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1. Introduction

Let M"~! be an (n—1)-dimensional compact connected Riemannian manifold
without boundary and 4 its Laplacian acting on smooth functions on M. 4
has a discrete spectrum {0=A,(M)<A, (M)<2,(M)=...S4(M), ..., 1o}, Let
f be a minimal immersion of M"~! into the N-dimensional unit sphere S¥(1)
of the Euclidean space with the canonical coordinate system (x!, x2, ..., x*1).
Then the first eigenvalue 1,(M) is not greater than the dimension n—1 of M
by Takahashi’s theorem (see [20]) that f is minimal in S¥(1) if and only if
N +1 functions x'of satisfy 4(x'of)= —(n—1)(x'of).

In this connection, Ogiue [15] (see also Yau [21]) posed the following prob-
lem:

Problem (A). What kind of embedded closed minimal hypersurfaces of S"(1)
have (n— 1) as their first eigenvalue?

Hsiang [7] constructed infinitely many embedded minimal hypersurfaces
in $"(1) which are difffomorphic to $"~!(1). Choi and Wang [5] showed that
the first eigenvalue of every embedded closed minimal hypersurface in S*(1)
is not smaller than (n—1)/2.

In this paper, we consider a restricted problem (Problem (B)) of Problem
(A) for closed minimal isoparametric hypersurfaces M" ! in §"(1), that is, M1
has constant principal curvatures in S"(1).

Problem (B). Is is true that the first eigenvalue of every closed minimal isopara-
metric hypersuface in S*(1) is just (n—1)?

For an isoparametric hypersuface M"~! in $§"(1), Miinzner [10], [11]
obtained beautiful results (see section 2). Let v be the unit normal vector field
along M in S"(1). Let g be the number of distinct principal curvatures and
cot0,(x=0,...,g—1:0<0,<0;<...<0,_, <m) the principal curvatures with
respect to v. Let m, be the multiplicity of cot 8,(x=0, ..., g—1). Miinzner showed,

for example, that (1) m,=m,, ,(indices mod g)(2) 6,=0, +oﬂ, (x=0,...,g—1)
g
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(3) ge{1, 2, 3, 4, 6} and gave an extrinsically global structure of M"~! in §"(1).
In this paper, “a homogeneous submanifold M in $"(1)” means an orbit of
some closed subgroup of O(n+1). Then every homogeneous hypersurface in
§*(1) is isoparametric. For Problem (B), Muto, Ohnita and Urakawa {14] and
Kotani [9] answered affirmatively when M is a homogeneous minimal hypersur-
face (g=1, 2, 3, 6) in S"(1) using the representation theory of groups and the
classification of homogeneous hypersurfaces in $*(1) (see [8], [19]).

It is known (see [ 2]) that if g<3, then M is homogeneous and, in particular,
that when g=1, M =S5"(1) and when g=2, M is a generalized Clifford torus
S*()/ p/in—1))x S4(}/ q/(n—1))(p+g=n—1). But for g=4, Ozeki and Takeuchi
[17] found two families of nonhomogeneous minimal isoparametric hypersur-
faces ((mqy, mq)=(3, 4k), (7, 8k)(k=1)). And Ferus, Karcher and Miinzner [6]
found infinite families of such hypersurfaces.

Our purpose is to show that Problem (B) is true for some families of isopara-
metric, nonhomogeneous hypersurfaces with g=4. We give a relation between
J(M"~ %) and /,(S™) (Theorem A) and obtain our main result (Theorem B) as
a corollary of Theorem A.

Theorem A. Let M be a closed isoparametric hypersurface satisfying g=2 and
min (mgy, m)=2. Then for any k=0,1,2, ...,

MM N2 Ggimg,my, 00) 24 (S"(1).
Here l=g/2 and

Gy (my, my)

G . N ,6 = >
(&m0, 1 o) = G s iy, B)+ G (g Moy 11, Ba)

n

2

G, (mg, m;)= | sin™ x cos™ x dx,
0]

lB(m0+1 m1+1)

2 2 72
186 oi-Mo
. sin™o x
G,(g:mg,my,0,)=sin?0, | cos™ x dx,
-2 X
0 sin?=
[
T
316
2 0 :.m
. T smTtx
G;(g:mg, my, 0p)=sin? (E_00> § . cos™ x dx.
0 Sin27

Moreover, when M is minimal, then 10, =arc cot |/ mg/m,.

Condition (C). A closed minimal isoparametric hypersurface M in S"(1) satisfies
one of the following conditions for some integer k= 1:

1) g=1
2 g=2
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B) g=3:
(mo, my)=(4,4),(8,8).
@) g=4:
(Mo, m)=(3,4),(3,8), ...,(3,4k), ...
@,5)
@,7),4,11), ..., (4, 4k+3), ...
(5,9), (5, 10), (5, 18), (5, 26), (5, 34)
(6,9),(6,17), (6, 25), (6, 33)
(7,8),(7,16), ..., (7,8k), ...
(8,15), (8, 23), (8, 31), (8, 39)
(9,22), 9, 38)
(10, 21), (10, 53)

Theorem B. Let M be a closed isoparametric minimal hypersurface in S*(1) satisfy-
ing Condition (C ). Then
M H=n—1.

By the classification of homogeneous hypersurfaces (see [8], [19]), the pairs
(mgy, m;) of minimal homogeneous hypersurfaces are (1, 1), (2,2), (4,4), (8,8)
when g=3, (1,k), (2,2k—1), (4,4k—1), (2,2), (4. 5), (6,9) when g=4, (1,1), (2,2)
when g=06. Therefore hypersurfaces satisfying Condition (C) in some families
are not homogeneous.

We summarize our results. We review Miinzner’s results [10], [11] in section
two. He showed that every closed isoparametric hypersurface M in a unit sphere
§"(1) has two smooth closed focal embedded submanifolds M, and M _ whose
codimensions in the sphere are greater than one and M is a normal sphere
bundle over M, and M _. Hence M is embedded. In section three, we compare
the volume elements of M"~! and S"(1) and, as a corollary of this estimate,
we give an estimate of Cheeger’s isoperimetric constant C(M) of M from below,
where
vol(d D)

vol(D)
is a domain of M with the smoth boundary 6 D, vol(D) =% vol(M )}.

C(M)= inf{

For compact manifold D with boundary 0D, C(D) is defined as follows.

. fvol@D)|
C(D)—lnf{——«vol(D,) D

is a domain of D with the smooth boundary ¢ D', 6D’ néD= d)}.

In section four, we extend the k-th eigenfunction on M to a suitable function
satisfying the Dirichlet boundary condition on a domain in S"(1) obtained by
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excluding e-neighborhoods of M, and M_ from S$*(1). Using these extended
functions, we give a relation between A, (M"!) and the (k-+1)-th eigenvalue
A+ (e) of the Laplacian on the domain under the Dirichlet boundary condition
(k=0, 1, 2,...). By the results of Chavel and Feldman [4] and Ozawa [16],
lirré A+ 1(8)=2,(8"(1)). This is the outline of the proof of Theorem A. In section

five, for any isoparametric hypersurface M in $*(1) satisfying the condition (C),
we show that A, , ,(M"*)>n~1=dim M using Theorem A. Since every minimal
hypersurface fully immersed in $"(1) which is not isometric to S®~ (1) has
its dimension as eigenvalues with multiplicity = (n+ 1), the first eigenvalue of
M"™* must be its dimension (n— 1) with multiplicity (n+ 1).

2. An Isoparametric Hypersurface in a Unit Sphere

In this section, since Miizner’s extrinsically global structure theorem for an
isoparametric hypersurface in S"(1) is one of our main tools, we recall his results
[10, 11].

Let f: M"~' - S"(1)(=R"*!) be an isoparametric hypersurface of §*(1) and
E*{a=0, ..., g—1) be the eigenspace of the shape operator with eigenvalues
cot6,(0<0,<...<0,_, <m). We define f,: M — §"(1)(—n <6 <n) by the follow-
ing: for any peM,

Jfo(p)=exp;, 0v, //cos O f(p)+sin Ov.

Here x//y means that x and y are parallel as vectors in R** 1,

Theorem 1. (Miinzner [10], [11]) Let M be a closed isoparametric hypersurface
in §8*(1). Then (1)—(5) hold:

(1) 0a=90—|—%(oc=0,1,...,g——1),

2) m,=m,,,(indices mod g),

(3) ge{1,2,3,4,6},

(4) Set M, =fo (M)(resp. M _=f_, .  (M)=f =10, (M)). Then M, (resp. M _)
is a smooth embedded closed submanifold of dlmenswn (n—my— 1)(resp (n—my— 1))

Moreover,set M. = ) fo(M)(resp. M _ (  fo(M)). Then M , (resp. M .)
9€[0.,80) Beldo— 7,01

is a normal disk bundle over M, (resp. M_) induced by f, and M, and M_
satisfy M, UM _=S8"(1)and M, nM_=M.

(5) fo(M) (96(—§+60, 00>) is an isoparametric hypersurface which is diffeo-

morphic to M.

(6) 2g=dimy H*(M: R), where R=Z in a case that M . and M _ are orientable
and R=127, in the other case.
We prepare some formula (see Miinzner [10]).
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(2.1) For XecE*,

_sin(0,—0) o
fo X = sin(6,) X

Here X//X.

(2.2) Sett(p)=dist(p, M ) for any peS"(1). If pefy(M) (96[—2-{- 0o, HOD. Then
t(p)=10,—0. g

(2.3) Let h be the mean curvature of M"~! in §"(1) with respect to v. Then

g—1
(m—1)h=73 m, cot(z+ﬂ),

a=0 g
mg g cot(gt), (g:odd or my=my),
=)Mo gt mg gt
— cot = — = : '
5 cot= > tan > (g:even or mgy+my)

3. An Estimate of Volume Elements and Cheeger’s Constant

In this section, we compare volume elements of M" ™! and S"(1) and give an
estimate of Cheeger’s isoperimetric constant from below.

Let M"~! be a closed isoparametric hypersurface in $*(1) and D be a domain
in M with a smooth boundary H. We use the same notations as in section
two. Set Dy =fy(D), Hy=/f,(H) and

D, = U Dy, D_= U Dy,
0€[0,60] e[~ 7 +6o,0]
H,= U Dy, H = U Hy,
9<[0,80] fel~F+8,0]

b=b,ub., H=H,uH_.

Then, by the construction of D and H, we easily have the following Lemma
1.

Lemma 1. We have
6D=H, H,nHA_=H, and D,nD_=D.

Lemma 2. When g 22, we have

n

2
2 vol(D) | sin™x cos™ x dx.

1.(D)=
vol.(D) g sin™ [6, cos™ 18,

Here l=g/2.

Proof. Let {X,;li=1,...,m,;a=0,...,g—1, X, ;€E*} be a local orthonormal
frame field on D and {w,;|li=1, ..., m,;:0=0, ..., g—1} be its dual frame field
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on D. For 6,¢ (—E—F 8o, 00>, g, denotes the Riemannian metric of f3(D) induced
g

from S"(1). Then, by (2.1), we have:

8! sin,(0,—6) 2=

fo* go= Z Z W, QW ;-

)
amo SO, T

Let dDy (resp. dD) be the volume element of D, (resp. D). We first assume

here that g is even. Then we have the following equation (3.1) using the above
T-1

representation of f;*g, and the formula, [] sin <x+a—;)=21_T sin Tx for any

xeR and any positive integer T: a=0

(3.1 f¥dDy=F(0)dD,
Here

F(0)= I__I sin™=(0,— &)

a=0
__sin™ [{f,—0) cos™ [(6,—0)
h sin™ [0, cos™ 16, '

3

sin™= 0,

When g is odd (=2), m, must be equal to m; by Theorem 1 (2) and (3.1)
is valid. Therefore we have the required result:

vol(D)= f vol(D,) d8,

=
£ T 0o

—vol(D) ? F(6)do,

—;—t+90

_ 2 vol(D)
g sin™ [0, cos™ 16,

2
T
| sin™x cos™ x dx.
0

Remark 1. Lemma 2 implies that vol(D)/vol(M)=vol(D)/vol(S*(1)). Therefore,
by this fact and the following Lemma 3, we can estimate Cheeger’s isoperimetric
constant of M from below in terms of such a constant of $*(1) (see Theorem
2 and (3.3)).

Remark 2. We also show that every isoparametric hypersurface M in a unit
sphere §"(1) is tight, that is, every non degenerate function &,(x)=(f(x), p)(xe M,
peS"(1)) has the minimum number of critical points required by the Morse
inequalities where ( , ) denotes the canonical Euclidean inner product. This
is verified by calculating the absolute total curvature and Theorem 1 (6). This
fact was first proved by Cecil and Ryan [3] through the other method.
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Lemma 3. Set [=g/2. Then we have:

vol(H)
sin™ 8, cos™ 16,

vol(H) <

16,
X <sin 0y § sin™'x cos™ xdx
0

7 10,
+sin{——60,) [ sin™ 'xcos™xdx]).
20 ;

Proof. Let N be the inward unit normal vector field of H=0D in M. ||-|| denotes
the length of a vector in S"(1). Set Ny=f3 N/| fo« NI| and Z,=N/| fo» N|. Then
by the definition of H, and (2.1) we have that N, is an inward unit normal
vector field of Hy=0D, in M,. Let d H, be the volume element of H,. Then
we have:

Jo* dHo=f§*(in, d Dy)
=f¢ (ife*z,9 dDy)
=ize(fe* dDy)
—F(0)iy,dD
_ F(0)
SN

Let N=> a,;x,; Y aZ;=1 Then
a1 a, i

2 sin?(0,—0) ,

”fo*N”2:§ sm2p, %
= p(0).
Here
(3.2) @(0)=min{|sin(8,—0)/sin 0,|: «=0, ..., g—1},
sin(f,— 0)/sin 6, (0=0),

| sin (g 0+ 0)/sin (g - 90), 0<0).

Therefore we have:

" vol(H)
I(H g——————
voliH)= sin™ @, cos™ 6,

. % sin™o [ x cos™ Ix
X |sinf, | —————dx
5 sin x

+sin (l— 8

2% sin™ Ix cos™ [ x )
—_dx].
21

o sin x
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And we have required inequality using an inequality: [ sin x=sin/x for any
xe [O, i]

21

Theorem 2. Let M"~ ! be a closed isoparametric hypersurface in S"(1) with g=2.
Then we have:

C(M"‘l)zglill,
m 1, 1
|/ My my

>2

~3n

Proof. We set [=g/2 and for any positive integer s, f,

2
I(s,t)= | sin*x cos'x dx,
0

J(s)=1I(s, 0).

1 1
Namely, 21(s, t)=B(i, i) By 0<l0,<mn/2, Lemma 2, Lemma 3 and
L2 2
Remark 1, we have:
vol(H)

()<
vol( )'“sin'”" 10, cos™ 18,

x (sin 8 I(mo—1,m,)+sin (%—90) I(m;—1, mo)),

~ vol(D)
- I .
vol(D) = me 16, cosmi 1a, | o> ™)

vol(D) vol(D)
vol(M) vol(S"(1))’

Therefore, by the definition of Cheeger’s isoperimetric constant, we obtain:

63 CcrhzCE )T

% I(mg, m,y)

>

sin 0y I(mg—1,m,)+sin (2%—90> I{m;—1,my)

N C(S"(1)) I(my, m,)

I sin 2~ I(mo—1,my)+1(m;—1,mg)
21
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We notice here that any integers s, ¢, s= 1,20, I{(s—1, t)/I(s, ) =J (s —1)/J (s +1)
and that by the classical result,

_2vol(S"i(y) 1

cem ) vol(S*(1) ~ J(n—1)

Therefore we have:

C(8"(1) S (mo+m,)

CM" Yz ,
( )z Isin ™ J(mo—1)+J(my—1)
21
1 J(metmy) 1
[sin® JO=1) J(mo—1)+J(m;—1)
21
2T, T
T
+
l/me |/ my
> 2

Here we use the facts that (1) J(k) is monotonely decreasing in k, (2) J(k)
T T
=< (k=0) and (3) I sin —=<3/2.
2)/k+1 21
When M is, moreover, minimal, we have the following theorem by the same
method of the proof of Theorem 2.

Theorem 3. Let M"~! be a closed isoparametric minimal hypersurface in S*(1).
Then we have:

2
cM 2= Cs )z —o
gn gl/3n?
= n.
3 3n21[
Moreover,
A M)z 1 C(S"(1)*= 16
1( )=7[2g2 ( ( )) =37'E3g2 n,
4
>
=277r4n'

Proof. Since M is minimal, (2.3) implies that

18, =arc cot |/ m,/my,
sin 190=]/n70/|/m0+m1, cos 190=Vn71/|/m0+m1.
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From (3.3), we have:

C(8"(L) J (mo +m)

CM* Y= .
( )2 I sin 10 J(mg—1)+cos 16, J(m,; —1)

Since we easily have that (1) J(k)< r (k=0), (2) J(k) §ﬁ (k=2)
2)/k+1 4)/k+1

and (3) J (k)>— (k=1), we obtain the required result:

C(S"(l))
In
2 1
T enJn—1)

> 8
V3n%

In general, it is well-known that the first eigenvalue is estimated from below
in terms of the Cheeger’s constant, A, =1 C? (see [1]). Theorem 3 is completely
proved.

Next we give a stability condition for a domain of a closed isoparametric
minimal hypersurface in $*(1) as a corollary of Theorem 3.

Let D be a compact minimal hypersurface with boundary D in $*(1) and
v be a unit normal vector field along D. For any smooth function ¢ on D
satisfying ¢,, =0, ¢,(—&e<t<e¢) denotes a variation induced from @v. Then
D is minimal if and only if that for any ¢ satisfying ¢, =0,

C(Mn 1)

n.

d
= vol(@,(D)y~o=0.

D is said to be stable if and only if for any ¢ satisfying ¢, ,=0,
2

d
<72 Vol (D)= = | L(p) ¢ 4D,

)%

0.
Here L is a Jacobi operator of D,
Lig)=—~4¢—m—1+|B|% ¢,

and | B|? is the square length of the second fundamental form B of D in §*(1)
(see [18]).

Lemma 4. Let M be a closed isoparametric hypersurface in s"{(1). Let h be the
mean curvature of M with respect to v and set c=(m, —mg) g2/2. Then



Laplacian of an Isoparametric Minimal Hypersurface in a Unit Sphere

-1e—0 =P o odd orme=m)),
My
3
(- 1)1+,
gmyg m1

1B]?=

(=D h =1 B tmom, g7,
g momy

(g:even or mgEmy).
Moreover when M is minimal, we have

IBl?=(n—1)(g—1).
Proof. Set I=g/2. By Theorem 1, we have:

g—1
IB|2=Y m, cot2<t+5n),
g

a=0

-1 o
=y Z cot? (t+ln)

=0

g o
+m, Z cot? (<t+21>+7n).

&=

We first assume that g is even. Set 4=(n— 1)h, then we have

. 2 4 2
tan It — A+|/A +4mom, |

2my 1 ’
2 2
cotlt=A+l/A +4mgm, | .
2mg |
Therefore using a formula

T—-1 o
Y cot? (y+—7; n)z T? cot®> Ty+ T(T-1),
a=0

for any yelR and a positive integer T, we have:

B2 = (mg +m,) I(I— 1)+ 2 (mg cot? It +m, tan?Iz)

(= 1)(g— D+ 22 42

(i} 1
+ DT 4 A S dmg m, P,
2mgm,
—1)3
—(r—D)ig— 1)+ 2
gmgy nly

ty (= ) A = 1) B mg my g2
g mgmy

541
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When g is odd, m, must be equal to m,; by Theorem 1 (2). This lemma is
proved.

Theorem 4. Let M"~ ! be a closed isoparametric minimal hypersurface in S"(1)(n
=3) and D be a compact domain of M. If V01(D)<a vol(M), then D is stable.

znl

Here a,

1
7'52" l[ (n_ 1)n/2 g3n/2
Proof. By the above lemma, Jacobi operator L is represented by

Lig)=—4¢9—(n—1)go.

Hence D is stable if and only if that the first eigenvalue 12(D) of the Laplacian
on D under the Dirichlet boundary condition is not smaller than (n—1)g. By
our assumption and Remark 1 of Lemma 2, we see that vol(D)/vol(S"(1))
=vol(D)/vol(M)=a<a,<1/2. Let D* be a geodesic ball of radius r, in S"(1)
having the same volume as D. Then the classical result implies that C (D)= C(D*).
Since an estimate of Cheeger’s 1soparametrlc constant in Theorem 3 is valid

n—1
for D and D, we have that C(D)>— C(D*). We define r, by rl—n(n)
2a J(n—1). Since 2

Yo
rosin® ro> [ sin”"'dx,
0

<2)n—11 .,
> —To,
T n

CDn) =,

we see that r; >r, and that

1/n
2"
T\2)/na

The last inequality follows from the inequality J(n—1)= T
we obtain that 2)/n

(n=1). Therefore

Rz} C(DY,

> 4 ( 1 )Z/n
—gint\y na, ’

n—1g.
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Remark. Let M be a closed isoparametric minimal hypersurface in S"(1). Then
we have by Lemma 2 that

vol(M"~1)= VOI(S”(I))[ mp° my ]”2
_21(m05m1) (mg+myyrot™ &

4. An Estimate of Eigenvalues

In this section, we prove Theorem A. In order to estimate eigenvalues of M,
we prepare some theorem.

Theorem 4. (Chavel and Feldman [4], Ozawa [16]) Let V be a closed, connected
smooth Riemannian manifold and W a closed submanifold of V. For any sufficiently
small £>0, set w(g)={xeV: dist(x, W)<¢}. Let A2(e)(k=1, 2,...) be the k-th
eigenvalue of the Laplacian on V— W(g) under the Dirichlet boundary condition.
If dim V=dim W+2, then for any k=1,2, ...,

lim 72(0)= A (V).

Remark 1. The condition for the codimension of Win V is essential. This is
easily seen when V=5"(1) and W=S""1(1)c V.

Remark 2. Ozawa proved the above theorem and, moreover, he studied the
behavior of 42(c) when §—0.
Remark 3. We need the fact that A2(g)= 4, _,(S*(1)) for k=1 and this is proved
by the mini-max principle.

We denote the spectrum of $"(1) by another notation, that is, {(z, )]0
=fo<py <...<pg<..,7o0: is an eigenvalue, n, is the multiplicity of p}.
Then it is well-known (see [1]) that for nonnegative integer k,

=k(n+k—1),
(4.1) ne=1, ny=n+l,
nk=n+kcn_n+k—zcn(k;2)'

Proof of Theorem A. For sufficiently small >0, set

M(e)= U Jo(M).

be[—F+8a+e,00—¢]

Then, by Miinzner’s theorem (Theorem 1), M(¢) is a domain of S”(1) obtained
by excluding ¢-neighborhood of M, and M _ from S"(1) and is diffeomorphic

to Mx[—z+90+s, 90——3] under f,{p). Since liné A2(ME) =, (S"(IN(k=1,
g e
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2, ...), we may estimate A7 (M (¢)) from above in terms of 4,_(M"™"). Let {X_ ;:
i=1,..,m, a=0,..., g—1, X,,ieE"} be a local orthonormal frame field on

M. Then {5%, sinf,/sin(0,—0) X,;: i=1,...,m,, «a=0,...,g—1, X, ,€E*

06[—£+90+s, 90~—s]} is a local orthonormal frame field on M(g) by the
g

diffeomorphisms f;. (2.1) implies that the volume element dM(s) of M(s) is

represented by the following:

sin™ [(0,—6) cos™ 1(8,—0)

4.2 dM(e)=
4.2 © sin™ [, cos™ 160,

dodM.

Let f,(k=0, 1, ...) be the k-th eigenfunctions on M which are orthogonal to
each other with respect to the square integral inner product on M. Let h be
a nonnegative, non-decreasing smooth function on [0, co]) satisfying 7=1 on
[2, o) and h=0 on [0, 1]. For sufficiently small #>0, let y, be a nonnegative

smooth function on [11, %— 11] such that (1) ¥, () =¥, (g — 11) =0(2) ¥, is symmet-

ric with respect to x=% and (3) l//,,(x)=h(£) on [n, ﬂ Let L, be the space
n

of functions spanned by {fq, f1, ..., fi} (k=0). For any ¢eL,, define a function
@, on M (g) by

P, (x, 0)=y,(1(8o—0)) ¢ (x).

Then @, is a smooth function on M (g) satisfying the Dirichlet boundary condi-
tion and @, is square integrable on M (). By (3.2), (4.2) and the condition min (m,,
m,) =2, we see that

F-le
[ ¥ie(x)? sin™x cos™x dx

le

¢ 2
ld sH22<l2
”QsHZ %—le .

x)? sin™x cos™ x d x
| (%)
le

1 idel3

B 5 lol3
[ ¥.(x)? sin™x cos™ x d x
le

16g f Mg
. sin™ x
><<s1n2 0y | ¥i(x)

le

+

cos™x dx

. . X
sin? =

l
Z-le

+sin? (2% — 00) { Yi(x)sin™x
160

2

sinlz—
1\2
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By the mini-max principle, we have:

2
32 (M) < sup 14
pely H QDS ”

By the condition min(mg, m,)=2, we sec that the first term in the right hand
side tends to 0 as ¢ = 0. Therefore, we see that

b sup 1421
im sup

0 ger,, | P, l?

G,(g:mg, my, 00)+G3(g:mg, my, 90)
G (mO’ ml)

S kM"Y

By combining the above two inequalities and Theorem 4, we have the required
inequality. Moreover, when M is minimal, /6, must be equal to arc tan |/my/m,
by (2.3).

We prove Theorem B in the next section, that is, under some condition
(Condition (C)), the first eigenvalue of a closed minimal isoparametric hypersur-
face in a unit sphere is equal to its dimension. We here estimate G(g: m,,
my, 6,) very roughly.

Corollary. Let M be a closed isoparametric hypersurface of S"(1) satisfying g=2
and min(mgy, m,)=2. Then we have:

1
(n— 1) g sin®(n/g)’

A (M) 2 2, (S"(1))

S*(1
2 78" (0) o
Moreover, when M is minimal, we have:
_ . 4 1
M"Y Z (5" 1) 5 ————,
g My my

>L s,
g

Proof. By the inequality [ sin x = sin I x for xe[ > l]

Gy(g:mo, my, 00)+G3(g:mg, my, o)
Gy (mg, my, 0,)

» T I(mg—2,my)+1(my, my—2)
21 I(mgy, m,) ’

<P’sin

— 2 gin? me+my mo+m;
21 my—1 my—1



546 H. Muto

Since I{my,+m,;)=n—1, we have that the first inequality of the above corollary.

We assume here that M is minimal. By (2.3), 18, =arc tan]/my/m, . Therefore
we see that

G,(g:mg, my,00)+ G5(g:mg, my, 0p)
G1(mg, m,)

, Sin? 10, I(my—2,my)+cos? 10y I(mgy, m; —2)

=<l
I(mOa ml)

<p( Mo, ™ )
- <m0_1+m1—1

Hence the above corollary is proved.

5. Proof of Theorem B

To prove Theorem B, we prepare some lemmas.

3 \1/2 3 \1/2
Set A=A(m)= (1 ——) and B==B(m)= (—3~) . Then we have an ele-
mentary lemma. m+3 m+

Lemma 5. (1) A(m)"™' is monotone decreasing in m and the limit as m tends
to oo is e 32,

m+1 m
( ) (”l) ( P

e 32 4,
m+3

A) >2
2m+3
©)
m+2
(4) A(m)™*? is monotone increasing in m and the limit as m tends to co is e~ 32,
Lemma 6. (1) (1+6/x**<e5*(x=1).

_gm+1 (1+m_+1 A)<2(1—Am+2).
m+2

Q) e*—1<8/x(x=11).

(3) e 2x)/x<(3+]/x(x+2)()/x+2+}/x)(x 2 11).

Proof of lemma 6. Since (1) and (2) are easily verified, we show (3). Set y(x)=(the
left hand side)* — (the right hand side)? in (3). Then we have (the right hand
side)®> >4 x>+ 34x%+ 76 x + 8. Therefore we have y(x)<4[(e®*—1) x>*—8x—19]
x—18. By (2), we have y<0.

For m=4, set

200=20,(m)=cot™ ' |/3/m,
20¢(m)

am= [ sin™ *xdx.
0
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Lemma 7. For m= 11, we have o(m+ 2) < o(m).

Proof. Set

20p(m+2)
Bm+2)= | sin"xdx.
260(m)

—1
Then we have a(m+2)= m

(x(m)—% Am)™~* B(m)+ B(m+2). We may show
that ﬂ(m+2)<;1l— A(m)y™=* B(m)+ B(m) for m=11.

Bim+2)<A(m+2)"(20p(m~+2)—20,(m))
<A(m+2)" tan(264(m+2)—20,(m))

_ 6 \m? 2)/m
= A(my"~' B(m)|(1 :
) (m)< +m(m+5)) B3 +]/mm+2)(/m+2+]/m)

By lemma 6 (1) and (3), B(m+2)<A(m)" ! B(m) % Therefore we have o(m+2)

m
<

a(m) <o (m).

Proof of Theorem B. When g=1 or 2, it is known (see [2]) that M" 1=S""1(1)
or S?(|/ p/(n—1)) x $4(]/ q/(n—1))(p + g=n— 1) and the first eigenvalue of M must
be equal to its dimension. When g=3 and (m,, m,)=(4, 4) or (8, 8), Kotani
(see [9)) first showed that 4,(M""!)=n—1. We also prove this fact by our
method. To prove Theorem B, since the multiplicity of every minimal submani-
fold fully immersed in S¥(1) which is not isometric to the unit sphere is not
smaller than N+1 (see [20]), we may assume mg=m; and show that
Jns2(M""Y)>n—1=dim M for each closed isoparametric minimal hypersurface
M"~1 of S*(1) which satisfies Condition (C). From Theorem A, we may show
that G(g: m,y, my, 8y) 4,.,(S"(1))>n—1 in each case of Condition (C). We
notice here that [(n—1)=my+m, by Theorem 1 (2).

Let M"~! be a closed isoparametric minimal hypersurface of $*(1) with g=4
and satisfies one of the following: (mgy, m;)=(4,3), (8,3), ..., 4k, 3), ..., (k=1).
We first show that G(4:m, 3, 8,)>0.5 for any m=46 and, by (4.1), that G(4:
m, 3, 8o) 4,.,(8"(1))>0.5%x2(n+1)>n—1 for m=46. And for the other cases
(g=4, m;=3), we can verify the inequality G(4: m, 3, 0y) A,+,(S"(1))>n—1
by using a computer. We assume here that m=46. Since M is minimal, (2.3)
implies that 26,=260,(m)=arccot]/3/m. Set #n=20,, A=A(m)=siny
=]/r71/|/m+3 and B=B(m)=cos11=]/§/ m+ 3. Then we have:

m 1

N
= m+3) 1+B

sin? (Z— 0, -3 1 .
4 2m+3) 1+ 4
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Therefore we see that

G,(4:m,3,0,)
_m L E(H—cos x) sin" 2 cos®x dx
“m+31+B; ’
2 1

(m+1)(m+3) 2(1+B)

m(Sm+3) ., 3m+1)2m+3) . 3m+1)

Similarly we see that

Ga(4:m, 3,0,)= 2 L 3 (2m+3—Am+1(1+m—+~1A)),

m+1)m+3) (1+4) 2\ m+3 m+2
and
GimI)——
ST m 1) (m+3)
By lemma 5, we have
G4:m,3,0,) "
31
L5A™ 1 +6A4" 1 B+3 s 2(1—AmTR,
<3 + + a(m))+21+A ( )

By lemmas 5 and 7, we sce that the right hand side of the above inequality
is decreasing for m, m+2, ..., and G(4:46, 3, 0,) "' <1.9983374 ... <2 and G(4:47,
3, 0) "1 <1.9933199... <2. Therefore we have the required inequality for m > 46.
For m =45, we can directly show by using a computer that the difference D(g: m,,
my)=G(g:mgy, my, 8g) 4,4 ,(8*"(1))—(n—1)(g=4, my=m, m,=3) is positive. We
use the double exponential formula (see [13]) and the language of the program
is FORTRAN. A subroutine program using the double exponential formula
is written in an appendix of a book [12]. This is a subroutine program to
integrate an analytic function on (—1, 1) or (0, c0) and has an absolute error
10716, But it is easy to make a partial revision of this program so that we
have relatively very small errors which depend on this program and our machine.
For example, G(4:4, 3, 06,)=04411526996992993, D(4:4, 3)=
0.1168863903775783 >0, G(4:45, 3, 60,)=0.555614098973507>0.5. By these
computations, we obtain the required inequality for m, = 3.

By the similar estimate, we have that G(4:m, 4, 0,)>0.5 for any m=34
and G(4:m, 7, 8,)>0.5 for any m=136 and by a computer, we have, for example,
G(4:4, 4, 0,)=0.4846093593926227, D(4: 4, 4)=0.1445936938134416, G(4:5, 4,
0,)=0.5110829726081493>0.5, G4:33, 4, 6,)=0.6146834883261047>0.5,
G(4:8, 7, 0,)=0.6258833686366021>0.5, and G@:35 7, 8,
=(.7061682378135796 > 0.5.

For the other cases, we directly compute G and D, for example, G(4:6,
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9, 0,)=0.6185633191383751, G(4:8, 15, 8,)=0.6856918246775244>0.5, G(4: 10,
53, 8,)=0.7590277619970185>0.5, G(3:4, 4, 0,)=0.495059684 ..., D(3:4, 4,
00)=1.86167115...,, G(3:8, 8, 0,)=0.648727497 ... >0.5. Therefore we complete
the proof of Theorem B.

Remark. We have the limits G(4:m) of lim G@&:my, my, 05)(m;=3, 4, 7)
as follows: G(4:3)=1/(1.5+e7%%)=0.5803392124, G(4:4)>3/(4+6e"*|/2/n)
=0.64545394898 and G(4:7)=0.7524581288.
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