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1. Introduction 

Let M"-1 be an (n-1)-dimensional compact connected Riemannian manifold 
without boundary and A its Laplacian acting on smooth functions on M. A 
has a discrete spectrum {O=2o(M)<21(M)<22(m)<...<2k(m) . . . .  , Toe}, Let 
f be a minimal immersion of M"-1 into the N-dimensional unit sphere SN(1) 
of the Euclidean space with the canonical coordinate system (x ~, x 2, ..., xN+I). 
Then the first eigenvalue 2~(M) is not greater than the dimension n -  1 of M 
by Takahashi's theorem (see [-20]) that f is minimal in SN(1) if and only if 
N +  1 functions xiof satisfy A (xi of)= -(n-1)(xiof) .  

In this connection, Ogiue [15] (see also Yau [21]) posed the following prob- 
lem: 

Problem (A). What  kind of embedded closed minimal hypersurfaces of S"(1) 
have ( n -  1) as their first eigenvalue? 

Hsiang [7] constructed infinitely many embedded minimal hypersurfaces 
in S"(1) which are diffeomorphic to S"-1(1). Choi and Wang [5] showed that 
the first eigenvalue of every embedded closed minimal hypersurface in S"(1) 
is not smaller than ( n -  1)/2. 

In this paper, we consider a restricted problem (Problem (B)) of Problem 
(A) for closed minimal isoparametric hypersurfaces M"-1 in S"(1), that is, M"-1 
has constant principal curvatures in S"(1). 

Problem (B). Is is true that the first eigenvalue of every closed minimal isopara- 
metric hypersuface in S"(1) is just ( n -  1)? 

For an isoparametric hypersuface M "-1 in S"(1), M/inzner [10], [11] 
obtained beautiful results (see section 2). Let v be the unit normal vector field 
along M in S"(1). Let g be the number of distinct principal curvatures and 
cot 0~(e = 0, ..., g -  1 : 0 < 0 o < 01 < . . .  < 0g_ 1 < ~) the principal curvatures with 
respect to v. Let rn, be the multiplicity of cot 0, (e = 0 . . . . .  g - 1). Mfinzner showed, 

for example, that (1) m,=m,+z(indices mod g)(2) 0 , = 0  o +az~ (~=0 . . . .  , g - 1 )  
g 
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(3) g~{1, 2, 3, 4, 6} and gave an extrinsically global structure of M"-1 in Sn(1). 
In this paper, "a  homogeneous submanifold M in S"(1)" means an orbit of 
some closed subgroup of O(n+l ) .  Then every homogeneous hypersurface in 
Sn(1) is isoparametric. For Problem (B), Muto, Ohnita and Urakawa [14] and 
Kotani [9] answered affirmatively when M is a homogeneous minimal hypersur- 
face (g= 1, 2, 3, 6) in S"(1) using the representation theory of groups and the 
classification of homogeneous hypersurfaces in S"(1) (see [8], [19]). 

It is known (see [2]) that if g < 3, then M is homogeneous and, in particular, 
that when g = l ,  M=S"(1)  and when g=2 ,  M is a generalized Clifford torus 

S P ( p / ~  - 1)) x Sq(/q/(n - 1))(p+q=n- 1). But for g=4 ,  Ozeki and Takeuchi 
[17] found two families of nonhomogeneous minimal isoparametric hypersur- 
faces ((too, m0=(3 ,  4k), (7, 8k)(k>l)) .  And Ferus, Karcher and Miinzner [6] 
found infinite families of such hypersurfaces. 

Our purpose is to show that Problem (B) is true for some families of isopara- 
metric, nonhomogeneous hypersurfaces with g--4. We give a relation between 
2k(M"-l) and 2k(S") (Theorem A) and obtain our main result (Theorem B) as 
a corollary of Theorem A. 

Theorem A. Let M be a closed isoparametric hypersurface satisfying g > 2 and 
min(mo, ml)>2.  Then for any k=0 ,  1, 2, ..., 

2k(M,- 1)> G(g: mo, ml, 0o) 2k(S"(1)). 

Here l= g/2 and 

G1 (too, ml) 
G(g: too, ml , Oo)- 

G2 (g: too, ml,  0o) -{- G3 (g: mo, ml,  0o)' 

Gl(mo, m0 = ~ sin "~ x COStal X dx, 
0 

1B{mo +1 m2+ i), 
too sinmo X 

G2(g: too, ml, 0o)=sin 2 0o ~ - - c o s  ml x dx, 
o sin 2 x 

1 
7g 
2 ~10o 

s i n ' x  
G3(g:mo,ml,O0) =sin2 ~ - -  0 - - c ~ 1 7 6  

0 sin 2 _x 
l 

Moreover, when M is minimal, then lOo = arc cot I/too~m1. 

Condition (C). A closed minimal isoparametric hypersurface M in S"(1) satisfies 
one of the following conditions for some integer k > 1 : 

(1) g = 1 

(2) g = 2  
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(3) g = 3 :  

(4) g = 4 :  

(mo, mO = (4, 4), (8, 8). 

(mo, ml) = (3, 

(4, 

(4, 

(5, 
(6, 

(7, 
(8, 
(9, 

4), 

5) 
7), 
9), 
9), 

(3, 8), ..., (3, 4k), ... 

(4, 11), ..., (4, 4 k +  3), ... 

(5, 10), (5, 18), (5, 26), (5, 34) 

(6, 17), (6, 25), (6, 33) 

8), (7,  16),  . . . ,  (7,  8 k), . . .  

15), (8, 23), (8, 31), (8, 39) 

22), (9, 38) 

(10, 21), (10, 53) 

Theorem B. Let M be a closed isoparametric minimal hypersurface in S"(1) satisfy- 
ing Condition (C) .  Then 

21(M"- l )=  n-- 1. 

By the classification of homogeneous hypersurfaces (see [8], 1-19]), the pairs 
(too, ml) of minimal homogeneous hypersurfaces are (1, 1), (2, 2), (4, 4), (8, 8) 
when g=3 ,  (1, k), (2, 2 k - 1 ) ,  (4 ,4k -1 ) ,  (2,2), (4, 5), (6,9) when g=4 ,  (1, 1), (2,2) 
when g =  6. Therefore hypersurfaces satisfying Condition (C) in some families 
are not homogeneous. 

We summarize our results. We review Mfinzner's results E10], [11] in section 
two. He showed that every closed isoparametric hypersurface M in a unit sphere 
S"(1) has two smooth closed focal embedded submanifolds M+ and M_ whose 
codimensions in the sphere are greater than one and M is a normal sphere 
bundle over M § and M _. Hence M is embedded. In section three, we compare 
the volume elements of M "-1 and S"(1) and, as a corollary of this estimate, 
we give an estimate of Cheeger's isoperimetric constant C(M) of M from below, 
where 

�9 fvol(DD) 
C (M) = lnf ~ ( ~ -  D 

is a domain of M with the smoth boundary ~ D, vol(D) _< 1 vol(M)~. 
) 

For compact manifold D with boundary c~D, C(D) is defined as follows. 

�9 ~(vol(~D') ~, 
C ( D ) = m I ~  vol(D') u 

is a domain o lD with the smooth boundary OD', OD' c~ c~D = 0~. 
) 

In section four, we extend the k-th eigenfunction on M to a suitable function 
satisfying the Dirichlet boundary condition on a domain in S"(I) obtained by 



534 H. Muto  

excluding e-neighborhoods of M+ and M_ from S"(1). Using these extended 
functions, we give a relation between 2k(M "-1) and the (k+l) - th  eigenvalue 
2k+l(e ) of the Laplacian on the domain under the Dirichlet boundary condition 
(k=0,  1, 2 . . . .  ). By the results of Chavel and Feldman [4] and Ozawa [16], 
lira 2k+~(e)=2k(S"(1)). This is the outline of the proof of Theorem A. In section 
~---~ 0 

five, for any isoparametric hypersurface M in S"(1) satisfying the condition (C), 
we show that 2, + 2 (M" - 1) > n-- 1 = dim M using Theorem A. Since every minimal 
hypersurface fully immersed in S"(1) which is not isometric to S("-~)(1) has 
its dimension as eigenvalues with mult ipl ici ty>(n+ 1), the first eigenvalue of 
M"-  ~ must be its dimension ( n -  1) with multiplicity (n + 1). 

2. An Isoparametrie Hypersurface in a Unit Sphere 

In this section, since M/izner's extrinsically global structure theorem for an 
isoparametric hypersurface in S"(1) is one of our main tools, we recall his results 
[10, 11]. 

Let f :  M"-  1 _~ S , (1 ) (cR ,+  1) be an isoparametric hypersurface of S"(1) and 
E~(c~=0 . . . .  , g - l )  be the eigenspace of the shape operator with eigenvalues 
cot 0~(0<00<. . .  <0g_l  <7 @ We define f0: M - * S n ( 1 ) ( - ~ < O < ~ )  by the follow- 
ing: for any p s M ,  

fo (P) = exp~(p) 0 v, / /cos 0 f (p) + sin 0 v. 

Here x / / y  means that x and y are parallel as vectors in R "+ 1. 

Theorem 1. (Mi;mzner [10], [11]) Let M be a closed isoparametric hypersurface 
in S"(1). Then (1)-(5)  hold: 

(1) O~=Oo+aU(e=O, 1, . . . , g - l ) ,  
g 

(2) m~=m~+ z(indices mod g), 

(3) ge{1, 2, 3, 4, 6}, 

(4) Set M+ =foo(m)(resp. M _  =f_,+o,_~(M)=f_5+oo(m)). Then M+(resp. m _ )  

is a smooth embedded closed submanifold of dimension (n - m o -  1)(resp. (n - m l - 1)). 
Moreover, set M+ = U fo(M)(resp. M _  = U fo(M)). ThenlfI+ (resp. M_)  

0e[0,0o] 0e[0o- i ,  01 

is a normal disk bundle over I~+ (resp. M _ )  induced by )Co and M+ and M _  
satisfy M+ u M _  =S"(1) and ~/I + c~ If4_ = M. 

f o ( M ) ( O s ( - ~ + O o ,  0 o ) ) i s  an isoparametric hypersurface which is diffeo- (5) 

morphic to M. 

(6) 2 g = d i m R H * ( M  : R), where R = Z  in a case that M+ and M _  are orientable 
and R = Z2 in the other case. 

We prepare some formula (see Miinzner [10]). 
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(2.1) For  X ~ E  ~, 
sin (0~- 0) j~ 

fo . X =  sin(0~) 

Here ~2 // X. 

Set t(p)=dist(p, M+)fo r  any peS"(1). I f pe fo (M) (oe l - -~+Oo ,  0o]/. Then (2.2) 
t(p) = 0 o - O. \ I_ g J /  

(2.3) Let h be the mean curvature of M"-  a in S"(1) with respect to v. Then 

( n - 1 )  h =  ~ rn~cot t +  , 
~ = 0  

m o g cot(gt), 

=~m0g , g t  m l g t a n g t  ' 2 -  

(g: odd o rm o = m 0 ,  

(g: even or m o + ml). 

3. An Estimate of Volume Elements and Cheeger's Constant 

In this section, we compare volume elements of M "-1 and S"(1) and give an 
estimate of Cheeger's isoperimetric constant from below. 

Let M"-  1 be a closed isoparametric hypersurface in S"(1) and D be a domain 
in M with a smooth boundary H. We use the same notations as in section 
two. Set D o =fo(D), Ho=fo(H) and 

U Do, 
0~[0,0o] 

/~+= U Do, 
0~[O,0o] 

D- = U Do, 
0~[-~+0o,0] 

H =  U no, 
0~[-~+0o,01 

uP_. 

Then, by the construction o f / )  and/~ ,  we easily have the following Lemma 
. 

Lemma 1. We have 

a =fl, / t+ n / l _  = H ,  and /)+ n /5_  =D. 

Lemma 2. When g >-_ 2, we have 

2 
vol. (/)) - 2 vol (D) f sinmox C O S t a l  X dx. 

g sin "~ lOo cos"'  10o o 

Here 1 = g/2. 

Proof. Let {X~,i]i= 1, ..., rn~: c~=0, ..., g-- 1, X ~ , ~ E  ~} be a local or thonormal  
frame field on D and {o)~,ili=l . . . .  , m~:c~=0 . . . .  , g - l }  be its dual frame field 
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on D. For  0o ~ - - +  0o, 0o , go denotes the Riemannian metric offo(D ) induced 
\ g 

from S"(1). Then, by (2.1), we have: 

g-1 sin2(O _0)  ,.~ 
f *  go = ~ sin 2 0~ ~ c~"i@~ 

~ = 0  i = 1  

Let dD o (resp. dD) be the volume element of Do (resp. D). We first assume 
here that g is even. Then we have the following equation (3.1) using the above 

representation off0*g0 and the formula, sin x +  sin Tx for any 
xER and any positive integer T: ~=o 

(3.1) f *  dDo =F(0)dD,  

Here 

g12w 1 sin m~ (0~-- 0) 
F (0) 1 1  =o sin m~ 0~ ' 

_ sin m~ l(Oo - O) cos ml l(Oo - O) 

sin "~ lOo cos m lOo 

When g is odd >2), mo must be equal to ml by Theorem 1 (2) and (3.1) 
is valid. Therefore we have the required result: 

0o 

vol(/3)= ~ vol(D0) dO, 
- -~+0o  

0o 

=vol(D) S F(O)dO, 
- -~+0o  

2 

= 2 vot(D) i ~ sinm~ cos"1 x dx. 
g sin"~ lOo COStal lO0 0 d 

Remark I. Lemma 2 implies that vol(D)/vol(M)=vol(/~)/vol(S"(1)). Therefore, 
by this fact and the following Lemma 3, we can estimate Cheeger's isoperimetric 
constant of M from below in terms of such a constant of S"(1) (see Theorem 
2 and (3.3)). 

Remark 2. We also show that every isoparametric hypersurface M in a unit 
sphere S"(1) is tight, that is, every non degenerate function ~p(x)= (f(x), p)(x~M, 
peS"(1)) has the minimum number of critical points required by the Morse 
inequalities where ( , ) denotes the canonical Euclidean inner product. This 
is verified by calculating the absolute total curvature and Theorem 1 (6). This 
fact was first proved by Cecil and Ryan [3] through the other method. 
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L e m m a  3. Set l =  g/2. Then we have: 

vol (H)  
vol ( / t )  < sin m~ 10o cos ~ lOo 

i0  ~ 

• sinOo ~ sinm~ 
0 

+ s i n  - 0 o  ~ s i nm~-~xcosm~  �9 
0 

Proof Let N be the inward  unit  no rma l  vector  field of H =  0D in M. I[" 1[ denotes  
the length of a vector  in S"(1). Set No=fo. N~ Ufo* N I1 and  Z o =N/[]f0* N II. Then  
by the definit ion of Ho and (2.1) we have  tha t  No is an inward  unit  n o r m a l  
vector  field of  Ho= aD o in Mo. Let  dH o be the vo lume  element  of  H o. Then  
we have:  

f~" d Ho= f~' (iNo d Oo) 

= f *  (iyo, Z o dDo) 

= izo(fg dDo) 

= F(O) izo dO 

F(O) dH. 
- Ilfo, N l  

L e t N = y ' a ~ , i x , , i ~  a~,2 i = 1. Then  

][fo, N l l 2 = ~  sin2(O~--O) 2 

~,i sin2 0a , a~,i 

__> ~o (o) ~. 

Here  

(3.2) q~ (0) = min  {Isin ( 0 ~ -  O)/sin O=l: cz = 0 . . . . .  g -  1 }, 

sin (0o -O) / s in  0o, (0 > 0), 
- 

Therefore  we have:  

- v o l ( H )  

vol (H) < sin m~ 00 cos "~ 00 

Oo sin,,o lx cos" '  Ix dx 
• sin 00 ~ s i n x  

0 

+ s i n  - 0 o  . dx . 
o sin x 
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And we have required inequality using an inequality: l s i n x > s i n l x  for any 

Theorem 2. Let M " -  ~ be a closed isoparametric hypersurface in S"(1) with g> 2. 
Then we have: 

4 1 
C ( M " - I ) > - - ~  1 1 ' 

- - J r - -  

2 

Proof We set l=  g/2 and for any positive integer s, t, 

2 

I(s, t)= S sinSx cos'x dx, 
o 

S(s) = I(s, 0). 

s + l  t + l ]  0<i0o<~/2 ,  Lemma 2, Lemma 3 and 
\ 

Namely, 2I(s, t ) = B  - ~ , 2 /" By 
Remark 1, we have: \ 

- v o l ( H )  

vol(H) =< sin "~ 10o cos"'  lOo 

vol (/))= vol(D) I(mo, ml). 
I sin "~ lO o cos "'  lO o 

vol(D) vo1(13) 
vol(M) vol(S"(1))" 

Therefore, by the definition of Cheeger's isoperimetric constant, we obtain: 

(3.3) C(M"- I )>C(S" ( I ) )  1 

I (mo , m O 
X 

sin Oo I (mo -- l, m l) + sin (~l -- Oo) I (m I -- 1, too) 

C(Sn(1)) I(mo, ml) 
> 

I sin_ n_ I ( m o -  1, m O + l ( m  1 - 1, too) 
2 l  
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We notice here that any integers s, t, s__> 1, t >__ 0, I ( s -  1, t)/I (s, t) = J ( s -  1)/J (s + t) 
and that by the classical result, 

2 vol(S"- 1 (1)) 1 
c ( s " 0 ) )  = 

vol(S"(1) J ( n -  1)" 

Therefore we have" 

C(M"- a)__> 
C (S" (1)) J(mo -f- ml) 

�9 Tc J ( m o - 1 ) + J ( m l - 1  )' 
I sin 21 

1 d(mo+ml)  1 
�9 7r J ( n -  1) l sin 

3 1 > - -  
--4zr 1 1 

- - - t -  

2 
-37r  

J ( m o -  1) + J(ml - 1)' 

Here we use the facts that (1) J(k) is monotonely decreasing in k, (2) J(k) 
7~ 

--<2/k +--]-(k>0) and (3) l sin ~ /<3 /2 .  

When M is, moreover, minimal, we have the following theorem by the same 
method of the proof of Theorem 2. 

Theorem 3. Let M "-1 be a closed isoparametric minimal hypersurface in S"(1). 
Then we have: 

C(M n- 1) ~_~ 2 c(sn(1))> 8 
g~ g~/3~2 ' 

> 4 ~/~. 

= 3 ]/-~/z2 

Moreover, 

~l(mn_l)~ 2@C(Sn(1))2> 16 
= 3 ~3 gZ 

4 
n. 

= 27 rc 4 

n~ 

Proof Since M is minimal, (2.3) implies that 

lOo =arc  cot m~ffmo, 

sin 10o:V o/m/ o+ml, coslOo:/ ,/m/gZo+mx 
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F r o m  (3.3), we have:  

C(Mn_l) ~ C(S"(1)) 
1 

J(mo + m,) 
sin 10o d (too - 1) + cos 10o d (nh - 1)" 

Since we easily have that  (1) J(k)<21 7/~-~* ( k > O ) ' v  _ ,  1 (2) J(k)<4 k~v-~ (k>2)  

>•  and (3) J(k)=1/~ (k >= 1), we obta in  the required result: 

C(M n- 2) ~ c(sn(1)), 
lrc 

2 1 
gTc J(n-- I ) '  

> 8 ]/-s 

= ]/-37C 2g 

In general, it is well-known that  the first eigenvalue is est imated from below 
in terms of the Cheeger 's constant ,  21 > �88 C 2 (see [1]). Theo rem 3 is completely 
proved.  

Next  we give a stability condi t ion for a domain  of a closed isoparametr ic  
minimal hypersurface in S'(1) as a corol lary of Theorem 3. 

Let  D be a compac t  minimal  hypersurface with boundary  0D in S"(1) and 
v be a unit  normal  vector  field along D. F o r  any smooth  function ~p on D 
satisfying 9 leo=0 ,  ~ o t ( - e < t < e )  denotes a variat ion induced from ~pv. Then  
D is minimal  if and only if that  for any ~0 satisfying q)10D =0 ,  

d 
d t  vol (~pt (D))I, = o = O. 

D is said to be stable if and only if for any (p satisfying q~10o = 0, 

d 2 

dt 2 vol(rpt(D))lt= o = ~ L(~o)q~ dD, 
D 

>0. 

Here L is a Jacobi  opera to r  of D, 

L(cp) = - A (p - ( n -  1 + ]l B II 2) q~, 

and IIBll 2 is the square length of the second fundamental  form B of D in S'(1) 
(see [18]). 

L e m m a  4. Let M be a closed isoparametric hypersurface in s'(1). Let h be the 
mean curvature of M with respect to v and set c=(m2 -too) g2/2. Then 
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FIBII~= 

( (n-  1) h) 2 
( n -  1)(g-  1) , (g: odd or too=m1) , 

mo 

( n -  1)(g- 1)+ (n-- 1)3 h 3 
gmo rna 

c (n_  i) h ~/(n_ 1)2 h2+moml g2, 
4- g2 mo m ~  

(g' even or mo =I= ml). 

Moreover when M is minimal, we have 

II B I] 2 = (n-- 1)(g-- 1). 

Proof Set l=  g/2. By Theorem 1, we have: 

rlBII 2= Z m~ cot 2 t+g~Z, 

, - ,  

=too ~ cot t + ~ r c  
a~=0  

t - 1  // ~z", ) 
~r  \ \  / 

We first assume that g is even. Set A = ( n -  1)h, then we have 

tan It = - - A  -t-CA 2 +4mo m 1 l 2 

2m 1 1 

cot It = A + / A  2 + 4 m  o rnl I z 
2too I 

Therefore using a formula 

~, cot 2 y + ~  = cot2Ty+T(T--1) ,  

for any yeN. and a positive integer T, we have: 

[1B [[ 2 = (m ~ + rnl) I(1-- 1) + l 2 (mo c o t  2 1 t + ml tan 2 1 t) 

= ( n -  1)(g-  1)+ m~ + m a  A2 
2too ml 

mo -m~  A C A  z +4too ml l 2, 
Jr 2too rnl 

= ( n - 1 ) ( g - 1 ) +  ( n - l )  3 h2 
gmo ma 

c ( n _ l ) h l / / ( n _ l ) 2 h 2 + m o m l g 2 .  
4- g2 mo rrtl 
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When g is odd, mo must be equal to m 1 by Theorem 1 (2). This lemma is 
proved. 

Theorem 4. Let M "-1 be a closed isoparametric minimal hypersurface in S"(1)(n 
>3)  and O be a compact domain of M. I f  vol(D)<a, vol(M), then D is stable. 

2 n- i 1 
Here a.=~TUl//n-(n_l)g2 g3./2 �9 

Proof By the above lemma, Jaeobi operator L is represented by 

L(cp) = --A q9--(n-- 1) gcp. 

Hence D is stable if and only if that the first eigenvalue 21~ of the Laplacian 
on D under the Dirichlet boundary condition is not smaller than ( n - 1 ) g .  By 
our assumption and Remark 1 of Lemma 2, we see that vol(/3)/vol(S"(1)) 
=vol(D)/vol(M)=a<a,<l/2.  Let D* be a geodesic ball of radius r o in S"(1) 
having the same volume as/3. Then the classical result implies that C(/3) > C(D*). 
Since an estimate of Cheeger's isoparametric constant in Theorem 3 is valid 

for D and /3, we have that C(D)> 2~  C(D*). We define h by h = n  
2a d(n-- 1). Since g~ 

ro 
r o sin"- 1 ro > ~ sin"- 1 dx, 

o 

[2 \  "-1 1 
>~7]  --n r~, 

we see that rl > ro and that 

sin n- 1 ro 
C(D*)- ~'0 

S sin"- 1 x d x 
0 

1 
> - - 7  

r l  

> 2 (  1 ~t/n 

= ~ \ 2 1 / / ~ ]  " 

The last inequality follows from the inequality J ( n - 1 ) <  _ ~  (n> 1). Therefore 
we obtain that 2] /n  

2~~ > �88 C(D) 2, 

4 / 1 '~ z'" 
= g 2 ~ 4  2 n ] ~ . ]  

=(n--1)g .  
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Remark. Let M be a closed isoparametric minimal hypersurface in S"(1). Then 
we have by Lemma 2 that 

vol(M._l) - vol(S"(i)) [ m"d~ ' ]1[2 

2I(mo,mO [(mo+mO m ~ + m ' j  g" 

4. An Estimate of  Eigenvalues 

In this section, we prove Theorem A. In order to estimate eigenvalues of M, 
we prepare some theorem. 

Theorem 4. ( Chavel and Feldman [4], Ozawa [16]) Let V be a closed, connected 
smooth Riemannian manifold and Wa closed submanifold of V. For any sufficiently 
small e>0, set w(e)={xeV:  dist(x, W)<e}. Let 2~(e)(k=l, 2, ...) be the k-th 
eigenvalue of the Laplacian on V - W ( e )  under the Diriehlet boundary condition. 
I f  dim V> dim W+ 2, then for any k = 1, 2 . . . . .  

lim 2ff (e) = 2k- ~ (V). 
e---~ O 

Remark I. The condition for the codimension of W in V is essential. This is 
easily seen when V=S"(1) and W=S"-I (1)= V. 

Remark 2. Ozawa proved the above theorem and, moreover, he studied the 
behavior of 2~(e) when e~0. 

Remark 3. We need the fact that 2~(e)>2,_ 1(S"(1)) for k> 1 and this is proved 
by the mini-max principle. 

We denote the spectrum of S"(1) by another notation, that is, {(#k, nk)[0 
= P O < # 1 < - . . < # k <  .... ToO'#k is an eigenvalue, nk is the multiplicity of #k}- 
Then it is well-known (see [1]) that for nonnegative integer k, 

(4.1) 

# k = k ( n + k - 1 ) ,  

no=l,  nl =n+ l, 

nk=,+k C,-- ,+k- z C,(k > 2). 

Proof of Theorem A. For sufficiently small e> 0, set 

M(e) = U fo(M). 
0e[-~+0o +e,0o-~] 

Then, by Mfinzner's theorem (Theorem 1), M(e) is a domain of S"(1) obtained 
by excluding e-neighborhood of M+ and M_ from S"(1) and is diffeomorphic 

to M x[----~+Oo+~, Oo--~ [ underfo(p). Since lim 2~(M(~))=,~k_I(S"(1))(k=I, 
[ g J e~O 
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2 . . . .  ), we may estimate 2~(M(e)) from above in terms of 2k-1 (M"-1). Let {X~,i: 
i=1  . . . . .  m,, ~ = 0  . . . .  , g - l ,  X~,ieE ~} be a local orthonormal frame field on 

M. Then ~ ,  sin0Jsin(0~--0)X~,i :  i=1,  ...,m~, ~=0,  X~,i~E ~, 

0e - ~ - + 0 o + e ,  0 o - e  is a local orthonormal frame field on M(e) by the 

diffeomorphisms fo. (2.1) implies that the volume element dM(O of M(e) is 
represented by the following: 

sin "~ 1(0 o --O) cos "~ 1(0 o -O) 
(4.2) dM(e) = dO dM. 

sin "~ lOo cos m' lOo 

Let fk(k=O, 1, ...) be the k-th eigenfunctions on M which are orthogonal to 
each other with respect to the square integral inner product on M. Let h be 
a nonnegative, non-decreasing smooth function on [0, oe]) satisfying h--1 on 
[2, oe) and h = 0  on [0, 1]. For sufficiently small t/>0, let ~,  be a nonnegative 

smooth function on [q, 2 -  q] such that (1) O,(q) = ~,  ( 2 -  q) =0  (2) ~,  is symmet- 

r icwi threspec t tox=4and(3)  O,(x)=h(~)on[q,  4 ] .Le tLkbe thespace  

of functions spanned by { f  o, f l  . . . . .  fk} (k > 0). For any (p eLk, define a function 
~ on M(e) by 

�9 ~(x, 0) = 0 ~ ( / ( 0 o -  0)) ~o (x). 

Then ~, is a smooth function on M(e) satisfying the Dirichlet boundary condi- 
tion and ~ is square integrable on M(e). By (3.2), (4.2) and the condition min(mo, 
ml) > 2, we see that 

2 

f 

I1~11~ ~ - "  
f 

le 

$'l~(x) 2 sin'n~ COS'n'X dx 

O~,(x) 2 sin"~ cos" 'x  dx 

+ ~_,~ x II~pll~ 
Ol.(x) 2 sin"ox cos"~xdx 

Is 

tOo sinmox 
• sin20o S $~(x) cosm'xdx 

l~ sin 2 x 
I 

+ sin2 ~ "  0 S 02~(x) sinm~ 
lOo 

sin" 1 x d x). 

1 ~z sin2 ~- (~  - x  ) 
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By the mini-max principle, we have: 

2 ~  ~(M(~))=< sup [r d4~ II 2 

~L~ II O~ll 2 "  

By the condition min(mo, m 0 > 2 ,  we see that the first term in the right hand 
side tends to 0 as e ~ 0. Therefore, we see that 

[]d,~.ll 2 
lim sup 
~ o  ~L~  I1~112 

"~k ( M n -  1) G2 (g: mo, ml, 0o) + G3 (g: too, m l ,  0o) 

61 (mo, m j) 

By combining the above two inequalities and Theorem 4, we have the required 

inequality. Moreover, when M is minimal, lOo must be equal to arc tan ~ o o / m l  
by (2.3). 

We prove Theorem B in the next section, that is, under some condition 
(Condition (C)), the first eigenvalue of a closed minimal isoparametric hypersur- 
face in a unit sphere is equal to its dimension. We here estimate G(g: too, 
ml, 0o) very roughly. 

Corollary. Let M be a closed isoparametric hypersurface of Sn(1) satisfying g >2 
and min(mo, ml)>2.  Then we have: 

2k(M~-l)_--__2,(S~ 

__>2,(S'(1)) - -  

Moreover, when M is minimal, we have: 

( n -  1) g sin2(n/g) ' 

g 

(n- 1) ~2" 

2k(M~-~)>2k(Sn(1)) 
4 1 

g2 mo + ml  
mo-- 1 ml- -  1 

==_1 ;~k(sn(1)). 
g 

Proof. By the inequality 1 sin x > sin l x for x e 0, , 

G 2 (g: too, m l ,  00) -I- G 3 (g: m o, m t , 0o) 

a l ( m o , m l ,  0o) 

< 12 sin2 7c I ( m o -  2, ml) + I(mo, ml - 2) 
21 I (mo, rot) 

=i 2 �9 2 ~ [mo+ml  mo+ml~ sin - - / .  - -  - -  ~ 
21 \ too - -1  ml--1  ] 
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Since l(mo + rex)= n - 1 ,  we have that the first inequality of the above corollary. 

We assume here that M is minimal. By (2.3), lO o = arc tan ml/m~o/m 1 . Therefore 
we see that 

G2(g: mo, ml,  0o)+ Ga(g: too, mi,  0o) 

Gl(mo, m0 

sin 2 lO o l (m o - 2 ,  ml) + cos 2 lO o I (mo, mi - 2 )  < l  2 
I(mo, mO 

[ mo mi \ 
<12 ~m~-~_ l + m~_ l ) " 

Hence the above corollary is proved. 

5. Proof of Theorem B 

To prove Theorem B, we prepare some lemmas. 

Set A = A ( m ) = ( 1  3 )  1/2 / 3  \~/2 
mentary lemma. \ - - m + 3  and B = B ( m ) = [ m ~ )  . Then we have an ele- 

Lemma 5. (1) A(m) m-x is monotone decreasing in m and the limit as m tends 
to  oo is e -3 /2 .  

m + l  A ) > 2  m e_3/2A" 
(2) A(m) m+l lq  m + 2  m + 3  

2 m + 3  A , ,+ I (  1 m + l  ) _A,,+2). 
(3) m + ~  + ~ A  <2(1 

(4) A(m) m+ 2 is monotone increasing in m and the limit as m tends to co is e-3/2. 

Lemma 6. (1) (1 +6/xZ)X<e6/X(x> 1). 

(2) e 6/x- 1 < 8Ix(x> 11). 

(3) e 3/x 2x~/x <(3 + ~ ) ( ~  + ~/x)(x _-> ii). 

Proof of lemma 6. Since (1) and (2) are easily verified, we show (3). Set y(x)=( the  
left hand side) 2 - (the right hand side) 2 in (3). Then we have (the right hand 
side) 2 > 4 x 3 + 34 x 2 + 76 x + 8. Therefore we have y (x) < 4 [(e 6/x - 1) x 2 - 8 x -- 19] 
x--18. By (2), we have y < 0 .  

For  m > 4, set 

20o = 20o (m) = co t -  1 ]/~/m, 
20o(m) 

~(m)= ~ s in~-2xdx .  
0 
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Lemma 7. For m> 11, we have e(m+2)<e(m). 

Proof Set 
20o (m + 2) 

/ / (m+2)= S sin"xdx. 
20o (m) 

Then we have e (m+2)= m -  1 e ( m ) _ l  A(m)"_ 1 B(m)+[3(m+2). We may 
m m 

that /?(m+2)< ~1 A(m) m-1 B(m)+[3(m) for m=> 11. 
m 

show 

fl (m + 2) < A (m + 2)" (2 0o (m + 2) -- 2 0o (m)) 

< A (m + 2)" tan (2 0o (m + 2) - 20 o (m)) 

= A(m) "-1B(m) (1 + 6 1 "/2 2V~  
m(n~+ 5)] (3 + ~ + 2 ) ) ( ~ / m +  2 +1/~)" 

By lemma 6 (1) and (3), fl(m+2)<A(m) "-1 B(m) --.1 Therefore we have e(m+2) 
m - 1  m 

< ~ (m) < ~ (m). 
m 

Proof of Theorem B. When g= 1 or 2, it is known (see [2]) that M"-I  =S"-1(1) 

or SV(V ~ - 1)) x sq(yq/(n - 1))(p + q = n-- 1) and the first eigenvalue of m must 
be equal to its dimension. When g=3  and (too, m0=(4, 4) or (8, 8), Kotani 
(see [9]) first showed that 21 (M"- l )=n-1 .  We also prove this fact by our 
method. To prove Theorem B, since the multiplicity of every minimal submani- 
fold fully immersed in SN(1) which is not isometric to the unit sphere is not 
smaller than N + I  (see [20]), we may assume too>m1 and show that 
2,+ 2(M"-1)> n - 1  = dim M for each closed isoparametric minimal hypersurface 
M"-1 of S"(1) which satisfies Condition (C). From Theorem A, we may show 
that G(g: too, ms, 0o) 2,+2(S"(1))>n-1 in each case of Condition (C). We 
notice here that l(n-1)=too +ml by Theorem 1 (2). 

Let M"-~ be a closed isoparametric minimal hypersurface of S"(1) with g = 4  
and satisfies one of the following: (too, ml)=(4, 3), (8, 3), ..., (4k, 3), ..., (k> 1). 
We first show that G(4:m, 3, 0o)>0.5 for any m>46 and, by (4.1), that G(4: 
m, 3, 0o) 2,+2(S"(1))>0.5 x 2 ( n + l ) > n - 1  for m>46. And for the other cases 
(g=4, m1=3), we can verify the inequality G(4: m, 3, 0o) 2,+z(S"(1))>n-1 
by using a computer. We assume here that m>46. Since M is minimal, (2.3) 

implies that 20o=20o(m)=arccot]//3/m. Set q=20o, A=A(m)=sinq 

= ~/m/] / -m~ and B = B ( m ) = c o s t t = V 3 / ~  3. Then we have: 

sin2 0o = m 1 
2(m+3) I + B '  

sinZ - 0 ~  =2(m+3)  I+A"  
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Therefore we see that 

G2(4: m, 3, 00) 

m 1 
m + 3  I + B  ( l+c~ sinm-2c~ 

2 1 
= 

(m+ 1)(m+ 3) 2(1 +B) 

x ( m ( 5 m + 3 )  Am_~_ ~ 3 ( m + l ) ( 2 m + 3 )  
\ ( m -  1)(m + 3) (m + 2)(m + 3) 

Similarly we see that 

a m-~ Bq- 3(m+ 1) c~(m)'~. 
m + 2  ] 

and 

2 1 3 / 2 m + 3  
G3(4: m, 3, 80)= (m+ 1)(m+ 3) (1 +A)  2 \ m + 3  

2 
G 1 (m, 3) - 

(m+ 1)(m+3) 

By lemma 5, we have 

G(4: m, 3, 0o) -1 

<�89 m-1 + 6 A  " -1  B + 3 ~ ( m ) ) + - - -  

Am+l(1 m + l  . \ \  

3 1 2(1 -Am+2). 
2 I + A  

By lemmas 5 and 7, we see that the right hand side of the above inequality 
is decreasing for m, m+2,  ..., and G(4:46, 3, 0o)- 1 < 1.9983374... < 2  and G(4:47, 
3, 0o)-a < 1.9933199... < 2. Therefore we have the required inequality for m > 46. 
For m <45, we can directly show by using a computer that the difference D(g: m o, 
ml)=G(g: mo, m 1, 0o) 2,+ 2(S"(1))-(n-1)(g=4, mo=m, m1=3 ) is positive. We 
use the double exponential formula (see [13]) and the language of the program 
is F O R T R A N .  A subroutine program using the double exponential formula 
is written in an appendix of a book [12]. This is a subroutine program to 
integrate an analytic function on ( - 1 ,  1) or (0, oe) and has an absolute error 
10-16. But it is easy to make a partial revision of this program so that we 
have relatively very small errors which depend on this program and our machine. 
For example, G(4: 4, 3, 0o) = 0.4411526996992993, D(4: 4, 3)= 
0.1168863903775783>0, G(4:45, 3, 0o)=0.555614098973507>0.5. By these 
computations, we obtain the required inequality for mx = 3. 

By the similar estimate, we have that G(4:m, 4, 0o)>0.5 for any m > 3 4  
and G(4: m, 7, 0o)>0.5 for any m>36  and by a computer, we have, for example, 
G(4:4, 4, 0o)=0.4846093593926227, D(4: 4, 4)=0.1445936938134416, G(4: 5, 4, 
0o)=0.5110829726081493>0.5, G(4: 33, 4, 00)=0.6146834883261047>0.5, 
G(4: 8, 7, 0o)=0.6258833686366021 >0.5, and G(4: 35, 7, 0o) 
= 0.7061682378135796 > 0.5. 

For the other cases, we directly compute G and D, for example, G(4: 6, 
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9, 00)=0.6185633191383751, G(4: 8, 15, 00)=0.6856918246775244>0.5 , G(4: 10, 
53, 0o)=0.7590277619970185>0.5, G(3"4, 4, 0o)=0.495059684 .... D(3:4, 4, 
0o) = 1.86167115 ..... G(3" 8, 8, 0o)=0.648727497... >0.5. Therefore we complete 
the proof of Theorem B. 

Remark. We have the limits G(4"m0 of lira G(4:mo, ml, 0o)(m~=3, 4, 7) 
m o  ---~ oo 

as follows: G(4: 3)=l/(1.5+e-3/2)=0.5803392124, G(4: 4)> 3/(4+6e-2]/~) 
=0.64545394898 and G(4: 7)=0.7524581288. 
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