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The Rare Perturbation Analysis (RPA) method is presented using two approaches: a direct 
one and an indirect one via a pathwise interpretation of the Likelihood Ratio Method 
(LRM). These two approaches give a new point of view for the Smoothed Perturbation 
AnalySis (SPA) discussed in Gong [4] and extend the validity of the formulas therein, in 
particular to the estimation of derivatives of quantities that can be computed over a busy 
cycle. A heuristic comparison with LRM is given and simulation results are presented to 
compare the performance of LRM, RPA, and a finite difference RPA in a simple system. 
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1. Introduction 

The computation of derivatives with respect to a parameter  of operational 
characteristics of either finite horizon or stationary performance measures of 
queueing systems by means of simulation has recently been the subject of a 
number  of articles, under the general heading of Perturbation Analysis. This 
research was motivated by the work of Ho, who invented the Infinitesimal 
Perturbation Analysis (IPA) method (see, for instance, Ho and Cao [6] and Suri 
[11]). 

Let A be the varying parameter  - for instance, the intensity of a Poisson 
process N A - and denote by ~A the corresponding trajectory value of a 
performance index E(gtA) when the intensity is set to the value A. 
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IPA seeks conditions under which the following holds: 

d E(qra) = E  ~lim0~-(gtz+Az--qtA) " 
dh 

The applicability of IPA depends on the continuity and differentiability of g t ,  
and on the validity of the interchange of limits (AA ~ 0) and expectations in the 
expression limzA_~0E{(gta+AA -- qtA)/AA} (see theorem 1 in L'Ecuyer [7]). As is 
well known, a number of interesting systems do not verify this condition, and 
this has led Gong and Ho [5] to devise a variant of IPA which they called 
smoothed perturbation analysis (SPA). Basically, SPA applies when there exists a 
smoothing ~r-field J such that the interchange of expectations and limits below 
is valid: 

Let AA > 0. In the Rare Perturbation Analysis (RPA) method, N ~+'~a can be 
generated by adding to N a a Poisson process N ~A. The N a+aA process thus 
obtained is rarely different from the initial N A process on finite intervals, hence 
the terminology "rare perturbation". The RPA method just described is the 
positive RPA method. In the negative RPA method, which we shall describe in 
this note, a Poisson process N a-aA is created by thinning a Poisson process N A 
with the thinning probability AA/A. Here again, on finite intervals, N A and 
N A-AA seldom differ. 

In [14], Vfizquez-Abad and Kushner give a detailed description of the con- 
struction of a finite difference estimator (for a particular performance index) 
from the simulation of the path N A using these processes. 

A related, but different idea was proposed by Suri and Cao [12], who studied 
the effect of the removal or the addition of one customer in a closed queueing 
network. In the case of a removal they called their method the marked customer 
method, and in the case of an addition, they called it the phantom customer 
method (this was also the terminology used in Vfizquez-Abad and Kushner [14]). 
The system perturbation they studied is finite whereas in the present article we 
are aiming at the computation of derivatives. However, in the limit AA = 0 we 
end up with phantom and virtual customers. 

Our terminology will differ from that of Suri and Cao [12]: for us their 
marked o r  tagged customer will be called a phantom, whereas their phantom 
will be called a virtual customer. The negative RPA method that we study here 
is associated with phantoms, for which reason we call it the phantom RPA 
method. Analogously, the positive RPA method deals with virtual customers and 
could be called the virtual customer RPA method. 

The positive RPA method may be attributed to Reiman and Simon [8] and 
Simon [10], and is also revisited by Brfimaud and Baccelli [1]. The basic idea of 
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rare perturbation analysis is to keep the trajectories of the two systems that one 
wishes to compare identical with maximum probability, that is, keeping the 
probability of a perturbation small and then evaluating the limiting expectations. 
See Br4maud [2] for more details on the method. This is in contrast with IPA, 
where the trajectories are kept different but close when the parameter incre- 
ment AA is small. 

Another well known method for estimating sensitivities is the Likelihood 
Ratio Method (LRM), studied in Reiman and Weiss [9]. For more references on 
the likelihood ratio technique, see also Glynn [3] and L'Ecuyer [7]. In section 3 
below an interesting connection between LRM and RPA will be given. 

This article is organized as follows. In section 2 we derive a formula for the 
derivative of the expected value of a quantity that can be computed over a busy 
period of a queueing system, with respect to the intensity of the input Poisson 
process. This leads to a formula that is similar to the formula obtained by Gong 
in [4]. However, the formula that we obtain is relative to a random horizon, in 
contrast with Gong [4] who considered fixed times or arrival times of a fixed 
customer. 

For technical reasons an assumption, which is not essential to the problem, 
had to be introduced, restricting the validity of our proof to a class of problems. 
Instead of attempting to remove this assumption, we adopt a radically different 
approach to obtain a different type of formula concerning the derivative with 
respect to a routing probability, where the routing is applied to an arbitrary 
point process. This formula will be called the two-sided RPA formula. Its 
relation with the one-sided version of Gong [4] is explained in section 3. The 
proof of section 3 allows us to extend the domain of validity of the SPA 
formulae to stopping times and performance measures verifying a very mild 
condition. (The stopping times considered in [4] were either a fixed time or the 
arrival time of a given customer.) 

The proof in section 3 is obtained via a pathwise interpretation of the LRM 
formulae for this problem. In section 4 we give a heuristic comparison of the 
LRM and RPA approaches in the situation considered in section 2. We also 
present the results from a simulation designed to compare RPA, LRM and a 
finite difference RPA. 

2. The phantom RPA 

Consider a queueing system defined for non-negative times and starting 
empty at the origin of time. The arrival times of the customers form a Poisson 
process, homogeneous with intensity A, which is denoted N A. The sequence of 
arrival times is denoted {T,,, n ~ N+}, with T o - 0 < T 1 < T 2 < ... and customer 
number n arriving at time T n is endowed with an attribute random variable Zn 
representing for example its service requirement o-,,, its route through the 



252 P. Brdmaud, F.J. Vdzquez-Abad / Pathwise computation of derivatives 

network or its priority class. The sequence {Z n, n ~ N+} is assumed i.i.d, and 
independen t  of N A. 

Now let {X n, n ~ N+} be an i.i.d, sequence,  independen t  both  of N A and 
{Zn}, of {0, 1}-valued random variables with: 

zlA 
e ( < = l ) =  , 

A 

with A > AA > 0. A new queueing system is formed by delet ing cus tomer  
number  n if and only if X,, = 1, for each n >/0. Clearly the resulting arrival 
process forms a Poisson process with intensity A - A A .  The  original system will 
be called the ,t-system and the one derived from it by cancellation of customers 
the (A - AM-system. 

It will be assumed that  the ;l-system is recurrent  in the sense that  it becomes 
empty infinitely of ten with probability 1. The  t ime of terminat ion of the first 
busy period (defined as the epoch of the next arrival that  finds an empty  system) 
will be denoted  by S 1 (thus S 1 < % a.s.). We also assume that the (A - kA)-system 
is domina ted  by the A-system, that  is, whenever  the A-system is empty, the 
(A -ZiA)-system is empty too. This hypothesis will later be removed.  

Let  qP be some operat ing characteristics that  can be computed  on one cycle 
of a queueing  system, for instance the number  of customers served in one cycle 
or the t ime spent  at level k (k customers in the system) during one cycle. For 
the A-system, this quanti ty is denoted:  

~ = ~ ( N  ~, { < } , r  (i) 

thus expressing dependency  upon  N a and {ZJ .  Here  the empty  set r plays only 
a notational  role in order  to distinguish q'a f rom the expression for the 
(A - AA)-system: 

q'a-AA = g ' (  NA, {Z,}, {X~}). (2) 

In Vfi.zquez-Abad and Kushner  [14], a finite difference est imator is con- 
structed using these two processes, so that  the bias of the est imator  depends  on 
the chosen value of AA, which is kept  positive. The  purpose  of the present  work 
is to compute  the left hand derivative: 

d -  1 
dA E[q ' ]  = lim E[g'A - q'~_a~ ] . (3) 

aa ~0 AA 

In order  to do so, we need more notations.  Call N a the number  of points of $I 
N a in (0, $1), call Msl the number  of points in (0, S 1) for which X,, = 1, and call 
A(n, k) a r andom set of k integers among {1, 2 , . . . , n }  without  repet i t ion (of 
course, here k ~< n). It is clear that, for some function g: 

g'A-~A = g (  Na, {Z,,}, A(N~, Ms~)), and (4) 

=g(N {z,,}, r (5) 
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In order to simplify notation, we discard the superscript i in what follows. 
Taking expectations, we get: 

o o  

k = 0  
o o  

= E e[(~(N,  {zo}, A(N,~ 
k = l  

since g(N, {Z~}, A(Nsl, 0)) = g(N, {Zn}, 0). Observing that: 

P(Ms = k i N  , {Z.}, A(Nsl , k)) =e(Ms = k [ Ns, ) 

, k ) ) - - g ( N ,  {Zn} , r , 

we have 

1 

AA 

_- ~ ( 1__)  
k A ' 

--E[~'~_~-~A=e[(g(N,{Zo} , A(N~ 1, ~ ) ) -g (N,  {z,,}, ~) ) •  T 

( ) ( ~ ) ~ (  :~ . ~  •  N& 1 
A k X 

-E[(g(N,  {Zn}, A(Nsp 1 ) ) - g ( N ,  {Z~}, 0)) 

Let us observe now that: 

AA AA 
< T N,~ + T N, I( N,, - 1 )  . 

).k] 
- - -  + 7 -  1 -  1 -  T 

Therefore under certain integrability conditions, we obtain the following 
differentiation formula: 

Xsl 
lim ~ -E[g ta -  gta_aa ] = E  (g(N, {Zn} , 0 ) - g ( N ,  {Z,,}, A(NsI , 1))) 

T zI.L0 

(6) 
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To TI 

LI--L 

Tz T3. T4 T5 
Fig. I. A busy cycle of the N~-system. 

We shall not give the sharpest  condit ions under  which (6) is valid. Instead, we 
shall consider two part icular  cases of interest: 

[g(N, {Zn}, A(Ns~, k)) l  <<. CNs~(resp. CS1), (7) 

where  C is a positive constant.  These  cases occur when  gt A is a sum over the 
points  of N in [0, $1), or an integral over [0, S 1) of a bounded  quantity. In that  
case, a sufficient condit ion for (6) to hold is: 

E [ N ~ ]  < ~ (resp. E[S1, Nsx ] <oo.) (8) 

An  e lementary  example will help to clarify the notations.  

Example: M~ GI /1  / oo / FIFO 
Consider  a single queue  with Poisson arrival stream. The  object is to compute  

by simulat ion the derivative of the  average number  of customers  served in one 
busy period.  Let us construct  the congest ion process {X(t)}. 

Figure 1 shows one busy per iod of the trajectory, starting exactly at t ime 
T o -- 0, where  an arrival to an empty  queue  has occurred.  We have labelled this 
cus tomer  as customer  n u m b e r  zero, thus what  we call the k th arrival (or 
customer)  actually corresponds to the k th arrival after the start of the busy 
per iod (recall that  the definit ions of Ns, and Ms~ are based on the open  interval 
(to, sl)). 

Here  g(N, {%}, ~) = 6. Since the number  Ns, of arrivals in the interval (0, S 1) 
is 5, the quanti ty A(Ns,, 1) can take five values: {1}, {2}, {3}, {4}, and {5}. With 
A(Ns~ , 1) = {1} the first cus tomer  after the start of the cycle is a phan tom and 
the congest ion process becomes  as shown in fig. 2 and thus g(N, {o-n}, {1}) = 1. 

If the p h a n t o m  cus tomer  is the last one arriving to the busy period,  that  is 
A(Ns,, 1 ) =  {5}, then  the congest ion process becomes as depicted in fig. 3 and 
g(N, {Z,,}, {5}) = 5. 

Remark 
In formula  (6), the quanti ty g(N, {Zn}, A ( N s I  , 1)) related to choosing one of 
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To ( ~ T 2  T3 T4 Ts 

Fig. 2. Process N a-~A when the first customer is a phantom. 

the customers of the busy period at random, can be replaced by: 

1 Ns, 

Ns, k=lE g(N, {Zn}, {k}), 

which represents the average over all possible phantoms. Indeed, we have: 

oo 

=E[k~=Ig(N, {Zn}, {k})l{k~Nsl}l{A(Nsl,l)=k} 
co 

II I / 1 r I I 
I I 
I ! 

To T1 T2 T3 T4 @ - i , ~  

Fig. 3. Process N ~-a~ when the last customer is a phantom. 



256 P. Brdmaud, F.J. Vdzquez-Abad /Pathwise computation of derivatives 

The inner conditional expectation can be readily evaluated, obtaining: 

E[g(N, {Zn} , A(Ns, , 1) ) ] - -E  k=lE g ( g ,  {Zn} , {k}) 1,~<.N, I3Ns I 

= }~ g(N, {Zn}, {k}) , 
k = l  

so that formula (6) can be rewritten as: 

] aas0AhE,lim qr  - g~a-aa] = E {g(N, {Zn}, 0 ) - g ( N ,  {Zn}, {k})} 

(9) 

The above modification introduces a gain in simulation at the expense of an 
extra computational effort (which may depend on the traffic intensity and will be 
discussed in section 4) since the quantity of which the expectation is taken in the 
right hand side of (9) has smaller variance than the corresponding one in (6). In 
order to see this, notice that: 

E ~., [g(N, {Zn} , O ) - g ( N ,  {Z,,},{k})] 
k = l  

: E[{Nsl [ g(N, {Zn}, 0 ) - g ( N ,  {Z~}, A(Ns, , 1))]} 

• {N,,[g(N, {z,,}, r  A'(N,,, 1))]}], 
where the random sets A(Nsl, 1) and A'(Nsl, 1) are independent given Nsl. By 
Schwarz's inequality, the above quantity is smaller than or equal to: 

E[{Ns,[g(N , {Zn}, 0 ) -  g(N, {Zn} , A(Ns~ , 1))]}2]. 

Equality holds only if g(N, {Z,,}, A(Ns,, 1)) and g(N, {Z~}, A'(Ns,, 1)) are 
mutually proportional and this is generally not the case. 

Remark 
Suppose that the rate A was obtained by thinning a Poisson process with rate 

A 0 > A with thinning probability 0, so that A = 0A 0 and that the rate A - AA is 
obtained by the thinning probability 0 - A O  so that A - A A  =A0(0-AO) and 
therefore: 

AA A 

AO O 
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Thus if 0 is the parameter with respect to which the derivative is computed, 
then: 

d E[~o ] = d dA d E[gtA]A 
dO d-A -E[qt~] dO - dA 0-' 

where T0 = gra00 = gta. We therefore recover Gong's formula: 

dod E[~~ =lE[~= 1 {g(N' {Zn}' O) -g(N' {Zn}' {k})} 1 

H I G H E R  O R D E R  D E R I V A T I V E S  

Since the expression of the derivative in (6) is also a function of type (1), one 
can reiterate the procedure just described in order to compute the second order 
derivative of gt with respect to A. From (9), we have: 

d E[~,~]  = 1 
da ~E[h(f, {Z,,}, 1~)], (9') 

where 

NsI 
h(N, {Zn}, r  Y'. {g(N, {Zn}, { a ) - g ( N ,  {Z,,}, {k})}, 

k = l  

and therefore the second derivative is of the form: 

d 2 1 
dA2-E[gt] - A2E[h(N, {Z,,}, 0)] 

1 F Ns' ] 
+ 7E[z__~= 1 {h(N, {Z~}, O)-h(N, {Zn} , {l})} , 

which yields: 

d 2 

d A 2 E [ ~ ]  - 

(io) 

1[. ] 
- -AYE Y', {g(N, {Zn},~J)-g(N , {Z,,}, {k})} 

k = l  

1 { u ,  N,, 
+TE/E E {,(N, {zn}, 2,(f, {<}, {k}) 

D =  1 l = 1  

+g(f, {Z,,}, {k, l})}]. (11) 

From the arguments just presented it is clear that the computational effort 
involved in estimating the second (or higher) derivatives involves evaluation of 
the effects of two (or more) phantoms within the same busy period. 
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3. Derivation of  RPA via likelihood ratios 

The hypothesis of domination of the A-system over the (A - AA)-system is in 
fact restrictive for a number of systems of interest. However, removal of this 
assumption using the method presented in the previous section is technically 
difficult. We shall consider a different approach, less direct but more general, 
and with the additional advantage that it connects the LRM of Reiman and 
Weiss [9] with the RPA method. We shall illustrate the method with an example 
considered by Gong [4]. This example fits the general framework given below. 

THE GENERAL FRAMEWORK 
Let {(T,, Z,,), n >/0} and {Xn, n >~ 1} be two sequences of random elements, 

and let Po, 0 E [0, 1] be a family of probability measures defined on the common 
probability space where the random elements live. The following assumptions 
are made: 

{(T,~, Z,,)} and {X,,} and 1)o-  independent .  / 

X,, ~ {0, 1}, { X , ,  n >~ 1} is i.i.d, with Po(X,~ = 1)=0.~) (12) 

The law of {(T, ,  Z~)} is independent  of 0. 

Define X 0 - 1 and let 5~ k be the o--field generated by {(Xi,  Ti, Zi), 0 <~ i <<. k}. 
Let N be a random variable with values in N such that {N = k} ~ ~ for all 
k >/0, that is, N is an 5~-stopping time. 

Let gr be an ~ - m e a s u r a b l e  functional and suppose that: 

E 0 [ l ~ l ]  <oz for all 0 ~ [0 ,1] .  (13) 

Example  
We consider an example from Gong [4]. Here T 0 -  0 and the sequences 

{T,+ 1 -- T n, n >~ 0} are i.i.d, with values in (0, w); {Z,, n >1 0} are i.i.d, with values 
in (0, ~). The random variable Tn is interpreted as the arrival time of customer 
number n in a queueing system and Z~ is the service requirement of this 
customer, denoted o-, as before. If X~ = 1 then the nth customer is accepted in 
the system, otherwise it is rejected. We have just described a G I / G  input flow 
with random Bernoulli acceptance. Let the queueing system be, for instance, 
one with K servers at unit speed, an infinite capacity waiting room and 
first-come-first-served service discipline. Assume the system to be stable for all 
0 ~ [0, 1], that is to say: 

E[oq] 
- - < K .  E[T1] 

Suppose the queue is empty at time T o = 0 - .  In view of the stability 
assumption the queue eventually empties (a.s.). We call S the first beginning of 
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a busy period after T o = 0 and N the number  of customers that arrived within 
(0, S), which is also the number  of customers served in the first busy cycle. For 
the functional gt take, for instance: 

J0' = l{Q(s)>C} ds 

for a fixed constant C, where {Q(t), t >/0} is the congestion process, i.e. Q(-) is 
the number of customers in the waiting line (accepted but not receiving service). 
This particular choice counts the time during which t h e  congestion process 
exeeds a particular value C. As another example, take: 

o o  

i=0 
where W~ is the time customer i waits in line. This functional gr is the 
cumulative waiting time of all customers accepted in the first busy period. 

Remark 
Since the phantom method involves computat ion of the resulting trajectory 

when customers are removed, the pathwise domination assumption depends on 
how we model  the system. In particular, for a single server FIFO queue this 
property follows if we associate the service time with the customers. This would 
be the case in the present example for K = 1. 

THE LRM PERTURBATION ANALYSIS 
The objective is to find an expression for the derivative dEo[g']/dO of the 

form Eo[45]. To obtain this we start with the likelihood ratio approach: we 
assume first without loss of generality that Po+•o is constructed from Po in such 
a way that for all k >/1, Po+ao << Po o n  F k and: 

dP~176 = i=INkO-t-AO--Xio ] I~-Ii=l 1-0-A0(11 - 0  - Xi)] 

= 1 +  0 1 1 - 0  

--Lk(O, AO), (14) 

and we assume that 

dP~176 ~ 
dp ~ =LN(O, AO). (15) 

Since N is a stopping time, (15) in general requires a proof (and special 
conditions) that will be given later. 
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We have: 

A0 (e0+~0['P] - e 0 [ ~ ] )  =E0 ~ A0 " 

An easy computat ion yields: 

)1 lim = X~ - ( 1 - X  i . (16) 
~o--,o AO 1 0 i=1  

Let us assume 'the following iimit holds (a proof and conditions for this are 
given below): 

)0imo e~ ~ ,:~ ~ 1 - o  

then it follows that: 

dod Eo[ g~] =Eo ~ 0 Xi 
i=1  

I N T E G R A B I L I T Y  C O N D I T I O N S  

, 

(17) 

We shall now give conditions under  which (15) and (17) are satisfied. For (15), 
the condition: 

P o ( N < ~ ) = I  for a l l 0 ~ [ 0 , 1 ]  (19) 

is enough. In order  to see this, we have to show that for all A ~ ~N 

Eo[1ALN(O, AO)] : EO+AO[1AI. 
But if N <  o~ (po+,~o-a.s.), then Y:~=01{N=k} = 1 (Po+ao-a.s.), and therefore,  

taking into account the fact that A N {N = k} e 5~ k for all k >~ 0, 

k=O k=O 

=Eo[1ALN], 
where  we have used for the last equality the assumption N < oo (P0-a.s.), which 
guarantees that E~=01A nlN=~ = 1A (Po -a's')" 

We now turn to the expression (17). Call M 1 = ~Xi, M 2 = E(1 -X i ) ,  then it 
follows from (14) that the second derivative of LN(O, h) with respect to h is: 

d 2 ( MI(M 1 - 1) Ma(M 2 - 1) 
dh2LN(O, h)=LN(O,  h) l  -~+-h-) 5 + ( 1 - 0 - h )  2 

} - 2  (o + h ) ( 1 - o - h )  " 

1 0,1  )1)1 . ,18) 
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By Taylor's formula, we have: 

L N ( O , h ) - I  (M1 M2 ) 
gt h = ~ 0 1 ~  + h~P'LN(O' ah) 

MI(M 1 - 1) M2(M 2 - 1) 

( 1 - 0 - 0 e h )  2 

aiM2 } 
- 2  (O + ah)~-- - -0  - a h )  (20) 

for some (random) oe ~ (0, 1). The quantity inside brackets in (20) is bounded by 
KN 2 for some K >  0 (not random but depending upon 0) as long as h is 
sufficiently close to 0. Also, for any e > 0 and sufficiently small h, I L,,(O, oeh) l 
< e ~N. Therefore,  if: 

Eo[l!trle ~x] <oo for some e > 0, (21) 

then (18) holds true, as one can see from (20). 

Remark 
If [gt] is bounded by some polynomial in N, condition (21) is implied by 

E0[e ~N] < oo for some e > 0. 

Remark 
There  are situations in which a condition weaker than (21) is sufficient. 

Indeed,  using Lagrange's residual 

L N ( O ' h ) - I  = g t (  M1 M2 ) ~ - 1 s  ~62 
1/* h 0 1 - 0  +,~ ( h - t ) u , ,  Lx(O't)gt  dt 

in absolute value, the expression for the residual term is bounded by: 

1 h K h fo (h - t)E~ Lf(O' t )KN21~ [l dt = h-fo (h - t)E~ ]xIzl N2l dt, 

which goes to 0 as h ~ 0 if Eo+,[I~IN 2] is bounded in a t-neighborhood of 0. 
Suppose for instance that I g t I <  TN for some , / >  0; it then suffices that 

Eo+,[N 3] be bounded in a t-neighborhood of 0. The domination assumption of 
section 2 precisely guarantees such a condition. 

MODIFICATION OF LRM 
We now turn to the analysis that yields the two-sided RPA estimators. Define 

for each i ~ I%/+ the probability measures P+i and P-i by: 

dP +i 1 dP i 1 
dP o - 0 l{x'=l}' dP o - 1 - 0 l{x'=~ (22) 



262 P. Brdmaud, F.J. Vdzquez-Abad / Pathwise computation of derivatives 

P+i gives to {(T n, Zn), n ~ N; X, ,  n ~ N+-{i}} the same distribution as Po, 
the only difference between Po and P+i being that  P+i(Xi = 1) = 1. An analo- 
gous s ta tement  is true for P-i,  with P_i( Xi = O) = 1. 

Therefore ,  denot ing by ~+ i  the functional  g '  computed  with the ith cus- 
tomer  accepted (even if X i --0), and by gr-i  the functional  g* calculated with 
the i th cus tomer  always rejected, we have: 

[ No llrl{i<~N}-~ l{xi=l} = Eo[alY+il{i<~N+i}], 

1 (23) [ 

E0lg ' l(1 .< N} 1 -- 0 I{XI=0} = E~ N_i}], 

where  N+i and N_i receive the obvious in terpre ta t ion (in the example above, 
they represent  the n u m b e r  of customers  served within the first busy cycle when 
cus tomer  number  i is e i ther  accepted or rejected with probability 1). Observe 
that  if i > N then  N + i  = N _  i = N, and 1 / - t+ i  = l / f _  i = ~ and therefore:  

Eo[ ~ ~il{i <~ N+i } -- ltt-il{i<~ N_I}] 

= Eo[( ~T)'+il{i ~< N+i , -- llF-il{i ~ N_i})l{i <. N,] 

-t- go[ (~ff +illi ~ N+i } -- ttt_il{i<~N_i})l{i> N}] 

= Eo[(qs+il{i-< N+a-  g'-il{i ~ n_,})l{i<~ N}], 

since the term involving 1{i> N} vanishes. We shall assume that  i < N  implies 
i ~< N+z and i ~< N s, which is not  a restrictive assumption.  Indeed,  if N is the 
entrance t ime (measured in cus tomer  number)  to a set G of an R - a d a p t e d  
process, then the si tuation N+_s < i ~< N is impossible, because for all customers 
before i the (T,,, Z,,, X , )  process was undis turbed  and thus it could not have 
reached the set G at N+_ i < i <~N. Notice that  this condit ion is fulfilled in the 
case that  N is the beginning of the next busy cycle. Unde r  this assumption,  we 
have: [ [ 1 

1 - Eo ~/tl{i -< N} l{xi=0} E~ ~ltl{i<'N)o l{xi=l} ~ I - - 0  

= E o [ ( l I f + i -  l[J_i)l{i~N}]. (24) 

Adding  up over all possible i we obtain: 

I ,] d Eo[gt] =Eo y ' ( g , + i _ g , _ i  �9 (25) 
dO i=1 

A natural  quest ion arises: What  is the relat ion be tween the two-sided R P A  
est imate (25) and the one-s ided R P A  est imate (9) of our  previous section? In 
order  to answer this question, we shall state the problem considered in section 2 
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in the general  f ramework given at the beginning of the  present  section. The  
sequence {T~} is now a Poisson process with intensity 3.o, which upon  thinning 
with acceptance probability 0 =3./3.o,  becomes  a Poisson process with rate 3.. 
Since dO = d3./3. 0, (25) can be wri t ten for this case as: 

63.d Ez[gr] = 17-a0Ea [ ~-" (1P+ii=l -- 1p'_i) ] . (26) 

According to the general  framework,  the thinning of the process with rate 3. o 
is achieved through the r andom variables Xi, which depend  on 0, thus obtaining 
a Poisson process with rate 3.. A ~<3.0 ensures  that  0 is well def ined as a 
probability. Equat ion  (26) uses the original process with rate A 0 in order  to 
est imate the derivative at A, but  the actual est imates presented  in section 2 were 
evaluated at A = 3.o, which corresponds  to 0 = 1. The  likelihood ratio technique  
cannot  be used at extreme points of the parameters  (in this case, eqs. (22) do not  
make sense for 0 = 0 or 0 = 1), since absolute continuity of Po (0 ~ (0, 1)) with 
respect to Poo (00 = 1 or 0) is lost. 

However,  we can still give a meaningful  in terpre ta t ion of the expression (26) 
when 3. tends to A 0 without  using explicitly the parametr ized  familiy of probabil- 
ities {Po}. Indeed,  the functional gr+i is the resulting value of the functional  
given that  X~ = 1. In the limiting case when  3. = A0, X; - 1, so that  q*+i becomes 
xp, whereas  g*_~ becomes  the functional  evaluated when we phantomize  the ith 
customer  (X~ = 0). This in terpre ta t ion  yields exactly formula (9). 

4. Performance of the phantom RPA method 

COMPARISON BETWEEN RPA AND LRM 
We shall compare  the formula (6), which we rewrite here  for convenience:  

d [( Nsl ] 
- - E [ ~ A I = E d A  g ( N ' { Z " } ' O ) - g ( N ' { Z " } ' A ( N s " I ) ) ) ~  - , (27) 

to the formula that  can be obta ined from the likelihood ratio me thod  (LRM) of 
Re iman  and Weiss [9]: 

d [(,,+1, ) ] 
- - E [ g ~ a ]  =E S, g(N,  {Z~), O) �9 (28) 
d3. a 

It is not easy to make  a direct comparison be tween the R P A  and the L R M  
methods  of s imulat ion based on formulas (27) and (28). Both methods  yield 
essentially unbiassed estimators,  since both  would compute  the empirical means  
of the quanti t ies under  expectat ion in the right hand  side of their  respective 



264 P. Brdmaud, F.J. Vdzquez-Abad / Pathwise computation of derivatives 

definitions. The comparisons must be based on their variance, and therefore one 
must work with the two quantities: 

1,,,2N  1 E (g(N, {Zn}, r {Zn}, A(Ns,, ))) -~-1' (RPA) (29) 

Elg(N,{Zn},(j)z((Ns +1) )2]  ,~ S 1 . (LRM) (30) 

This comparison is not obvious. We will show the advantage of RPA over 
LRM on a simulation example. Of course there is no claim of generality in these 
comparisons and one must remain cautious about the conclusions, but we 
believe these results do show the general behavior of the methods. 

Before we discuss the simulation experiments, we shall give a heuristic 
argument in favor of RPA in the case where: 

g(N, {Zn}, ~)>~g(N,  {Z,,}, {k}) for all 1 ~k <~N& (31) 

in which case, naturally 

d 
- -E [q tA]  >/O. (32) 
dA 

The quantity for which we compute the mean with the right hand side of (27) 
is always non-negative, whereas in (28) it can be negative. Since they both have 
the same meanl there is room for the belief that RPA will give smaller variance. 
Let us consider a somewhat useless, but illustrative example, where ~A = 1 is a 
constant. In this case RPA will yield exactly the correct value (0 with variance 0). 
In contrast, LRM gives an estimator with correct zero mean, but with variance 
E[((Nst q- 1)//~ - 31)21 = E[31]//~. 

Although this example is outrageously ad hoc, it points out a possibility that is 
actually verified in the simulations: the variance of the LRM method gets worse 
as the traffic intensity increases. This phenomenon is also experienced with the 
RPA method, but its amplitude is smaller. 

RESULTS FROM THE SIMULATIONS 

The simulations are made for an M/M/1/oo queue and the quantity of 
interest is the derivative of the expected number of customers served in a busy 
period. This simple example allows us to evaluate the exact expressions of the 
stationary averages of interest, which makes the qualitative analysis easier. 

We shall compare three methods for simulations, the LRM, the RPA and the 
finite difference RPA of [14], consisting in the computat ion of the first order 
approximation of the derivative: 

1 
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Table 1 
The systems for the simulations 
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Simulation /z A p 

1 1.0 0.4 0.400 
2 1.2 0.8 0.666 
3 1.0 0.8 0.800 

for fixed ZlA > 0. It gives a bias that can be reduced by a proper choice of the 
paramete r  AA. 

We ran the simulation for three different systems, whose parameter  values 
are given in table 1, where: 

A = mean  arrival rate of Poisson stream, 
/z = mean  service rate (/x-1 is the mean  service time), 
p = A/ix = traffic intensity. 

Let A i be the number  of services completed during the ith busy period (that 
is, A~. = Nsl + 1). Then  the problem is to estimate the stationary expectation of 
_/t 1 as  well as its derivative with respect to A. 

From the expressions of the stationary probabilities of the M / M / 1 / o ~  queue, 
we have: 

/x 
- - -  ( 3 3 . 1 )  

~ - A '  

d /z 
dAEz[A1]rl _ ( / x - A ) ; '  (33.2) 

AaEa[ A1] ) ( 3 3 . 3 )  
AA AA / x - A  / x - A + A A  ' 

where  the subscript A denotes expectations with respect to the stationary 
measure  of the process for parameter  A. 

In order  to study the properties of the estimators of the derivative con- 
structed according to the different  methods considered, we designed a Monte 
Carlo procedure.  The process is simulated and every N busy periods the 
different  estimators are calculated in the form of a sample average over those N 
cycles, evaluating a sample of K derivative estimators for each method.  Specifi- 
cally, for k = 0 , . . . ,  K - 1 we calculate: 

1 N ( k + l ) ( A i )  
Z~ A ) : -  Y'~ N i ~ -  - S i , (34.1) 

N i=Nk+l 
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1N k+I, E1Ai ,] 
Z(~ ~ ) = -  E -~ E ( A i - A i ( J )  , (34.2) 

N i:Nk+l j=2  

Z(kC) = --N i= ~Nk+ 1 Ai--Ai(j)l{j-2/Nsi<~U'<J-1/Nsl} ' 

for j : 2 , . . . , A i ,  (34.3) 

1 [ 1 N ( k + l ) l N ( k + l )  Ai ] 
Z(f)- 2A E Ai--- E E 1{<(i)=,} , (34.4) 

i=Nk+1 N~ i=Nk+l j = l  

where A i ( j )  , 2 ~ j  ~ A  i denotes the quantity g ( N  A, {Zn} , { j -  1}): in this case 
the number  of services in the ith busy period when the ] th  customer is a 
phantom. In (34.3), the random variable 0 ~< U,. 4 1 is uniformly distributed; that 
is, we choose at random one of the customers 2 ~<j ~<Ai within the ith busy 
period to be phantomized. 

In the last formula, {Xi(]); ] = 1, . . . ,  AJ  are i.i.d, random variables with 
P(Xi( j )  = 1) = l -P (X i ( j )  = 0) = A A / A ,  and N [  denotes the number  of busy 
periods that result in the phantom queue during the whole time interval 
[Suk, SN(k+I)) over which the average Zk (D) is evaluated (S o = T o - 0 is the start 
of the simulation with the first arrival to an idle server). The number  of total 
arrivals in the phantom queue is divided by this number  to get the sample 
average of the number  of customers per busy period in the (A - AA)-system. By 
construction, then, the stationary expectation of Z~ D) coincides with (33.3). 

The quantity EA[A 1] was estimated - naturally - through the sample averages 

1 N(A+ 1) 

EA,.  
i=Nk+l 

Each simulation (see table 2) consisted of K = 50 runs of N = 10,000 busy 
cycles, computing the sample mean and variance of the estimators according to: 

1 x 
2 : ~ I2 Z~, (35.1) 

k = l  

1 K 
(Zk - Z)  2 , (35.2) 

Var Z = ~ k : 1 

Table 2 

Methods for simulations 

A LRM 
B Averaged RPA 
C Randomized RPA 
D Finite difference RPA 
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Table 3 
Results from Monte Carlo simulation 
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Quantity System 1 System 2 System 3 
AA = 0.005 zlh = 0.010 AA = 0.010 

Ex[A i] 1.67 3.00 5.00 

d 1.6662 (0.0003) 2.9947 (0.0030) 5.0093 (0.0208) 

d 
dA Ea[Ai] 2.78 7.50 25.00 

zIzE;~[Ai] 2.75 7.32 23.81 

2 (`4) 2.7475 (0.0453) 7.2416 (0.5569) 24.6303 

2 (B~ 2.7686 (0.0133) 7.3843 (0.1877) 25.0325 

~(c~ 2.7560 (0.0217) 7.3467 (0.4032) 23.5059 

2~ (D~ 2.5679 (0.2429) 7.1132 (0.5813) 23.3346 

(10.6829) 

(4.7038) 

(8.7154) 

(4.1962) 

for the different estimators in (34). It is important to mention that we simulated 
the system for 0nly one trajectory, which was used in the evaluation of all the 
estimators. The results are summarized in table 3, where the means (35.1) and 
the sample variances (35.2) are reported for each system (the variances are 
shown in parentheses). Equations (33) were used to evaluate the theoretical 
values for each system. 

As already mentioned, the finite difference RPA depends on a parameter  
AA > 0 which has to be fixed. We experimented with three different values of 
AA for each system simulated. Our results coincide with the expected behavior: 
as AA decreases, the finite difference (33.3) gets closer to the derivative (33.2) as 

does the average Z (D~, at the expense of an increase in variance. We have 
chosen just one among these experiments to report in table 3. 

For the RPA method, the simulation method B of the algorithm based on 
formula (9) yields less variance than the version of the algorithm based on 
formula (6) (method C), at the expense of an increase in computational 
complexity for heavier traffic conditions. Indeed, in both algorithms we keep 
track of the quantities Ai(j)  within each busy period, then in (34.2) we average 
them, thus the number  of operations required depends on the random variable 
A i, which increases with increasing p. In (34.3), however, a random variable is 
generated every time the busy period has finished, and the corresponding term 
is added to the estimator, so the operation count per busy cycle does not depend 
on the traffic. 

It is clear from the above results that the phantom RPA method outperforms 
both the LRM and the finite difference RPA. However, the averaged RPA 
method, which exhibits the greatest advantage in terms of variance reduction, 
requires more computations than LRM for instance. Randomized RPA is less 
consuming, but as the traffic intensity p increases its advantage over LRM 
seems to diminish. In our example, it seems competitive when p < 0.5. 
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5. Concluding remarks 

We have presented the Rare Perturbation Method for sensitivity analysis with 
two approaches: the first one is direct and explains the terminology used, the 
second one, via likelihod ratios, allowed us to give the RPA formulas with weak 
assumptions on the moments  of the stopping times involved (ends of busy cycles, 
for instance). The formulas obtained in section 2 are similar to those obtained 
by Gong [4], whereas the formulas obtained in section 3 differ in that they are 
"two-sided". 

As we have discussed, the method is applicable to G I / G I  queues with 
randomly deleted arrivals. Such problems may be of interest for routing in 
queueing networks, using the surrogate estimation approach introduced in 
Vfizquez-Abad [13]. The applicability of the phantom method to optimization of 
general queueing networks may represent an important alternative to currently 
available methods. In [13] and Vfizquez-Abad and Kushner [14], the scheme uses 
a Monte Carlo estimation approach over time intervals of fixed length in order 
to calculate derivatives of stationary averages. A second order finite difference 
RPA was used to construct a controlling automaton for routing in data net- 
works. It was shown in [14] that this sensitivity estimator worked better for that 
problem than an IPA method. It follows from the construction of the methods 
that whenever a finite difference RPA is applicable, we can readily implement 
the phantom RPA, and in view of the results shown here, it is our belief that the 
phantom RPA method could yield even better performance in such systems, 
although more experimentation is obviously required. 

It should be ment ioned that we have not included an IPA estimator in our 
simulations because of the problem we study: in the infinitesimal IPA, one 
generally assumes that a small value of AA can be chosen so that the order of 
events is the same in the nominal and perturbed queues before passing to the 
limit. Under  this assumption, the number of services within busy periods 
coincides in both systems, so the prediction from the IPA estimator in this case 
is zero. 

It is further explained in Brdmaud [2] why we have chosen to speak of rare 
perturbations in opposition to infinitesimal perturbations. Indeed, IPA changes 
all the perturbed random variables of the system very slightly, whereas RPA 
maintains all the random variables unperturbed except for rare exceptions. RPA 
applies when IPA does not, and most likely efficient perturbation methods will 
be a mixture of RPA and IPA. 

The conditions under which RPA formulas are obtained allow the considera- 
tion of cycles and extend the validity of the analysis given in Gong and Ho [5]. 
This is of especial interest when one considers estimating derivatives of systems 
in equilibrium. Indeed, the cycle estimates can be used to compute stationary 
derivatives using the regenerative method. For instance in the M / G I / 1 / o o  
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queue one has: 

E A { f [ X ( O ) ] }  = /~A[S1 ] = A  l -- --i U~ EA[1F], 

where  ~ = f s l f [X(s)]  ds. T h e r e f o r e :  

d 
d A E a { f [ X ( O ) ] } = ( 1 - 2 o l E a [ q z ]  + A ( 1  - p l E a [ 0 5 ] ,  

with the quantity 4) defined by: 

l(j0' ) ~ =  Ns--~, l { f [X(s ) ]  - f [ X ~ ( s ) ] }  as , 

where Xk(.)  is the quantity corresponding to X( . )  when customer number k 
has been phantomized at random. 
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