1/2 e i ~ x, _ i dxx ex = 2 e;. and 

N 

f(2)=l. i .m. S e~(x)f(x)dx. (8) 
N~oo - N  

The Fourier transform is a spectral representation for p. 
Actually, every selfadjoint operator H possesses a spectral representation 

U=(Uj): 2/f ~ (~L2(~ , dpj), fF--~(Ujf) 
J 

([W 1], Theorem 7.18). It should be possible to write this representation in 
a form similar to (8), i.e. 

(UH)(2) = <q~j(2),f> for suitable f and allj. (9) 

Inserting a Hilbert-Schmidt operator A~B(~), we get 

(UjAg)(2) = <u~(2), g> for all g e J f  (10) 
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([-W 1], Th. 6.12). If A is invertible we get formally 

(Ujf)(2)=<(A-1)*uj()c),f> forall f~D(A -1) (11) 

which is the desired result. 
In general the (A-1)*ui(2) will not be elements of W, and therefore the 

meaning of the right hand side of (11) needs some explanation. 
In Sect. 2 we introduce the generalized inner product which will be used 

to justify (11); then we construct a special form of the spectral representation 
reflecting the spectral multiplicities of the operator. 

Our eigenfunction expansion for selfadjoint operators H is formulated as 
Theorem 1 in Sect. 3. There we use A = 7 ( H ) T  -1, where T is selfadjoint, T >  1 
and ? is continuous and bounded with 17[>0 on a(g). Our result coincides 
with those of [B] and [S]. However, our method of proof seems to be new 
and it has essentially two advantages: it leads more directly to the expansions 
and it allows to prove Theorem 2 which shows some additional properties 
of the generalized eigenfunctions. 

Section 4 deals with applications to Schr6dinger operators H - - -  A + V in 
L 2 (IR"). The aim of this section is merely to give some examples for realizing 
the assumptions of our theorems in concrete cases and to give a concrete form 
of our abstract expansion. More general results can be found in [S]; see also 
the literature cited there. As an application of Theorem 2 we get the weak 
differentiability of the generalized eigenfunctions without using any results on 
the regularity of weak solutions of the Schr6dinger equation. Applications to 
more general Schr6dinger operators than those studied in [S] will be presented 
in [-St]. 

In addition to the cited results on spectral representations, we use some 
basic facts from the theory o f  the Bochner-integral without further reference 
(cf. [HP], Ch. III.1). 

2. Prefiminaries 

Let ( ~ ,  < ",->) be a separable Hilbert space, T a selfadjoint operator in x4r with 
T >  1. With the scalar product (u, v> + ,=<Tu, Tv>, D(T) is a Hilbert space which 
will be denoted by oYg+ (T). We have T -  1 > 0 so that ( f ,  g> _ .-= ( T -  i f  T -  1 g> 
defines a scalar product on 9ft. For  the completion of (jt{, ( .,. > _) we will write 
~ _  (T). The triple ~f+ (T )c  Yf ~ jg_ (T) is called the T-triple of I f .  

L e m m a l .  a) Let usJ4~+(r),fso~f_(r); for every sequence ( f , ) c ~ f  with 
l[ f n - f  [I- ~ 0 the limit ( f u> :=lim ( f,, u> exists and it is independent of the choice 
of the sequence. 

b) Let T be T considered as an operator with values in 2~f_ (T); the closure 
~F of 7"is an isometric operator from 2,~ into ~f'_ (T). 

c) For u ~ +  (T) and f~2/g we have ( T f  u> = <f, Tu). 

Proof a) From 

[<f.-f , . ,  u) [=  [<rT-l( f . - - f , . ) ,  u)l = [<r-~(f.--f,.), Zu) l<= IIf.-f,.l]- [I rul[ 
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it follows tha t  ((fn,  u))  is a Cauchy-sequence,  hence it is convergent .  The  inde- 
pendence  of the choice of  the sequence can be shown by mixing two such 
sequences. 

b) We  have  [1%11- = Ilrull- = II r -1 rull = Ilull so that  T is i sometr ic  and 
densely defined. Hence  T has  an isometr ic  closure 7"sB(Jg,  24 ~ (T)). 

c) Choose  a sequence (f,)a~f'+(T) with lifo-Nil--'0; consequent ly  
II 7"fn - 7"f 1[ _ ~ 0. We conclude 

( f ,  T u ) = l i m ( f . , T u ) = l i m ( T f . ,  u ) = l i m ( ~ f . ,  u )  = (7"f, u )  

where we use par t  a) for the last equality.  [ ]  

Let  H be a selfadjoint ope ra to r  in ~ with spectral  resolut ion E(-).  A Borel 
measure  p on IR is called a spectral measure of H (cf. [SJ, p. 501) p rov ided  
tha t  for Borel sets A the following equivalence holds:  

p (~) -- o r  E(~) = O. (~2) 

Let U be a uni ta ry  ope ra to r  of  the fo rm 

N 

u = ( u j ) :  xr  @ L : ( R ,  dp~), 
j = l  

U f =  ( U j f ) j =  1, 2 ..... N ( N e N v  {oo})(13) 

with bounded  Borel  measures  pj which are different f rom zero. U is called 
a spectral representation of H if UHU-1----Mid. For  every selfadjoint ope ra to r  
there exists a spectral  representat ion.  In fact it is possible to chose the pj such 
that  pj+~ is absolutely  cont inuous  with respect  to pj for j =  1, 2, .. .; in this 
case U is called an ordered spectral  representa t ion  of H (cf. [W 2], T h e o r e m  
8.1). 

The  spectral multiplicity of H is the least n u m b e r  of  elements  Ul . . . . .  u~cJt ~ 
for which the span of (E(t)uk: k= 1, ..., i; t~lR} is dense in ~ .  F o r  an E-measur -  
able set M c I R  (i.e., M is measurab le  with respect  to the measure  dl]E(.)f]l 2 
for every f E ~ )  we define the spectral multiplicity of H on M as the spectral  
mult ipl ici ty of  HIRtE(M))" 

L e m m a  2. a) Any two spectral measures p and # of H are mutually absolutely 
continuous. 

b) For every selfadjoint operator H there exists a spectral measure. 
c) For every spectral measure # of H there exists a spectral representation 

of H of the form 
N N 

U=(U j): H---, @ L 2 ( • ,  ZM~d #)= @ L2(M j, d#), (14) 
j--1 j = l  

where the sets Mj are p-measurable with Mj+ICMj(j= 1, . . . ,  N - l ) .  The Mj 
are uniquely determined (up to #-nullsets) and independent of the spectral measure #. 

d) I f  #(Mj\Mj+I)>O then H has spectral multiplicity j on Mj \Mj+I  for 
j = 0 , 1 ,  ... (here M o . ' = N  ). 
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Proof. a) is clear from the definition. 
b) Consider an ordered spectral representation 

N 

V=(V~): W ~  @L2OR, dpj) 
j = l  

of H. Pi is absolutely continuous with respect to p:=p~ ( j=  1, 2,. . .);  therefore 
we have d p~ = h i d p with h i ~ L l, 1oo O R, d p) and h i __> 0 (p - a:e.). 

p is a spectral measure of H: Using 

N 

d IIE(2)f II 2 = ~ d [I VE(2) V -~ Vfl[ 2 = ~ ff I Vjf)(~)12dpj(2) 
A d j = l d  

we conclude 

E(A)= 0~=~{ ~ d ILE(2)f I[ 2 = 0  Vf~ 2r ~} 
d 

2 Igjl2dpj--0Vg--=(gl, g2, . . . )e@L2OR, dp i) 
= 1  j 

,~  {pi(A) = 0 V j} ~ p  (A) = 0. 

c) First, we construct a spectral representation of the desired form for the 
spectral measure which we have found in b): 

For every h i we choose some representative with hi(2)> 0 for all 2elR and 
set M/={2e lR :  h~(2)>0}; M i is measurable. The absolute continuity of Pj+t 
with respect to pj yields M j+ l c M j  (where we change the M i by p-nullsets 
if necessary). 

Then the map 0j:  L20R, dpj)-~ L2(M i, dp), Ujg:=hl/2g is unitary; we have 
O~Miag~-l=Mia (the Mia on the left hand side is in L2OR, dpj), the other 
one in L2(Mj,dp)). 

Let U'j:=UiVj: 2~---~ L2(Mj, dp); then U':=(U)): Jt<-~@Lz(Mj, dp) is a 
spectral representation of the desired form. i 

For an arbitrary spectral measure # of H we have d# = hdp with h + 0 (p-a.e.). 
Wj: L2(Mi, dp)---,L2(M~, d#), Wjg:=h-1/ag is unitary; taking U/=VVjU), the 
map U = (Ui) has all the properties stated in c). 

The uniqueness of the M i and their independence of the spectral measure 
# are consequences of part d) which we will prove now. 

d) Without loss of generality we may assume that #(IR)< oe (if necessary, 
multiply # with a suitable weightfunction). 

J 

HqR(E(Mj\Mj+ ~ is unitary equivalent to Mid on ogfi:= @ L2(Mj\Mj+ 1, d#) 
k = l  

= L 2 (Mj\Mj+ ~)J, therefore the two operators have the same spectral multiplici- 
ty. For the latter one, the spectral multiplicity is equal to j :  

Define h I . . . . .  hjeJf~, hk=(hk,  n)~= 1 by hk,k= t and hk, n=-O for k ~n; then the 
span of {Z<o~,qhk: telR; k= 1 . . . . .  j} is dense in ~ .  On the other hand {hk: k 
= 1 .... ,j} is a minimal system. To prove this, let f~, . . . , f~eJfj  with i<j. For 
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2eMj\M~+ 1 let P(2)=~ 0 be the orthogonal projection on  span {f1(2) . . . . .  fi(2)} • 
in IIY. P( . )  is measurable, and (Pf)(2),=P(2)f(2) defines an orthogonal projec- 
tion P in ~r There exists an me{l ,  ...,j} with Ph,,'+O; otherwise we would 
have P ( 2 ) = 0  for #-a.e. 2. Since by construction of P we have (Ph,,, Z(- ~.t]fk) = 0  
for all t e n  and k =  1, ..., i, the span of {Z(- oo,0fk: t e N ;  k =  1, ..., i} is not dense. 

This proves d), from which the independence of the M~ of the spectral mea- 
sure follows. []  

A spectral representation of the form (14) is called a #-spectral representation 
of H. 

3. The Expansion Theorem 

Theorem 1. Let Jr+ ( T ) c ~ c ~ _  (T) be a T-triple and H a selfadjoint operator 
in ~ .  Let # be a spectral measure for H, U a #-spectral representation of H 
and g..= {fe  ~+ (T)~ D (T): H f e  2/g+ (T)}. Suppose there is a bounded continuous 
function ~: N--*(12 with 171>0 on ~(H) such that 7(H)T -1 is a Hilbert-Schmidt 
operator. Then there exist #-measurable functions ~0j: Mj  ~ ~f~_ (T), j = 1, 2 . . . . .  
such that 

a) (Uff)(2)= (q~j(2),f) for f e ~ +  (T) and #-a.e. 2eMj .  
b) ((pj(2), H f )  =2Qoj (2 ) , f )  for f e g  and #-a.e. 2eMj. 
c) For every g=(gj)e@Lz(Mj,  d#) we have 

J 

U - l g =  lim ~ ~ gj(2)ep2(2)d#(2), 
n-~N j = l  {]2[<<_E)c~Mj 

E--+ ~ 

(15) 

and therefore for every f eo~ 

f =  lim ~ I (Uff)(2)~oj(2)d#(2). 
n-->N j = l  (I,~oI<E}nMj 

E - - + ~  

(16) 

The limit is taken in -~; the integrals ~ (Ujf)(2)q~j(2)d#(2) represent 
{I.~l <El c~Mj 

elements of 2/f, although the r are contained in ~_  (T) only. 

Remarks. (i) Because of b), the ~0j(2) are called generalized eigenfunctions corre- 
sponding to 2, but this notion makes sense only if g is a core for H; then 
(16) is the eigenfunction expansion. (15) is a generalization of the Fourier inversion 
formula. 

(ii) Theorem 1 holds similarly for an arbitrary spectral representation of 
H. We have chosen a special U to emphasize the connection between the spectral 
multiplicity and the eigenfunction expansion. 

(iii) One can always find an operator T of the desired form such that 
7(H) T -1 is a Hilbert-Schmidt operator: Choose for T-1  a selfadjoint injective 
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Hilbert-Schmidt operator with 0 < T -  1 < 1. For a bounded function 7, the opera- 
tor ~(H) is bounded and therefore 7(H)T-1 is a Hilbert-Schmidt operator, too. 

(iv) On the other hand, if ? (H)T-1 is a Hilbert-Schmidt operator for every 
selfadjoint operator H then T -1 itself must be a Hilbert-Schmidt operator: 
Take a bounded selfadjoint operator H, then 7(H)-1 is bounded and therefore 
T -  1 = ~(H)- 1 (7(H) T -  1) is a Hilbert-Schmidt operator. 

In our applications to SchrSdinger operators we will only have the product 
(H) T -  1 to be a Hilbert-Schmidt operator, i.e. we will make use of some proper- 

ties of H. This will yield a connection between properties of H and the form 
of its generalized eigenfunctions. 

Proof of Theorem 1. For continuous functions ?: N ~ ~ we have ([W 1], Theo- 
rem 7.15) 

U ~(H) U -1 = M~. 

For every j, M r U jT-1=  Ujy (H)T-1 is a Hilbert-Schmidt operator from Jt ~ into 
L2(M j, d#) (since Uj is bounded and 7(H)T -1 is Hilbert-Schmidt). Therefore 
by [W1],  Theorem 6.12 there exists a measurable function uj('): M~--*~4 ~, 
II u~(')ll e L2 (M j, d #), satisfying 

~'(2)(UjT -1  g)(2) = (M r UjT -~ g)(2) = (uj(2), g)  for g~J~f, #-a.e. 2~Mj. 

Setting wj(2):=7(2)-luj(2) we get 

(UjT-lg)(2)=(w~(2),g)  for g ~  and #-a.e. 2~Mj. 

Then q~j(2).'= 7"w~(2)e ~ _  (T) are the desired functions: For  f e  ~ +  (T) and/t-a.e. 
2 e M i we conclude 

(Uff) (2)= (Uj T -  1)(Tf)(2)= <w~(2), Tf> = (7"w j(2), f } = (q~j(2), f> .  

The function q~j: M j ~ f _ ( T )  is measurable since uj: M ~ J / g  is measurable, 
1/7 is continuous and T: ,r ~ J/g_ (T) is bounded. 

b) From part a) it follows for f e d  and #-a.e. 2eMj  

(~oj(2), H f }  = (Two(2), H f }  = (w j(2), T H f }  = (UjT-1) (ZHf) (J~) 

= (Uj H f )  (2) = 2 (Uff) (2) = 2(~oj(2), f >. 

c) First we show that 

wj(')EL2,1o~(Mj, dkt; ~ )  and ~oj(')~L2,1o~(Mj, d#; 3((_(T)): 

We know already that wj(-) and q~j(-) are measurable. From 1/TeL~.loc(N) 
and I[uj(')[] ~L2(Mj, d#) it follows that ][wj(')ll =l?( ')[  -1 Iluj(')[I 
~Lz,lo~(Mj, dlO, j =  1, ..., N. The statement for ~oj(.) now follows from 

II~j(~ = [I Twj(~ ~ liYl[ [Iwj(~ 
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Now let v e 2 +  (T), g = (gj)e @L2 (Ma, d#) with gj = 0 for j >Jo and g j(2)= 0 for 
J 

IAI>R, j=  1, .-.,J0. We have 

Jo Jo 
( U - l g ,  v>=(g ,  Uv>= ~ ~ gj(2)(Ujv)(2)d#(2)= ~, ~ gj(2)<q)j(2), v>d#(2) 

j = l  Mj j = l  Mj 

= 2 ~ gj(2)(wj(2),Tv>d#(2)= ~ gj(2)w2(2)d#(2),Tv 
j= 1 Mj j Mj 

(where we have used that g j(.)w j(.) is Bochner-integrable) 

Since Yf+ (T) is dense in Yg this implies 

Jo 
U - l g =  E f gj(~)q)j(~)d#(~), 

j=l Mj 

and the integrals on the right hand side represent elements of Jig. Part c) of 
the theorem follows by a limiting argument. [] 

With an additional assumption, we get more information about the generalized 
eigenfunctions: 

Theorem 2. In addition to the assumptions of Theorem I, let S be an injective 
operator in ~ such that S-1~ B (2/f) and 7 (H) T-1S  is the restriction of a Hilbert- 
Schmidt operator to D(S). Then the generalized eigenfunctions qoj(2) lie in the 
range of ~F(S- 1).. 

Proof Using the argument in the proof of Theorem 1, we get the existence 
of functions ~j ('): Mj ~ g/f with II ~j (')ll ~ L2 (Mi, d #) and 

7(2)(UJ -aSg)(2)= (Oj(2), g> for geD(S). 

With ~j(~) :~(~)-  l~j(~) and q)j(') from Theorem 1 we have for f e  g/f+ (T) 

((p j(2), f ) = (Uj f )  (2) = (UjT-1S)(S-1 Tf)(2) = (#j(2), S - 1 T f )  

= ((S- 1), #~(2), Tf) = (T(S-  1), #j(2) , f) ,  

i.e. ~oj(2) = T(S- 1)* wj(/~). [] 

4. Applications to Schr/idinger Operators 

We define k~: p m ~ ] R  by kz(x).'=(1 + [x[2) z/2 for zeCE and 

L2,s(N '~)..={f: N. m ~ C with ksfeL2(]Rm)} for s~P~. 



Expansions in Generalized Eigenfunctions 405 

In our applications, T will be the multiplication by k~(s>0). With ovt~ = L 2 ( N  ") 
this yields ~4~+ (T) = L2,~ (IR ~) and ovf_ (T)= L2, -s ORm). In this case the generalized 
scalar product for f~L2, _soR m) and uELz,~OR') (see Lemma 1) is of the form 
( f  u )= ~f(x)u(x)dx. By Bz (L2 ORm)) we denote the set of Hilbert-Schmidt oper- 
ators in L 2 OR"). 

The following lemma verifies the assumptions of Theorem 1. 

Lemma 3. Let m <  3, V: Nm__.IR A-bounded with relative bound less than 1, 
H..= - A + V in L 2 ORm) and s > m/2. Then (H-- z)- 1 k_~ e B2 (L2 (~m)) for every 
z~p(H). 

Proof We have 

(--A + 1) -1 k_,eBz(L2ORm)): (17) 

For m < 3, g (x) = (Ix} 2 + 1)- 1 E L 2 OR m) and therefore the convolution theorem for 
Lz-functions yields 

((-- A + 1)-1 k_sf)(x) = F-  l (gF(k_sf))(x) = (h * (k_,f))(x) 

= I h ( x - y )  k_,(y) f(y) dy, 

where h=F-~geL2(lR~); thus ( - - A + l ) - l k _ ~  has the integral kernel t(x,y) 
=h(x-y)k_~(y).  Since t(-,-) lies in L20R"~ xIR m, dxxdy) ,  ( - - A + l ) - l k _ ~  is a 
Hilbert-Schmidt operator. Now the lemma follows from the second resolvent 
identity: 

(H--z)-~k_~=(--A + 1 ) - ~ k _ ~ - ( H - z ) - l ( V - - z +  1)(-A + 1)- a k_, .  

The first term on the right hand side is Hilbert-Schmidt by (17), the second 
is a product of a bounded operator and a Hilbert-Schmidt operator. [] 

By kz(p) we denote the Fourier transform of the multiplication by kz('), i.e. 
kz(p),=F-1 kzF; we will use Theorem 2 with S = k~ (p) to prove regularity proper- 
ties of the generalized eigenfunctions. 

Lemma 4. Let V and H be as in Lemma 3 and pep(H);  then kl (p)(H--#)- l kl (p) 
is bounded. 

Proof Let f, ge Cg OR'); for 0 < Re z < 1 we use the abbreviation 

Fy, g(z) ~= ( f kzz(p)(H- p)- I kz_ z,(P) g) = @2e(P) f (H-- #)- a k2_ z~(P) g). 

Fy, g is analytic in {z: 0 < R e z <  1} and continuous on the closure of this strip, 
since the maps z~--~kz~(p)fand z~--~k2_ 2~(P)g have these properties. Using 

k2(p)(H--#) -~ = ( -  A + 1)(H-- #) -1 = ( H +  1)(H--,u) -1 -- V(H--#) -~ 
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and taking adjoints we see that  k2(p)(H--#)-1 and ( H - - # ) - 1  k2(p) are bounded.  
We have 

[Fi,g(z)[ <= [[ f [I [[(H-#)-lk2(p)[I [[gH =C] [ f l [  [Ig[[ for  R e z = 0 ,  

and 

]Ff,g(z)[<=[[f[[ Hk2(p)(H-#)-l]] [[g[[=C[[fH I[g[[ for R e z = l .  

N o w  Hadamard ' s  Three -L ine -Theorem ([RS II], appendix  to IX.4) yields for 
0=<Rez__<l 

[f~,g(z)l < Ilfll Ilgl] II(g-#)-lk2(P)lll-R~ IlR~ Ilgll. 

The  boundedness  of  k2z (p)(H-#)-1 k2-  2z (P) follows from 

Hk2z(p)(H-#)-lk2-2z(P)ll =sup{lFf, g(z)[: f g e C ~  (Rm), I lf l l  = Ilg[I = 1} < c ;  

taking z = 1/2 yields the lemma. [ ]  

N o w  we are in the posi t ion to verify the assumptions  of Theorem 2 for the 
Schr6dinger  opera to r  of L e m m a  3. 

L e m m a  5. Under the assumptions of Lemma 3, let zep(H) and s>m/2; then we 
have 

(H - z) - 2 k_s  k l (p) e B2 (L2 0Rm)). 

Proof Restr icted to C~ ~ (]Rm), the following equali ty holds:  

(H - z)-  2 k_s k a (P) = (H- -  z)-  t k_~ (H - z)-  i k 1 (P) 

- ~ - ( H - - Z )  - 1  [ ( H - - z )  - 1 ,  k_s3 k l ( p ) .  

The first term on the right hand  side is (the restrict ion of) a Hi lber t -Schmidt  
operator .  Next  we calculate the c o m m u t a t o r  in the second term and get 

[ - (H - -  z)  - 1, k _  s] = ( H  - -  z)  - 1 I-A, k _ s]  ( H  - z )  - 1  

= (H- -  z ) - i  {(A k_ 3 + 2 ( (grad k_ s), g r ad )  } (H- -  z ) - I  

Thus  it suffices to show that  

(H - z) - z (A k_ ~) (H - z) -1 k l (p) + 2 (H -- z)-  2 ( (grad k _ s), g r ad )  (H - z) -1 k l (p) (18) 

is a Hi lber t -Schmidt  operator .  Fol lowing the a rgument  in the p roof  of L e m m a  3 
and using I A k-s] < c k_~_ 2, we see that  the first term in (18) is Hilbert-Schmidt .  
For  the second term we examine (H--z)-l (O~k_s)~j(H--z)-1 kl (p) (j= 1, ..., m). 
These opera tors  are in Bz(Lz(~m)) since by [Ojk_s[<ek_~ this is t rue for 
( H -  z)-  1 (0j k_ ~) and ~ (H- -  z) -  1 k l (p) = aj k_ 1 (P) kl (P)(H - z)-  1 k l (p) is bounded  
by L e m m a 4 .  [ ]  

N o w  we can formulate  the following theorem on the expansion in generalized 
eigenfunctions of Schr6dinger  operators :  
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Theorem 3. Let m < 3, V: N.m ~ • uniformly locally in L 2 0Rm), and H , = -  A + V 
in L2(N'~); let # be a spectral measure of H, U a #-spectral representation of 
H, and s > m/2. Then there exist v-measurable functions ~o j: M j 
--* L2,-~(IRm) c~ W2, 1,1ok(]Rm), with: 

a) (Ujf)(2)=l.i.m. f q)j(2, x)f(x)dx,  feL2(Nm). 
R ~  [xl__<R 

b) 9 /2 , ' )  is a weak solution ofH~o =2~o (for #-a.e. 2eMj). 
c) For feL2  (N J") we have 

f ( x ) =  1.i.m. ~ S (U~f)(2)q~j(2, x)d#(2). 
n--+N,E--*~ j = l  {[2[<E}raMj 

d) For #-measurable sets I c ] R  and for f~L2(IR m) we have 

N 

( f ,  z , (H) f )  = ~ ~ IU~f(2)lZd#(2) �9 
j = l  Mjc~l 

Proof V is A-bounded with relative bound zero ([RSIV], Theorem XIII.96) 
so that the Lemmas 3, 4 and 5 are applicable. Using Lemma 5 we see that 
the assumptions of Theorem 2 are fulfilled with 7(4)= (2-z)  -2 for a zEp(H) 
and S=k~(p). Therefore Theorem1 is applicable with functions q~j(2,')e 
ksW2,1OR'n)cL2, _,ORm)n W2,1,1ok(~m). a) and c) follow immediately. Part b) 
follows from Theorem 1.b) since we can check easily C~ OR')~ & Part d) follows 
from 

( f  zx(H)f)  = Ilz,(H)fll 2= IIUz~(H)f[I 2= I]Mz~ Ufl[ 2. [] 

Remarks. (i) All statements of Theorem 3 except q~j(2,')GW2,1,1ok(l~ m) are al- 
ready consequences of Theorem 1 and Lemma 3. 

(ii) Theorem 3 is the mathematical version of the fundamental assertion 
in quantum mechanics which was formulated in Sect. 1.1.a), when the observable 
is chosen to be the energy: Part c) corresponds to Eq. (1), part b) expresses 
the fact that the functions 9j(2,') are generalized eigenfunctions, and part a) 
corresponds to the Eq. (2) and (3). Part d) is just the statement about the proba- 
bility densities: For a system in the state f the probability to measure an energy 
value in I is given by ( f  z i (H)f ) ,  i.e. the function ~j[ZM Uif[ 2 is the probability 
density with respect to #. 

In the case of a typical one-body potential V we have crd(H)={2~:jeN } 
with 2 j<0 and 2~--*0 for j -ooo,  o-a~(H)=[0, 09) and a~c(H)=r so that we can 
choose 

d # =  ~ 3z~+Zto, oo)d2 
j = l  

as a spectral measure. In this case the expansion in c) has the same form as 
the corresponding one in Eq. (1), except for the additional sum in front of the 
integral. 



408 T. Poerschke, G. Stolz, J. Weidmann 

References 

[B] 

[HP] 

[J] 
[RS I1] 

[RS IV] 

IS] 
[-Sch] 

[St] 

[Wl] 

paz 2] 

Berezanskii, J.M.: Expansions in eigenfunctions of selfadjoint operators. Transl. Math. 
Monogr., vol. 17. Providence: American Mathematical Society 1968 
Hille, E., Phillips, R.S.: Functional analysis and semigroups. Providence: American Mathe- 
matical Society Colloquium Publications, vol. 31, 1957 
Jelitto, R.J.: Theoretische Physik 4: Quantenmechanik 1. Wiesbaden: Aula-Verlag 1984 
Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self- 
adjointness. New York: Academic Press 1974 
Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. 
New York:Academic Press 1978 
Simon, B.: Schr6dinger semigroups. Bull. Am. Math. Soc., New Ser. 7, 44%526 (1982) 
Schiff, L.I.: Quantum mechanics, international student edition. New York: McGraw-Hill 
1968 
Stolz, G.: Entwicklung nach verallgemeinerten Eigenfunktionen yon Schr6dingeroperatoren 
(Thesis), in preparation 
Weidmann, J.: Linear operators on Hilbert Spaces. (Graduate Texts Math., vol. 68) Berlin 
Heidelberg New York: Springer 1980 
Weidmann, J.: Spectral theory of ordinary differential operators. (Lect. Notes Math., 
vol. 1258). Berlin Heidelberg New York: Springer 1987 

Received December 20, 1988 


