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Abstract 
Circulation systems within buildings are analyzed using M / G / C / C  .queueing models. 

Congestion aspects of the traffic flow are represented by introducing state dependent service 
rates as a function of the number of occupants in each region of the circulation system. 
Analytical models for unidirectional and multi-source/single sink flows are presented. 
Finally, use of the queueing models to analytically determine the optimal size and capacity of 
the links of the circulation systems is incorporated into a series of software programs 
available from the authors. 

Keywords: State dependent, queueing networks, and facility planning. 

1. Introduction 

In this paper, we develop state dependent queueing models for capturing the 
congestion effects of movement through circulation systems of buildings. The 
circulation system includes the corridors, ramps, elevators, stairways and other 
physical paths of movement within buildings. We focus on the detailed develop- 
ment of single-level corridor models which can be expanded to represent multiple 
corridors and multi-level circulation systems. 

Whether an architect or engineer is concerned with optimal accessibility 
requirements of a new or remodeled facility in order to accomodate expected 
customer demands or is concerned with the optimal egress of occupants due to 
emergency situations, pedestrian flow in the circulation systems of buildings is 
one of the most prevelant problems in facility design. Given these customer flows 
within a facility, a deterministic decision must be made with regards to the size or 
finite capacity of the circulation system of' the facility i.e. its nodes and links 
while at the same time recognizing the stochastic nature of the customer flows. 
Certainly, this is a very complex stochastic programming problem. 

What we intend to do in this paper is offer some congestion models to capture 
this stochastic customer flow and at the same time illustrate how these stochastic 
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queueing models can be used to optimally size and determine the circulation links 
of the system. Albeit, our focus will be on one aspect of the circulation system, 
but given its central importance, it is readily applicable to many other parts of the 
circulation system. 

DEFINITION OF PROBLEM 

Congestion within buildings occurs mainly in the circulation system, of the 
building, viz. the corridors, ramps, hallways, elevators, and stairwells. This 
congestion is due largely to the increased customer traffic seeking to occupy the 
limited space available within the circulation elements of the building. 

There are two crucial aspects of these movement  systems: 
1) The service rate of the movements system decays with increasing traffic. 
2) The amount  of available space within the movement  system is finite. 

Naturally these characteristics lead us to the question: how should one model 
the congestion within the circulation system of a building? What  models have 
been used in the past; what theory is available; and, how should we "bes t"  
capture the congestion effects? 

FACILITY REPRESENTATION 

Every floor plan of a facility can be represented as a planar graph G'(V' ,  E'). 
Thus, our queueing network 'is essentially the Dual Graph of G', Smith [13-15]. 
Also, facilities have two spatial entities which require a distinction within our 
queueing network model: the activity network and the circulation network. Thus, 
V is partitioned into two sets V = (A,  S }, see fig. 1: 

A set of activity nodes A = (A  1, A=,..., AN} of size N which characterize the 
rooms, departments or activity areas. The notion of "activity area" is common 
parlance in facility design. 

A set of circulation nodes S -- ($1, $2, . . . ,  SM } of size M which characterize 
the hallways, corridors, stairwells, elevators, and other movement  pathways. 

Each facility can be b6st described as a hierarchical queueing network of nodes 
and arcs. For our purposes, the hierarchical queueing network has two levels. At 
the upper level, we have termed the resource activities, V i = (1, 2 , . . . ,  I )  where 
I = I N I + I M I- At the lower level, we have the subnetwork of activities within 
each resource activity, vit = (1, 2 , . . . ,  T). 

The incidence function that regulates the flow of customers among the sub- 
nodes is a subnetwork transition matrix and has the following form: 

(Pll)i.j./ (Pl2)i.j./ "'" (Plt)i.j., 
(p2,), .+,,  (p2=),.+,, . . .  (p2,), ,+.,  

P(i,j.i) : 

(p,=):.:, ... (p,,),.:., 
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Fig. 1. Planar graph G'(V', E')  and dual graph G(V, E). 

Transitions within resource activities are normally accounted for by the amount  
of time spent at each subactivity vit by a customer following his route through 
G(V, E). Arcs between resource activities (Ai, A/) represent travel time over the 
circulation network S of the facility. 

One of the unique features of facility modelling is that transitions within the 
network are not virtually instantaneous Lee [9] as they are in computer and 
communication networks Kleinrock [8] and Sauer [12]. Thus, the need for the set 
S. Vertices from the set S represent additional nodes within a facility designed to 
handle the intermediate flow of customers . from origin source nodes A~ to A k 
without interrupting service. Often the cardinality and configuration of the nodes 
in S is determined by the intended building use, building codes, and zoning 
ordinances for certain building types due to emergency egress conditions or other 
public access requirements. 

We like to refer to these nodes as Steiner nodes, after the renowned Steiner 
network problem Smith [13], since there is a similarity between the nodes from 
the set S within queueing network modelling of facilities and their presence in 
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minimizing overall network costs in the Steiner network problem. It is the 
customer traffic flow within S that is of primary interest to us in this paper. 

Previously, we have modelled movement  within the circulation system using an 
M / G / o o  queue to capture customer traffic flow Smith [13-16] in each circula- 
tion node Sj. U s e  of M / G / o o  queues is quite prevelant in the modelling of 
computer systems Kleinrock [8]. 

In addition, we utilized a congestion factor to slow-down traffic through the 
circulation system based on the traffic intensity as measured by P to this M / G / o o  
queue. Use of this congestion factor is tantamount  to showing that the service 
rate in the queue is state dependent on the number  of customers passing through 
the circulation system of a building. 

Modelling of state dependence originates, with the work of Conway and 
Maxwell [2], who studied the situation where the service rate of a server increases 
with increasing traffic. They in t roduced the notion of "pressure coefficients" to 
capture the nonlinear effects on the service rate as increased traffic entered the 
system. Hillier et al. [7] later extended this work to account for multiple-servers. 

In their model, if the service rate increases, then 

/z n = nV/~ 

where V > 0. 
This model is not defined for 3' < 0 because the infinite series used to  calculate 

the probabilities in the Chapman-Kolmogorov equations do not converge Gross 
and Harris [5]. However, y < 0 is the type of p a r a m e t e r  expression which 
corresponds to a deterioration in service rate, which is exactly what we need in 
our circulation congestion model. This need to capture a service ra te  decay in S 
led to the development of the finite, state-dependent congestion model which now 
follows. 

A S S U M P T I O N S  

The common assumptions we have made over the years in modelling facilities 
with queueing networks are as follows. 

COMPLEX M I X I N G  OF A R R I V A L  A N D  D E P A R T U R E  PROCESSES 

There are J customer types (classes) which seek to utilize a facility drawn from 
an infinite population each with K generating sources. The average arrival rate 
per unit time of type j customer from source k is 2tjk ( j =  1, 2 , . . .  J; k =  
1, 2 . . . .  K).  It is further assumed that  this arrival process from each source is a 
renewal process * 

* Certainly, in some facilities such as airports, there are batch arrivals, yet for the most part, 
customers arrive singly, independently, and randomly. Furthermore,  customers tend to follow 
deterministic ra ther  than random routes through a facility due to their origin and destination 
plans. 
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DETERMINISTIC ROUTING CHAIN 

Type jk  customers will be routed through the facility using a deterministic 
routing vector, sometimes referred to as a "customer chain". This routing vector 
has elements rjk t (l = 1, 2 , . . .  Ljk ) where the l th element of the routing vector 
marks the destination of the resource activity to which the customer is directed 
after visiting the previous activity on its route. Thus, customers of types jk  
( j =  1, 2 , . . .  J; k = 1, 2 , , . . . ,  K) enter a system of queues l ( l =  1, 2 , . . . ,  Lj~) in 
independent Poisson streams at rate Xjk and pass through a sequence of queues: 

[ ( j ,  k, 1), ( j ,  k, 2 ) , . . . , ( j ,  k, Ljk)] 

before leaving the facility. Therefore at stage l (l = 1, 2 , . . . ,  Ljk) along its route a 
customer of type jk  will be at queue Q(j, k, l). 

G(V, E) IS A DUAL GRAPH 

G(V, E) can be embedded in the plane R 2 with a corresponding distance 
metric (Euclidean or Rectilinear), since the flow of customers and goods through 
the nodes requires a distance movement. Thus, the location of each o i ~ V is in 
R 2, or with Cartesian coordinates (x~, Yi)- In the queueing network, the location 
of the nodes should arguably be the centroid of the spatial entity it models. 
Although one may model a facility without the network embedding, one needs to 
characterize the transition time between activity nodes in the network and this 
requires a distance movement. 

In the material that follows, we present the congestion model in w for 
capturing the state dependent customer flow; then in w we develop the queueing 
model; in w we discuss some computational considerations; and, finally, in w 
we perform some sensitivity analysis to illustrate how the state dependent 
queueing model can be utilized in the planning and design of circulation systems 
within buildings. 

2. Congestion model 

It is reasonable to believe that as the number of people traveling along the 
corridor increases, the average speed of the pedestrians will tend to decrease. As 
more people occupy the limited floor-space of the corridor, there will be more of 
a tendency for the slower pedestrians to impede the progress of the faster 
pedestrians since a greater degree of congestion will restrict the lateral movement 
needed by the faster pedestrians for passing and avoiding the slower walkers. 

A quantitative understanding of congestion can best be attained by considering 
unidirectional traffic along a corridor of length, L, and constant width, W. This 
elementary shape will henceforth be referred to as a single corridor. Obviously 
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Fig. 2. Variation of mean walking speed with crowd density (a) [HANK 58], (b) [OFLA 72], (c) 
[OLDE 68], (d) [TOGA 55], (e) [TOGA 55], (f) [FOOT 731. 

there is a limit on the number of pedestrians that can move through the corridor 
at any given moment;  we will refer to such an upper bound as the capacity, C, of 
the corridor. When there are n pedestrians occupying the single-corridor, we will 
say that they travel at an average walking-speed, V n, for n = 1 , . . . ,  C. 

A useful way to describe congestion is in terms of the number  of pedestrians 
per floor area in our single corridor; we will refer to this as the population 
density, p, of the corridor. Empirical relationships between walking-speeds and 
population-density play an essential role in the development of mathematical  
relations that determine the overall walking-speed of the pedestrians as a function 
of the population-density, These empirical relationships are usually presented in 
graphical form Fruin [4] and Tregenza [18], see fig. 2 which is re-created from 
Tregenza. 
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Figure 2 provides a number  of implications in terms of w h a t  the most 
definitive mathematical model may be. The shapes of the curves suggest either a 
linear or an exponential relationship (depending on the curve) for the walking- 
speed of the pedestrians as a function of the population-density.  Due  to practical 
considerations; however, we will examine the walking-speed, 11,, as a function of 
either the corridor capacity, C, or the area of the floor space, and the number  of 
pedestrians, n, occupying the corridor. 

The concept of corridor capacity is a central concept with respect to our 
congestion modelling. According to Tregenza [18], pedestrian flow comes to a 
halt when the population-density approaches five pedestrians per square meter 
(i.e., 5 peds /m2) .  Therefore, the corridor capacity, C, is equal to the highest 
integer that is less than or equal to five times the area of the floor-space in square 
meters (m 2). Thus, the capacity is expressed as, 

c =  [SLW], (1) 
when L and W are given in meters. 

When using a linear relationship to approximate the overall walking-speed of 
the pedestrians through the single corridor, we need to take note of the fact that 
the speed of a lone occupant  in the corridor, V,, is typically 1.5 m/sec ,  according 
to [18]. We also need to be aware of the idea that as n approaches C (i.e., n ---, C) 
the pedestrian flow comes to a halt; however, there may still be some forward 
movement  at n = C. For  this reason, we can say that since a populat ion of 
n = C + 1 is an impossibility, we can set V, = 0 for all n >~ C + 1. Thus, we are 
deriving a linear relation that satisfies V a = 1.5 m / s e c  and Vc+ 1 = 0, which is 
shown by  eq. (2). 

V,= ~ - ( C +  l - n ) .  (2) 

The appearance of the curves in Tregenza [18] suggests strongly that the 
exponential relationship may be a more accurate approximation of the average 
walkiiag-speed of the pedestrians. The form of the exponential relation for our 
single corridor model  is, for n = 1, 2 , . . . ,  C: 

exp[ 1 
The amplitude A -- 1.5 m/sec .  Parameters /3 and 3' will be  referred to as the 

scale and shape parameters respectively. By carefully approximating the positions 
of three representative points among the six curves in Tregenza [18], we have the 
following coordinates: 

V~ = 1.50 m / s e c  at p = 1/LW p e d s / m  a ,=, n = 1 

V, = 0.64 m / s e c  at p = 2 p e d s / m  2 ** n = a = 2LW 

V, = 0.25 m / s e c  at p = 4 p e d s / m  2 *,, n = b = 4LW. 
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Fitting the points (1, A), (a, Va) , and (b, Vb) gives us the algebraic relation- 
ships shown below: 

, [ l n ( V o / A )  
, =  

a - 1  

In eqs. (4) and (5), 
determining/3; this is 

] / l n (  b _-~11 ) (4) 

b - I  

= [ { A 11 (5) 
L1nlg)J 

A = 1.5 m/see.  Note that ,/ must be determined prior to 
done by using eq. (4) prior to using eq. (5). 

Note that weighted nonlinear regression could be used instead of judiciously 
selecting three points from the curves of Tregenza [18]. Each of the curves could 
be assigned a relative weight between zero and unity (such that all six weights 
sum to unity), and a predetermined number of points could be taken uniformly 
along the population-density abscissa over the range of 0 to 4 peds/m.  At this 
stage of development in the research, however, the difference in results between 
the three-point approximation and the weighted nonlinear regression would be 
expected to have a conceptual impact that is insignificant. 

Other mathematical relations could be used to relate the walking-speed of the 
pedestrians to the pedestrian-density or to the number of occupants on a given 
floor-space. Piecewise linear approximations of the curves would be a more 
accurate approximation than a curve-fit that is based on only one continuous 
line, such as that of eq. (2). A series of piecewise linear and exponential curve fits 
would be even more accurate; however, the level of accuracy of the data from 
which the walking-speed approximations would be determined, along with our 
stage of development in this line of investigation, does not justify such an effort 
on purely a conceptual basis. For purposes of illustration and experimentation, 
we will restrict ourselves to strictly linear or exponential approximations of the 
curves. 

3. Analytical model for the single corridor 

To gain a clear understanding of the concepts involved in the stochastic 
modeling of congestion in corridors, we address the methodology involved in 
modeling the single corridor as a queueing system. 

As discussed in the previous section, the single corridor of length, L, and 
constant width, W, has a capacity C = [5LW], when L and W are given in 
meters. We assume an exponential service rate, /~n, when the corridor is occupied 
by n pedestrians. In other words, the occupants enter the corridor with the 
behavior of a Poisson stream of rate, X, and the time that the occupant spends in 
the corridor is exponentially distributed with rate, ~n- Note that the service rate, 
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/in, is state-dependent,  i.e., a function of the number  o f  occupants.  Since the 
corridor behaves as a server to its occupants, we can model it as a queue having C 
servers and a capacity of C. Thus, in Kendall  notation, our queueing model  is 
described by  M / M / C / C .  

It is usually of interest to note that the queueing model  M / M / C / C  is 
stochastically equivalent to the model M / G / C / C  provided the mean service 
rates of the two models are equal; details can be obtained by  consulting Gross 
and Harris [5] among other sources. 

The general solutions to the Chapman-Kolmogorov  steady-state difference 
equations for the state probabilities Pl, P2,..., Pc, are shown in eqs. (6) and (7). 

X0Xl - . -  Xn_ 1 
P. = Po (6) 

/11/12"' ' /1n 

such that, 

I c 
m = 1  + Y'~ 
PO n=l 

"•0•1 . . .  Xn_ 1 ] 

In the context of our investigation, the arrival rates are not  influenced by  n; 
thus, we define X, such that, X = )t o = X 1 . . . . .  X c, which gives, 

G = n P0, for n = 1 , . - - , C  (8) 

1--[/1, 
i=1 

and 

(9) 

where /1~, for i = 1 , . . . ,  C, is a function of i, the state of the system (i.e., the 
number  of occupants). Since congestion directly affects the service rates of our 
queueing model, we use the linear congestion model  and the exponential conges- 
tion model to describe/in. Both of the congestion models are discussed within the 
next two sections. 

The linear congestion model  is based on the idea that the service rate of the 
servers in the M / G / C / C  queueing model  is a linear function of the number  of 
occupants in the system. Equat ion (2) gives the walking-speed of  n occupants  in 
the single corridor. Note  that the service rate, r,, of each of n individuals in the 
corridoi, is the average of the inverse of the time it takes these individuals to 
traverse the length of the corridor; therefore, 

rn = Vn/L. (10) 
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Using eq. (2), this gives us, 

1.5 ( C +  1 -  n). (11) rn----~- Z 

The service rate of the queueing system (overall) is equivalent to the number of 
servers in operation (i.e., occupied) multiplied by the rate of each server. Since all 
n servers, in a state-dependent M / G / C / C  queueing model, operate at the same 
rate, i",, we have, 

1.5 
iG= nr,= --C-s + 1 -  n)n. (12) 

We derive the expressions for the state probabilities by substituting the 
expression for/~,, equation (12), into equations (8) and (9) to obtain equations 
(13) and (14). 

X" 
P0 (13) P n  ~ n n 

( ff----~) I-I ( c - i +  l)i 
i = 1  

1 c k" 
- 1 +  Y'~ . (14) 

Po .=I l - i ( c _ i + l )  i 
i = 1  

where A = 1.5 m/sec,  and k = XLC/A. Note that L is expressed in meters and 
is expressed in sec-a. 

In developing the exponential congestion model, we assume that, r,, the service 
rate of each of the n occupied servers, is related to the number of occupants by 
an exponential function. The form of the exponential function is based on the 
equation for the walking-speed, as depicted by relation (3). Combining eqs. (3) 
and (10) gives, 

ex [ ] r.--- Z 

where A -- 1.5 m/sec. Therefore, we can express the overall service rate of our 
M / G / C / C  queueing model as, 

IG = nr, = n--s exp - (16) 

We obtain equations for the state probabilities by substituting our expression 
for t~n, equation (16), into eqs. (8) and (9) to obtain, 

X" (17) 

P" h i ( A )  exp - 
i = l  
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where 

1 = 1 + I 2  o , 

P0 n=l i=ll-Ii(A) e x p [ - - ( ~ )  ] 
(18) 

Note that A = 1.5 m/sec ,  L is expressed in meters, and X is expressed in sec -~. 

SINGLE CORRIDOR WITH MULTIPLE SOURCES 

Consider a single corridor of length, L, and width, W, having multiple 
customer sources (arrival streams), see assumption :~1, Xl, X2, . . . ,  X K whose 
traveling distances to the exit of the corridor are LI, L2, . . . ,  LK, respectively. 
Such a situation can be modeled as another single corridor of length, L', and 
arrival rate, X', such that: 

K 
X'= E Xi (19) 

i=1 
K 

XiLi 

L ' - i = 1  (20) 
K 

Y. xi 
i=1 

O A 1 
lr 

U~ Z " 

~ ' j k  
~ AI 

~'jk 
I , t 

Fig. 3. 
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Thus, L '  of eq. (20) is the weighted average according to ha, h2 , . . . ,  )t K. 
Therefore, L' is the average distance traveled by all the arrivals through the 
corridor. Figure 3 represents the transformation process for our simple example 
floor plan embodied in fig. 1, where the activity areas incident to the circulation 
node act now as inputs X~. 

We wish to design the dimensions of this type of circulation node so that the 
traffic flowing through it is adequately accomodated. We shall do so for this class 
of examples in the w on sensitivity analysis but before we do so, we need to 
discuss some computational considerations for solving our state dependent  model. 

4. Computational considerations 

All computing systems have a limited range of values over which they can 
process. Some computing systems contain diagnostic error message that report 
underflows (i.e., very small values) as well as overflows (i.e., very large values). 
Other systems cope with underflows by automatically setting them equal to zero. 
Regardless of the type of computing system used in applying the concepts in the 
preceeding sections of thi s paper, the magnitude in the quantities involved can 
result in overflows when the capacity, C, of our single corridor is high enough. 

Consider the basic relations of our state-dependent M / G / C / C  model, which 
are depicted by eqs. (8) and (9). If we define terms, Tn, such that To = 1, and 

?n 
Tn -  n , for n = 1 , . . . , C ,  (21) 

I-It i 
i=1 

then, we can see that, 

Tn for n = 0, C. (22) 
P n  - -  C " " " ' 

Er, 
i=0 

For capacities of C on the order of 10000, the maximum T,, T (max), c a n  exceed 
101~176 some computing systems cannot cope with such a situation. 

To deal effectively with the overflows, it is necessary to compute T n and p,  in 
terms of their logarithms, using eqs. (21) and (22), as follows: 

n 

l n ( r , ) = n  l n ( X ) -  Y'~ l n ( / ~ , ) , f o r n = l , . . . , C  (23) 
i=1 

ln(pn) = ln(Tn) - ln( i T") ' f~ n : O ' '  (24) 

The problem of overflows could be dealt with in the calculation of p,  if it 
where not for the logarithm of the summation term in (24). This problem can be 
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dealt with by dividing (i.e., scaling down) each T~ by a very large (positive) 
quantity D as shown, 

ln(pn) = l n ( T J D )  - l n  Y'~ T~/D , for n = 0 . . . .  , C. (25) 
i = 0  

The value of D is chosen such that the value of (r~max)/D) is slightly less than 
the highest value, V (max), the computing system will allow. Thus, 

ln(D)  -- In[ T (max)  ] - In[ V (max) ]. (26) 

Note.that  T (max) can be detected by determining its logarithm, using eq. (23). 
The (T~/D) terms that are smaller than the lowest value the computing system 

can cope with are set equal to zero. If the computing system doesn't  do this 
automatically (i.e., reports an underflow instead), then such small values can be 
handled by determining their logarithms, using eq. (23). The logarithm is ex- 
amined to determine whether it is less than a negative quantity that is slightly 
greater than the logarithm of the lowest quantity that the computing system can 
cope with. If the logarithm of the (T,./D) term is less than the negative quantity, 
then the (Ts/D) term is set equal to zero. 

The errors in setting (T~/D) terms that would otherwise cause underflow 
problems equal to zero are (vastly) insignificant. The difference in absolute values 
of the upper and lower bounds of quantities that any computing system can 
handle is considerably larger than the mantissa of the double precision of such 
systems spans. This is the reason that the value of the summation term in eq. (25) 
is unaffected when potential underflows are set equal to zero. 

5. Optimization and sensitivity analysis 

An important factor in the design of most floor plans is whether severe 
crowding will bring pedestrian traffic to a standstill. Therefore, the effects of the 
traffic flow rate, )~, on the balking probability, Pc, becomes a significant issue. 
The dimensional variables, L, W, and therefore the capacity, C, are also factors 
to be considered. Suppose that an upper limit is imposed on Pc and we are given 
fixed values for some of the other variables. Under  these conditions, it is 
important to be able to study the response, i.e., the sensitivity, of Pc with respect 
to the behavior of the remaining (unfixed) variables. 

In other contexts, the effective flow rate, )~etf; that is, the rate at which the 
arrivals are routed through the corridor (floor space), is of paramount  concern. 
For this reason, the study of )~en, also known as the throughput, as a function of 
)~, is of practical importance. 

In the sub-sections that follow, the issues above are examined. In the next three 
sections, the focus is placed on the effect that 7~, L, and W each have on the 
value of Pc and how an upper bound on Pc limits the range of values of )~, L, 
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and W. In the last section on sensitivity analysis, the throughput as a function of 
the arrival rate is examined. Computer  programs that are useful in studying the 
interrelationships of X, ?tel f, L, W, C and Pc discussed in the text are available 
from the authors. 

?t TRAFFIC ANALYSIS 

Consider a public corridor with dimensions L and W as depicted in fig. 3 
which is our floor plan representation of a single Steiner node with 4 inputs into 
an equivalent single corridor model. If we know that there is an upper bound on 
Pc, which will be referred to as Pc~, then we will want to know how high the 
arrival rate, X, can be without allowing Pc to exceed Pcv. We will refer to such 
an arrival rate as X v. 

A program named LEAM, available from the authors, is useful as a subroutine 
to calculate Pc given X, L, and W until a value of X is found that gives Pc close 
enough to Pcv to satisfy an arbitrary stopping condition. Another  program called 
LESLAM, also available from the authors, uses bisection as a unidimensional 
search technique over many values of X. The interval containing Xu, which yields 
Pcu, is halved until it is small enough to satisfy the stopping criterion. The 
approximation to X is given as the lower bound on the interval that contains the 
actual h, since Pc increases monotonically with X for fixed values on L and W. 

Another  method for determining X, given L, W, and Pce involves the use of 
graphs such as those shown in figs. 4 and 5. The capacity, C, is determined from 
L and W, by using eqn. (1). The curves of constant capacity are used to project 
the value of Pc to the axis corresponding to 0 = X//xl- Since we are given the 
value of Pc and can determine ~1, because/~1 = 1 .5 /L  (see eqs. (10) and (12)), we 
can calculate- X = O/~- It is important to note that the capacity curves in figs. 4 
and 5 are the result of values of L and W such that the product  5 L W  is equal to 
an integer value. 

A few interesting observations about the curves in figs. 4 and 5 can be made. 
First of all, the curves that correspond to higher capacities have lower values of 
Pc (i.e., the curves never intersect); this should be intuitively obvious. Also, the 
bend on the curves corresponding to the linear congestion model are much 
sharper and occur at higher probabilities than those corresponding to the ex- 
ponential congestion model. Finally, the curves corresponding to the exponential 
congestion model approach Pc = 1 asymptotically much more slowly then those 
corresponding to the linear congestion model. 

Pcu ANALYSIS 

Suppose that a corridor is to be placed in a location in which it will be exposed 
to a traffic flow of rate )t; that either one, but only one, of the dimensions (L  or 
W) is specified; and that an upper bound, Pc~, is specified, for Pc. Under  these 
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circumstances, it would be enlightening to be able to study the behavior of the 
unfixed dimension (L or W) in terms of its effect on Pc. 

Consider a situation in which ~, Pcu, and width IV, are specified. We would 
need to investigate the behavior of Pc <~ Pce for variations in the corridor length, 
L. An increase in L has two opposing influences on the traffic flow in terms of 
Pc. By virtue of increasing the capacity of the corridor, the sensitivity of Pc to 
changes in congestion decreases since the area of the corridor increases; however, 
this benefit is adversely affected by the fact that increasing the length gives the 
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occupants a longer distance to travel within the corridor. Because of the behavior 
of these opposing influences, there is a minimum value of Pc, which we will refer 

,,(rain) with its corresponding length, L*,  and capacity, C *. For  all values of to as ~'c , 
L >/L* the effect of the occupants having to travel a longer distance to leave has 
a stronger overall effect on the congestion than the integral increase in capacity 
that will accompany an increase in L. Therefore, increasing L, when L >~ L*,  will 

increase Pc. 
There is a more interesting phenomenon that occurs within the interval of 

values of L, r (c )  to 1<c) for a given C. For  very small (i.e., infinitesimal) ~(min)  ~(max) ,  
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E > 0, define 

C 
L(C) _ (27) 

(min) 5 W  

L(C) C + 1 
(max)-- 5 W  s (28) 

Thus r(c)  is the largest value for L in a corridor of width, W, and capacity, ~(max) 
C. Within such an interval, as L increases, Pc increases in the linear congestion 
model. The reverse is true, however, for the exponential congestion model (Pc 
decreases). As the length increases infinitesimally from r(C) T ( c +  1) *,(max) to *-'(min) , there is a 
step increase (decrease) in Pc in the exponential (linear) congestion model. 

Thus to determine the maximum length of the corridor, greater then L*, that 
will give Pc <~Pcu, we need to specify which kind of length, ~(min)l(c) or *'(max),r(C) we 
are interested in determining. Thus, given X, W, Pcu, and the kind of length that 
interests us, we solve for C first by experimental calculations of Pc~ for different 
values of C and its corresponding value of L. The C that yields the largest value 
of Pc such that Pc <~ Pcv, is the capacity we are trying to determine. The value of 
L that corresponds to Pc is the length of interest to us. 

A program that determines the maximum length, for the kind of length that  we 
are interested in, is also available from the authors; it is named LESL. A 
golden-section search over the (integer) values of C, is performed to locate C* 
(and therefore L*). Next, bisection is performed over all values of C, starting 
with C* -%< C ~< 10000, until the value of C for max Pc <~Pcu is determined. The 
value of the kind of length that we are interested in, either ~(n~n)r(C) or "-'(max)r(C), is then 
determined by using either eq. (27) or eq. (28), with e -- 0 in LESL. 

Suppose X, Pcv, and L are specified. We would like to determine the 
minimum width of the corridor that would give Pc <~Pcu. Note that the only 
effect of decreasing the width would be to increase the congestion of the traffic 
flow; therefore, it is obvious that Pc increases monotonically as the width is 
decreased. 

Also available from the authors is a program, named LESW, that performs a 
bisectional search for Cmin- Using eq. (1), the corresponding width is then 
determined. 

~kef f A N A L Y S I S  

Consider a corridor of dimensions L and W. We want to determine how much 
flow the corridor can handle on the average (i.e., over a long period of time). The 
effective flow rate, ~keff, known as the throughput, is related to X and Pc as 
shown by eq. (29). 

m, 

Xefe = X(1 - p c ) -  (29) 

We know that as X increases, Pc also increases; thus, there must be a value, 
X*, that maximizes Xef f. An experimental approach can be used to find (a close 
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approximation to) X* by calculating the value of Pc for each trial value of X, 
however, available form the authors is a program, named LESMEL, that per- 
forms a golden-section search for X*. After the size of the interval containing X* 
is reduced below the size that is specified by the s topping criterion, the X that 
corresponds to the highest value of Xef f is used as a close approximation to X*. 

Some observations on the behavior of X,ff, with respect to X, may be of 
interest to some investigators; see figs. 6 and 7. One such observation is that the 
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value of X for linear congestion will drop in value much more rapidly than that 
of exponential congestion once the value of ?t exceeds )t*. Also, it is obvious that 
the asymptotic value of Xef f (for very large X) is a far more sizeable fraction of 
the maximum ?'elf for the case of exponential congestion than it is for the case of 
linear congestion, which is typically close to zero. This behavior, as illustrated for 
the case of L = 100 meters and W =  4 meters in figs. 6 and 7, is typical of all 
corridors having constant dimensions. 

Because the contrast in the behavior of Xef f between linear and exponential 
congestion is so significant for values of X > ?t*, it may be practical to use a 
weighted average of the pedestrian velocities of the linear and exponential 
congestion models when modeling the behavior of a real situation involving 
pedestrians in a corridor of constant dimensions whenever X > X*. 

6. Summary and conclusions 

In this paper, state dependent queueing models for capturing the congestion 
effects of pedestrian traffic flow within circulation systems of buildings has been 
proposed and developed. Linear and exponential state dependent service models 
were developed to account for the decreasing service rate within horizontal, 
single-flow circulation systems as  the density of customers within the circulation 
sb~stem increases. Not only do the models afford an analyst the means to analyze 
existing circulation systems for throughputs, sojourn times, blocking probabilities, 
mean delays and number of customers within the system, they afford a means to 
design a circulation system to achieve a certain performance level by varying the 
arrival rate, X, and critical design variables L, W, and C. Finally, along with 
their mathematical development, FORTRAN-77 computer implementations of 
the models described in the text are available from the authors upon request. 

Future extensions of this work will investigate multi-directional traffic flows 
and the related design problems o f  cross and t-intersections as well as their 
integration into larger queueing network models of circulation systems and 
facilities. 
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