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This paper investigates the asymptotic behaviour of the loss probability of the M / G  / 1/K 
and G / M / 1 / K  queues as the buffer size increases. It is shown that the loss probability 
approaches its limiting value, which depends on the offered load, with an exponential decay 
in essentially all cases. The value of the decay rate can be easily computed from the main 
queue parameters. Moreover, the close relation existing between the loss behaviour of the 
two examined queueing systems is highlighted and a duality concept is introduced. Finally 
some numerical examples are given to illustrate on the usefulness of the asymptotic 
approximation. 
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1. Introduction 

A great interest has recently arisen in the study of finite buffer queues (e.g. in 
the communication field, in conjunction with the proposal of the ATM tech- 
nique). In particular, the analysis of the loss probability is becoming a central 
issue in the applications of queueing theory. 

On the other hand, the behaviour of even simple loss systems has always 
turned out to be much harder to determine than the solution of the correspond- 
ing infinite buffer systems. In particular, no simple closed form solutions are 
known to the author, except for the M/M/1 /K  queue; quite cumbersome 
closed formulae have been derived in Neuts [5] for the M/PH/1/K and 
PH/M/1/K queues, but they lend themselves to little more than numerical 
computation, especially for large dimensions of the state space of the PH 
distribution. Even the simple M/G/1 /K  and G/M/1 /K  queues have not 
yielded other than a numerical (albeit quite straightforward) solution, for 
example by using the Imbedded Markou Chain (IMC) approach. 

Although in these cases there is no conceptual difficulty in solving for the loss 
probability, yet some even approximate characterization of the behaviour of 
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such a probability as a function of the buffer size would be desirable, both in 
order to gain more insight into the system performance and because of possible 
numerical instability arising in the solution of large linear equation systems, 
required by large buffer sizes. 

This paper addresses the problem of finding the asymptotic behaviour of the 
loss probability of the M/G/1/K and G/M/1/K systems, as the buffer size 
tends to infinity. 

The main results obtained are that: (i) the loss probability for the two 
examined systems exhibits an exponential decay, i.e. it tends to its limiting value 
at an exponential rate, except for a single particular case, in which the decay is 
linear, (ii) the decay rate can be easily computed from the main queue parame- 
ters. 

The 
taking 

numerical examples reported later show that, in all interesting cases, 
only the leading term of the asymptotic expansion of the loss probability 

results in negligible inaccuracies. This assures that the approximate formulae 
can be powerful tools for the analysis of the loss properties of a finite buffer 
queue of the types considered in this paper. Moreover, the asymptotic formulae 
can be straightforwardly inverted, thus allowing a simple and effective buffer 
dimensioning to be done. 

Finally, there exists an intimate relationship between the whole Queue Length 
Probability Distribution (QLPD) the M/G/1/K queue and the QLPD of its 
dual system, that is a suitably defined as the G/M/1/K queue, in which the 
roles of the arrival and service processes of the original queue are interchanged. 
This duality property is exploited in the proof of the asymptotic behaviour of the 
loss probability. 

As for the organization of the paper, in section 2 the main notations and 
general definitions used in  the paper are introduced. Moreover, a duality 
definition and the relevant property are given. Section 3 deals with the charac- 
terization of the asymptotic behaviour of the loss probability. Finally, section 4 is 
devoted to some numerical examples. 

2. General definitions and duality property 

Let us now introduce some notation. Only steady-state probability distribu- 
tions will be considered: for the two examined queues (and indeed for any finite 
buffer queue) such probability distributions always exist, whatever the value of 
the offered load is. The solution of both queues will be obtained via IMCs, 
choosing respectively the departure epochs and the arrival epochs for the 
M/G/1/K system and the G/M/1/K system. 

The Laplace-Stieltjes transform of the cumulative distribution function of the 
interarrival time and the mean arrival rate will be denoted by F*(s) and A, 
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respectively. As for the service time, the corresponding quantities will be 
denoted by H * ( s )  and p~. 

Further ,  we define the following items: 
K buffer size; obviously, up to K +  1 customers are allowed into the 

queue; 
A o mean offered traffic, equal to A/N; 
O(z) Probability Generating Function (PGF) of the random variable repre- 

senting the number  of arrivals within a service time in the M / G ~ 1  
queue; 

R least modulus root of the equation z = O(z), apart from the trivial root 
z = l ;  

qS(z) PGF of the random variable representing the number  of service com- 
pletions within an interarrival time in the G / M / 1  queue; 

o- least modulus root of the equation z = qS(z), apart from the trivial root 
z = l ;  

~'i(K) ith e lement  of the QLPD at the imbedded time points for the 
M / G / 1 / K  queue, i = 0, 1 , . . . ,  K; 

7r;(~o) same as above for the infinite buffer M / G / 1  queue, i >/0; 
(ri(K) i th element  of the QLPD at imbedded time points for the G / M / 1 / K  

queue, i = 0, 1 , . . . ,  K +  1; 
~-i(oo) same as above for the infinite buffer G / M / 1  queue, i >/0; 
c i ratio of 7ri(K) to 7r0(K) , for i >~ 0; 
C(z) generating function of the sequence {c;}; 

i d i sum of the first i + 1 elements of the sequence {cj} �9 d+ = ~2/=0c/, i >/0; 
D(z)  generating function of the sequence {di}; 
f / ( K )  loss probability of the M / G / 1 / K  queue; 
/ I ( K )  loss probability of the G / M / 1 / K  queue. 
According to the definitions above, it can be immediately deduced that ~ (z )  = 
H*(A - A  z) and qS(z) = F*(/x  - / z z ) .  Moreover, in Baiocchi [1] it is shown that: 
(i) the equation z = ~ ( z )  has no roots with modulus less than or equal to 

max{l, R}, apart from 1 and R themselves; a perfectly analogous result 
holds for the equation z = 4,(z), replacing R with o-; 

(ii) if p ,  denotes the radius of convergence of r  then A o < 1 ~ R �9 (1, p~), 
A o =  I ~ R =  I and A o >  I ~ R � 9  , 1); 

(iii) if P4~ denotes the radius of convergence of qS(z), then A o < 1 ~ cr �9 (0, 1), 
A o = 1 ~ o = 1  and A o > 1 ~ o - � 9  

Finally, the duality property  of the M / G / 1 / K  and G / M / 1 / K  queues is 
introduced. 

If the states of the IMC of the M / G / 1 / K  queue are renumbered  in reversed 
order, so that the state 0 becomes the K th  one, it can be recognized that the 
one-step transition probability matrix of this new Markov chain can be obtained 
from the original matrix by simply reverting all the columns and rows. The 
matrix we get has just the same structure and the same entries as the one-step 
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transition probability matrix of the Markov chain imbedded at the arrival time 
points in a G / M / 1 / K -  1 system, in which the role of the arrival and service 
processes have been interchanged with respect to the original M / G / 1 / K  
queue. The G / M / 1 / K -  1 queue so obtained will be referred to as dual of the 
M / G / 1 / K  queue. 

Analogously, the dual queueing system of a G / M / 1 / K  queue is defined as a 
M / G / 1 / K +  1 queue, in which the role of the arrival and service processes 
have been interchanged and such that the ith state of the Markov chain 
imbedded at the depar ture  epochs in the dual queue corresponds to the 
(K + 1 - i)th state of the IMC of the original queue, i = 0, 1 , . . . ,  K + 1. 

In the following, a subscript d will distinguish the variables referring to the 
dual system of a given one. Then, the definition of duality entails that: 

rri(K ) = ~ -<K_i (K-  1) i = O , . . . , K ,  

~ i (K)=~d ,K+l_ i (K+ 1) i = O , . . . , K +  1. (1) 

Such properties will be exploited in the next section. 

3. Asymptotic behaviour of the loss probability 

In what follows a property  of the power series will be used: let z 0 be a pole of 
multiplicity m + 1 of a function f ( z ) ,  that has no singularities with modulus 
equal to or less than z 0 and let an, n >/0, be the sequence of coefficients of  the 
McLaurin expansion of f ( z ) .  Then in Baiocchi [1] it is shown that 

z~ - l i m  1 - - -  f ( z ) .  (2) l i m a n ( n  +rn) z-,Zo z o 1l--->oo 

The following two theorems summarize the fundamental  results of this paper. 

THEOREM 1 
Let us consider the M / G / 1 / K  queue, as the buffer size K increases: then 

the loss probability approaches its limiting value H(o~) = max{0, 1 - 1/A o} ac- 
cording to the following expressions: 

n ( K )  - n ( o o )  = 

(1 - A o )  2 
R - K + o ( R - K ) ,  d o<1,  

4 , ' ( R )  - 1 

1 - O ' ( R ) R  K o(RK) Ao>  l, 
A 2 + , 

+ o A o = 1, 
2 K + 2  

a s K ~ .  
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Proof 
The  loss probability can be expressed in terms of the probability of finding 

the queue  empty  at a generic t ime point,  /'1"{empty}, by means  of a simple flow 
conservat ion argument ,  equating the mean  flow into the system, i.e. A[1 - / / ( K ) ] ,  
and the m e a n  flow out, i.e. /z[1-Pr{empty}] .  Since, according to Gross and 
Harris [2], Pr{empty} is given by 7ro(K) / (A  o + rr0(K)), it follows that: 

1 
I I ( K ) = I -  o ( K ) + A o .  (3) 

F r o m  this and the identity max{0, 1 - A  o} = 1 - A  o +AoH(0O), it can be 
deduced  that,  for any value of Ao, 

II(  K)  - II(oo) 
 o(K)-max{O, 1-Ao} = [1-n(K)][1-H(0o)] 

and consequently:  

I I ( K )  -II(0o) 
lira = [ 1 - / / ( o o ) 1 2  . (4) 

K-*~ 7r0(K ) - max{0, 1 - A o }  

It now remains to characterize the asymptotic behaviour of ~-0(K) - max{0, 1 
-A0},  as K--* 0o. To this end, we recall a well known result, stated for example 
in Gross and Harris [2], i.e. that  the ratios c i = v i (K) /Tco(K) ,  i = O, t , . . . ,  K, do 
not d e p e n d  upon  K, for an M / G / 1 / K  queue.  The  coefficients c i can be 
genera ted  according to the following set of linear equat ions 

i+1 

OliCo-}- EOdi+l_jCj=Ci, i>O,  (5) 
j = l  

where  c~ i is the probability of i arrivals within a service time, i >~ 0, and c o = 1. 
F r o m  eq. (5), it can be easily derived that  C ( z ) =  (1 - z ) t ~ ( z ) / ( O ( z ) - z ) .  The 
radius of convergence of C(z)  is just equal to R. Moreover,  by the definit ion of 
the sequence  {di}, it follows that  D ( z ) = O ( z ) / ( t p ( z ) - z ) ,  whose radius of 
convergence equals min{1, R}. Finally, f rom the normalizat ion condit ion of the 
QLPD,  it follows that  ~-0(K)dx = 1. 

It is now convenient  to consider  three  different cases, according to the value 
of A o. 

(i) A o < 1. Since in this case R > 1 and therefore  C(z)  is analytic for z = 1, 
limK_~:odK----C(1) = 1 / ( 1 - A o ) .  Then,  f rom / / (0o )=0 ,  v r0 (K)=  1/dt( and eq. 
(4) it follows that  

H ( K )  
lim 

K ~  1 

1 - A  o 

= ( 1 - A o )  2. (6) 

dK 
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Recalling the definition of R, it can be readily verified that the generating 
function A(z) of the sequence 6 K = 1/(1 - A  o) - d  x has a simple pole in z = R  
and no singularities with modulus equal to or less than R. Then,  applying the 
result of eq. (2) with z o =R ,  f ( z ) = A ( z )  and m = 1, it can be obtained that 
limx__,=6KR K= 1 / ( 4 J ' ( R ) -  1). Recalling the definition of 6 K and taking into 
account eq. (6), it finally follows that 

(1 - A o )  2 
lim 17( K ) R  K -  t)' (7) 

( R ) - I  
(ii) A o > 1. In this case R < 1 and it can be easily seen that D(z)  has a 

simple pole in z = R and no singularities with modulus equal to or less than R. 
Then, applying eq. (2) with z o = R  , f ( z ) = D ( z )  and m = 1, we obtain that 
limK_~oodKR K= 1 / ( 1 -  $'(r)). Therefore,  the equality ~-0(K)=  1/dK and eq. 
(4) imply that 

1 - r  
lira [I I (K)-17(oo)]R - K -  2 (8) 

K--,~o A ~ 

(iii) A o = 1. In this case R -- 1 and D(z)  has a double pole in z = 1 and no 
singularities with modulus equal to or less than 1. Then,  applying eq. (2) with 
z o = 1, f ( z ) = D ( z )  and m - - 2 ,  we obtain that l i m K _ ~ J K / ( K +  1 ) =  2 /~" (1 )  
and therefore the equality ~'0(K) = 1/d  K and eq. (5) yield: 

0"(1)  
lim (K + 1)17(K) - (9) 

K--*~ 2 
We have thus completed the proof of theorem 1. [] 

It is to be noted that, in the proof of the case (iii) above, eq. (9) would hold as 
well, even if K + 1 were replaced by K + x, for any real x. The choice made  in 
the formulation of theorem 1 has the only purpose to be consistent with the 
expression of the loss probability of the M / M / 1 / K  queue, which reduces just 
to 1 / ( K + 2 )  for A o =  1. The same observation applies to the case of the 
G / M / 1 / K  queue. 

T H E O R E M  2 

Let us consider the G / M / 1 / K  queue, as the buffer  size K increases: then 
the loss probability approaches its limiting Value /I(oo) = max{0, 1 - 1/A o} ac- 
cording to the following expressions: 

[1 - qS'(o-)]o -K+I + O(o-K+I), A o < 1 ,  

(1--A~ Ao > 1, 
1 

4"(1)  1 ( 1 )  
+o A o = l  

2 K + 2  -K ' 

a s K ~ .  
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Proof 
Since the imbedded time points are the arrival epochs, the loss probability, 

i.e. the probability that a customer finds no room in the system upon his arrival, 
is simply given by rT'K+I(K). 

Let us consider the M / G / 1 / K +  1 queue which is the dual of the given 
G / M / 1 / K .  Since 1 7 ( K ) = ~ x + l ( K ) = r r e o ( K +  1) and A d o = l / A o ,  it follows 
that H ( K ) - / I ( m ) =  zrd0(K+ 1 ) -  max{0, 1-Ado} and therefore, using eq. (4), 
it can be found that 

/ 7 ( K ) - / I ( m )  1 
lira = . (10) 

i ( -~  I Id(K + 1 ) - H d ( m  ) A211 _/~(oo)] 2 

Moreover, on account of the duality,_ 4,d(z) reduces to qS(z) and therefore 
R d = o-. Then, for A o < 1, since/I(oo) = 0, from eqs. (8) and (10) it follows that 

l i m / I ( K ) o  --(x+l) = 1 -  ~b'(o-). (11) 
K~-+ oo 

For A o > 1, using the eqs. (7) and (10), it can be deduced that 

lim [ / I ( K )  -/7(oo)](r x+l (1 -A~ 
- 1 ( 1 2 )  

Finally, for A o = 1, taking into account the observation at the end of theorem 
1, eqs. (9) and (10) yield the equality: 

lim ( K +  2)/~(K) - {b"(1) (13) 
,c~oo 2 

This completes the proof of theorem 2. [] 

The above theorems completely characterize the asymptotic behaviour of the 
loss probability, so that it can be stated in general that the asymptotic expression 
of the loss probability is the sum of its limiting value and of an "error" term that 
dies out at an exponential rate. This is true unless A o = 1; in this particular 
case, the decay behaviour of the loss probability is linear. 

It is to be stressed that the results obtained in theorem 1 depend solely on: (i) 
the validity of eq. (3); (ii) the particular structure of the one-step transition 
probability matrix of the Markov chain imbedded at the departure epochs of the 
M / G / 1 / K  queue. Moreover, the results of theorem 2 depend only on theorem 
1 and on the possibility of establishing a duality principle such that eq. (1) holds. 
As a consequence, extension to other queueing models of the previous results 
can be envisaged. 

For example, the above reasoning could be applied to the G e o / G / 1 / K  
queue, defined as in Louvion, Boyer and Gravey [4], that is, the discrete-time 
version of the M / G / 1 / K  queue. In fact, the whole proof of theorem 1 could be 
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repeated, as points (i) and (ii) above are satisfied for the G e o / G / 1 / K  queue. 
Moreover, if the time axis is divided into fixed size units (slots), p is the 
probability of an arrival in a slot and G(z) is the PGF of the number of slots 
required for servicing a customer, then ~(z)  = G(1 - p  +pz) and A o =pG'(1). 

Moreover, since a duality principle can be introduced also between the 
G e o / G / 1 / K  and the G / G e o / 1 / K  queues, so that eq. (1) still holds, theorem 2 
also could be extended to the discrete-time case. 

As a final remark, it can be easily shown that, for A o < 1, the tail of the 
infinite buffer QLPD tends to 0 according to an exponential decay, at the same 
rate as the loss probability for both M / G / 1 / K  and the G / M / 1 / K  queues. 

As for the G / M / 1 / K  queue, such a result is a trivial consequence of eq. (11) 
and of the fact that ~-i(oo) = (1 - o-)cr i, i ~> 0 (see Kleinrock [3]). Instead, for the 
M / G / 1 / K  queue, it can be deduced form eqs. (4) and (7), observing that 
rri( K)/~o(  K) = c i = ~i(oo)/7ro(oo), i= O, 1,... ,  K, and that therefore the equal- 
ity ~o(~)= 1 - A  o and the normalization condition of the QLPD of the 
M / G / 1 / K  queue imply that 7 r0 (g )=  (1 -Ao)/EiK=oVri(oo). 

4. Numerical examples and results 

The aim of this section is to assess the practical impact of the theory 
discussed in the previous section. Through the evaluation of some numerical 
example, it is shown that the loss probability can be adequately approximated by 
the simple exponential or linear asymptotic expansion given in theorems 1 and 
2. The errors implied by such an asymptotic approximation are negligible, at 
least in the range of values of the loss probability that may be of practical 
interest. 

In the following, the subscript "asy" will denote the leading term of the 
asymptotic expansion of the loss probability. 

M / M / 1 / K  queue. For this case, all of the theorems stated above hold. 
The explicit expression of the loss probability can be straightforwardly com- 

puted for this case. Moreover, in this case 4 , (z )=[1  + A o ( 1 - z ) ]  -1 and R = 
1/Ao, while qS(z) = [1 + (1 - z ) /Ao]  -1 and o-=A o. The asymptotic approxima- 
tion can be derived from both the theorems on the M / G / 1 / K  and G / M / 1 / K  
queues and also by inspection from the expression of II(K), yielding: 

(1  --4~.oy.o~AK+l, Ao < 1, 
1 

H , , y ( K ) - / / ( m )  = K +  2 '  Ao= 1, (14) 

1 A o  , A o > 1. 
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B U F F E R  S I Z E  
Fig. 1. M / M / I / K  queue: loss probability vs. the buffer size for various values of Ao; comparison 

between exact and asymptotic results. 

Figure 1 shows the loss probability vs. the buffer size for various values of the 
mean  offered load, both according to the exact solution and to the asymptotic 
approximation. The errors implied by the use of the simple approximate 
formulae of  eq. (14) are null for the particular case A o = 1, while for all the 
o ther  cases they are negligible, except for low buffer sizes and values of Ao very 
close to 1. 

However,  it is to be noted that in the range of acceptable values of the loss 
probability for a practical system, the asymptotic approximation is in excellent 
agreement  with the exact curves. 

M / D / 1 / K  queue. In this case 0 ( z ) =  e Ao(z-1) and, applying the results of  
theorem 1, we obtain: 

(1 - A o )  2 
A o R - 1 R - K '  A~ <1'  

1 
/ /asy(K)  - /7(00)  = 2 ( K +  2 ) '  Ao= 1, 

1 - A o R  
A2 R K, A o > 1, 

(15) 
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Fig. 2. D e c a y  ra t e  of  the  loss p robab i l i t y  of  the  M / D / 1 / K  q u e u e ,  i.e. t he  leas t  m o d u l u s  roo t  of 
t he  e q u a t i o n  z = exp[Ao(z - 1)], a p a r t  f r om the  trivial r oo t  z = 1. 

wherein R is the least modulus root of the equation z = e A~ apart  from the 
trivial root z = 1. In fig. 2 such a root is plot ted against the mean offered load. 

In fig. 3 the exact curve of the loss probability is compared with the 
approximation resulting from eq. (15), whereas in fig. 4 the same comparison is 
made  with respect  only to the difference be tween  the value of /7 (K)  and its 
limiting value 1 -  1 / A  o. In both cases the asymptotic approximation can be 
used instead of the exact value with virtually no error for any practical value of 
the buffer  size and of the loss probability. 

D / M / 1 / K q u e u e .  In this case qS(z)= e (~-l~/Ao and, applying the results of 
theorem 2, we obtain: 

IrI,,sy( K )  --15[(oo) = 

d o - o -  
_ _ O -  K+1 

Ao 

1 

2 ( K +  2 ) '  

(1 - A o )  2 

A o ( O - - A o )  

A o < l ,  

A o = l ,  (16) 

o --(K+l) A o > 1 

wherein o- is the least modulus root of the equation z = e (z-1)/A~ apart from 
the trivial root  z = 1. The behaviour of this root as a function of the mean 
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Fig. 3. M / D / 1 / K  queue: loss probability vs. the buffer size for various values of Ao; comparison 

between exact and asymptotic results. 

100 k [ M/DII/K queue ] 

I , ~ ,  Z- exa-----~T----] 
01 - - ympto t ic  ] 

8 
10 a 

I ~ \ ~ "~ ]-[( ) = 0.0476  

i 0  -3 
0 5 10 15 20 25 30 35 40 

BUFFER SIZE 
Fig. 4. M / D / 1 / K  queue: loss probability minus Fi(w) vs. the buffer size for various values of 

Ao; comparison between exact and asymptotic results. 
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Fig. 5. D / M / 1 / K  queue: loss probability vs. the buffer size for various values of Ao; comparison 
between exact and asymptotic results. 
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Fig. 6. D / M / 1 / K  queue: loss probability minus /7(0o) vs. the buffer size for various values of 
Ao; comparison between exact and asymptotic results. 
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offered load can be  easily deduced  from fig. 2, just replacing the values on the 
x-axis with their reciprocals. 

Figures 5 and 6 show the comparison between the exact curve of the loss 
probability and the approximation resulting from eq. (16). As for the M / G / 1 / K  

queue,  in fig. 6 the comparison is carried out with respect  only to the difference 
be tween  the value o f / ] ( K )  and its limiting value 1 - 1 / A  o. 

Entirely similar comments  apply to this case as for the previous one. 
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