JACKSON-TYPE THEOREMS FOR BEST ONE-SIDED APROXIMATIONS BY TRIGONOMETRICAL
POLYNOMIALS AND SPLINES

A. Andreev, V. A. Popov,
~and B. Sendov

1. Many articles have recently appeared connected with one-sided approximation to func-
tions, originating with the works of Freud [1] and Ganelius [2]. We formulate a result of
Ganelius [2]: let Ty be the set of all trigonometrical polynomials of order n, f a 2m—periodic
function with k-th derlvatlve f(k) of bounded variation, and let ET(f)L be the best one-
sided approximation in Lp, 1< p < o, to the function f by trigonometrical polynomials of
order n:

EE (= int (§ (P@— Q@) de)”: P, Q€T Q@) </@<P @)

for any x. Then (see [2]),
EY (i, << e (k) VIO nkn,

where VDg denotes the variation of the function g on the interval [a, b], and the constant
¢; (k) depends only on k (Ganelius introduced the precise constant c¢,(k), but we shall not be
interested in rthis).

Meir and Sharma [3] consider one-sided approximation by first and third degree splines,
and Freud and Popov [4], having obtained an analog of Freud and Ganelius' results, gener-
alized Meir and Sharma's result for splines of any degree.

Denote by Sk 3, the set of all k-th degree splines on the interval [0, 1] with nodes at
the points 3, ={0 =z, < ... <z, =1} , i.e. » $& 8k,x,, if s =C*! [0, 1] and s is an al-
gebraic polynomial of degree k on the interval [X1—,5 %4 ], i=1, 2, ..., n. The best one-
sided approximation Ekz (f)r, in L;, bounded on the 1nterval [0, 1], to the function f by
splines in Skz is deflned by the formula

By, ()r, = inf (§ (S (&) — s(2)" do)
@) <f@)<S@, z=[0,1].

1/p
: Sr SESk,Zni

Freud and Popov [4] obtained the following result:

Bz, (o, < eo (k) ALV,
where A, =max |z, — x4 |, i=1, ..., n

Using this estimate and the estimates from [1], o-small type estimates were obtained
in [4] for one-sided approximation by algebraic polynomials and splines.

Babenko, Doronin, and Ligun (see [5-7]) considered one~sided approximations in L,
1 < p <o, for certain classes of functlons by trigonometrical polynomials and splines. The
fundamental result of [5] for the class W' L (fe WL, if fr-v is absolutely continuous and
1/ fr, < 1)is the following:

THEOREM A. For any p,1 < p <{ o0, we have the relations
sup E’ (P, = Q™) r=1,2...,

ew

sup B, 5 (A, =00 Y, r=1,2,..., 3, ={z; =ian,i=0,1, ..., 2n}.
jeW"L
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As a corollary we have the following estimate, which we shall use in the future:
1f £(r=1) ig an absolutely continuous function, then

E7 (e 0.0 < )| 19 2 q00m/n (1)
The aim of thlS article is to obtain analogs for E (f)Lp and Ekz (ﬁL of Jackson's’

well-known theorem for best one-sided approx1mat10ns. We obtain these analogs by using the
following modulus:

T O, =1 o (% 8) I,

where o (f;z; 8) =sup [ f () —F ()], |t —2|<82, |t —2|<8/2,and t, t' >belong to the domain
of definition of the function f.

As far as we know, moduli of this type were first used by Sendov [8] and Korovkin [9].
Dolzhenko and Sevast'yanov [10] used this modulus for p = 1 for Hausforff approximations by
pointwise monotonic functions, and established several of its basic properties. Sendov [11]
obtained estimates for the convergence of linear positive operators in Lp using this modulus.

The results of this article were published at the Conference on the Constructive Theory
of Functions in Blagoevgrad in 1977, and announced in [12].

2. We note several properties of the modulus % (f; 8)r, 1 p < oo
Let
o) =suw|f@—f@|z—t]<8,
where x, t belong to the domain of definition of the function f, be the continuity modulus
of f.
LEMMA 1. T (f; &), = o (f; 6).

In connection with this lemma, we note that the case of uniform approximation of func-’
tions essentially coincides with one-sided approximation in L.

LEMMA 2 (See [10]). < (f; 8) = 0 if and only if f is a Riemann-integrable function.
i ' 50
LEMMA 3. 1If f and g are bounded functions, then

T (f + & 8, < (i B)r,, + v (85 O,
LEMMA 4. For any 2n-periodic Riemann—integrable function £, we have the inequality

0 (f; 8)Ly0,2m T (3 B)r0,2m)-

P;oof.
wG:t, = s (§, Ve b =

~ sup (Szn f(z—{-—%)-—f(x—'%)lpdx) 1/::.5<

o<h<d

<(§7 (oo, | (e +5) 1o —5)| e <(§ @i mopran) "= <0y,

o< h<d

LEMMA 5. For any Riemann-integrable function f and any A >0 we have

v (f; M), < (h+ 1) T (F O,

If k is an integer, then

T (f: kﬁ)Lp < kr (f’ G)Lp

The proof of this lemma is essentially the same as the proof by Dolzhenko and Sevast'~
yanov in [10] for the case p = 1.

LEMMA 6. If f is a function bounded on [0, 1], then
T (f; ) < 3% (f; n)/m,
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where

%(fim) = sup B, |£(2) — 1 (wen) |

={0=z<...<z, =1} is the variation modulus of the function f (see [13, 14]).

Proof. Write
S (f; z; 8) =supf(t); It — x| <<O2,
J (f; z; 8) = inf f (2); |t — x| < 6/2.

It follows from the definition of <t (f; 8)r that

“(in e = § ot mnyde=§ (S (o™ =7 (izn)ar -
0 R 1]
=Y SEmny — T Gantyar <o Y (SGE —J (Ean), (2
i==1 Y (i—1)/n =0

where § & li/n, (i +1)/nl. Let € > 0 and E,, § be such that

S (fv Eu _1) f(§)+8/(2n) J(f: En _1)>.f(__l) —8/(272)

Then from (2) we have

oy < 2NV £y f (&

T < Zizllf(&) fE)|+ . (3)
We split up the sum in (3) as follows:
S lf &) — 1 @1 = By 1 Bard) — 1 i) |
For n> 4,
;i/‘ i) — f Goim) | <% (i m),s

since the number of points occurring in the last sum is not greater than [2n/3]+ 2<n, and

max (Egijy  Eoing) << min (Bsivae Esivsy)-
Thus
S V) — FEI< B (fi n).

LEMMA 7 (See [10]). If Vif< o0, then for any & > 0 we have the inequality
T (f; 8) < OV, ;
LEMMA 8. Let f be a 2m-periodic and absolutely continuous function. Then

T (8, <811 lr,-

Proof. Since

f@—10=§ f @,

we obtain

12 6,2 ’
o (f; ;8) = Iti%ézlf(t)—f(tﬂ—“—Iz%:;%"gf(u)dul Sx m|f(t)]dt S_°/2|f(x—u)|du.

Thus

(O, = oz 8) o, <[ |f<x—u)|duhL <§o 17 ey di = 817 1,

891



3. We now consider omne-sided approximations. We first prove two lemmas.

e
LEMMA 9. Let f be a 2n-periodic function, f& L, (0, 2x), So f(&)dt =0, and let there exist
a polynomial T & T, such that T (z) > f(z) for z< 10, 2n]. Then there exists a polynomial
< ,
R & T, such that R(z)> So f@ydt, z =0, 2r] and

(5 |r@ = roaf e <,

where n =||f — Tl o, 2m-
Proof. Let

T(z)=a0+ 2:___1 (ax cos kx + by sin kx).

Set T (x) = T(x) —ap, gla)= S:(f(t)—-T(t))dt. The function g(x) can be written
) 1 2% '
g@ =4+ Die—ng 0=
=4+ 2" Die—neo-TO)E =
4+ S:” Dy () (T (2 — 1) — f(z —u)) du,

where Dyu) = u—=n, v [0, 2x), Dy (u -+ 2a) = Dy (u).
Using [2], we see that there exists y& I, such that y(¥) >D,(u) for ue |0, 2x] and

@ —DiEyam<E, W

where ¢ is an absolute constant.
Set
1 e 270 .
@ =4+ ve—nG@m-Tend

R@)={THd+0@.

Clearly, Q& T,, R&T,- We have

Re—§i0i={ro—1ow+0@-0@-s@ -+ 16—n¢0-Tou—

_i—smDl(z—t)(l(t)_T(t»dt=_LSM?(u)(T(z—u)—f(x—u))du;.
T )y S .v

2T D@ e—n—1e—wdn= 10w - DT @ -0 —fle—w)du>0.

250
Here we are using the fact that So apD; (1) du=0, and thus

§ DT (@ —wydu = §, DT Ee—wd.

On the other hand, using [4] we obtain
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20
0

57 = o= (0w s op = v minr -

~ te—myau[ 4" < LMy @D @ PITe—n) — fe—wPds) du=2 (" v — D @) -

n

CIT~fiy,
n-n

- (S:ﬂ |T(z—u)y—f(z—u) |pd.x)l/pﬂu<

Thus R satisfies the requirements of the lemma.
LEMMA 10. Let the function f have integrable bounded derivative f' on the interval
[0, 1]. Then for any  k, k> 1, we have the inequality
Eyz, (N, <@+ 1) AnBiy 5, (ML,
T.=0=5<...<2, =1}, A,=max|z;—zi,],
1<ign :

Proof (See [4]). Clearly we may assume that £(0) = 0. Let $ & Ska,z, L E Ska,z, De
such that

s@y>1 (@) > 1@, 210, 1], (5)

s —tzyon < Er,z, )z, +e e>0.

Set

itk k(z; — 2)f1

s (z) = _—
%:(7) Zi=i o (x;)
N
(a:_t)’i“:r(" -0 e>t,
0, z<t,
i=01,..., n—k o, @ =(E—z)(@—2:q) ... (x— ZTisx)-

It is known (see, e.g., [4]) that ¢; () >0 for xz & (z;, Tik): : (¥) =0 for zE (z;, Tix), and
S_ o, (2) dr=1. Clearly,q, = Sk—l,Z'n' Set

xi xi

4= 6@ =1 @nae>0,8,=§ "¢ @ —1@)dr>0
and consider the splines
* (@) = S':s (t)dt — 2::_1 4 S: Qs (8) A2,
r@=ia+ S B gu@d

We have s* & Syx,y ¥ & Sk, - If 2z, < z<<Tiw, then since £(0) = 0, we bave

@) rod=st@—r@=1{ 6O-red- 2:‘_1 4§ quilyde =

0

ST o —roya+ S eo—repa =3 4= 41 g =
_ S: () —/ ) ar + Z:I_} At —§ g ) >0 (6)

(4:>0, 0< f ammar<t).

We many prove analogously that I* (z) < f (2).
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Set s(x) = 0, Z(x) = 0 for x < 0. Then

Is* = 1* 0.0 = S IS (s(®)—1(®)dt "‘2::—

-0

Y B § o 0y ae [ i) <

<{S:IS:_(kmAn(S(t)—l(t))dtlp e S IS(HI)A (@ — (k+ 1) Ay tt) — Lz — (k1) A, + 1))-

-dt[dz ”’\SHM (1 ety

vr g (1A, N
—le— G+ DA+ 0P a < (B, (r, + 9= G+ 1) A (Broaz, (P, +0). (7)

The statement of the Lemma follows from (6) and (7).
THEOREM 1. If f is a bounded function on the interval [0, 1], then

Eo s, (e, <2t (A, 1<<p<oo.

Proof. Let 3, = {0 =gy < ... <%, =1}, A, = max |o; — ;4. Set

1Si<n
sz, (x) = sup (&), z& (21, 23), sz, (1) = lim sz, (2),
e [i-1% . x—1
. N (8)
Is, ()= inf f@), 2 & [z 25)s lzn 1) = hmlz" (z).
tE[XJi—l' x5 X1
It follows from (8) (see the notation of Lemma 6) that
fl@) s s5, (@) <S(f, z; 24n),
€]

F @) > 15, @) > J .0, 2 24,).
Since sz, € Soz,, Iz, € Soz,, and
o,z 08)=S8(, z 8 —J( = 8),
using Lemma 5, from (9) v'Je have

Ey>, (f)Lp<{S |5z, (@) — Iz, (=) l”dx} /p<
<{§L18 (03200 — T 1 2520, P! = ¥ (20000, S 26 1 B,

THEOREM 2. Let f have integrable bounded k-th derivative f(k‘) on the interval [0, 1].
Then (1 < p < o)

Brz, (2, <2 (k+ D! (A (7; Ay,

Proof. 1In fact, using Lemma 10 k times in succession and applying Theorem 1 to f(k),
we obtain

Eyz, (N, < (e +1) ApBr 5, (e, < -+ - S +1)! (A,,)"E” (f®)L, <2 (e4-1)! (An)T (95 Ap)y,.
From the properties of the modulus 7% (f; 6);,P and Theorem 2, we have the following..
COROLLARY 1. If f has integrable bounded k-th derivative £(K), then
2) Euz, (o <20+ (A @ (®; A),
b) (Freud—Popov Theorem [4])
Exs, e 2k + 1) ()5 f®.

COROLLARY 2 (Babenko—Ligun Theorem [5]). If [[/**P]l., <<oo, then

B, 5, o, <eos® 1180 ,n* B, = {5510, ,n].

n
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THEOREM 3. Lef f be a 2n~periodic boundad function. Then

T -
EL (D, <ct(hindr, 1<p<<oo,
where ¢ is an absolute constant.

Proof. Set x4y = in/n, 1 = 0, ..., 2n, yi = (x4, + xi)/2, 1 =1, ..., 20, Yoan 4. = Vs
and define 2n-periodic functions S, and J, as follows:

sup  f(t) for z=y; i=1,...,2n,
telx; g, xi_] oo
s | max (Sp@:), Sp(Yisg)} for z=a;, i=1,...,2n,
"= 1 5.(0) = 5, (2m),
linear and continuous for E {2, 3]
and z&ypxl, i=14,...,2n,
inf f(t) for 2=y, i=1,...,2n,
telxgg,%;]
min {J,, (¥;), Jo@s1)} for 2=, i =1,...,2n,
In () =

Ja (0) = J,, 2n),
linear and continuous for 2z & [z, ¥i]
ad z€ [y x5 i =1,...,2n.

Clearly, we have

2@ =sfE@ S @), z=10, 2l (10)

The derivatives S;(x) and Jé(x) of Sp and I, exist at each point of the interval [0, 2r]
except the points xj, 1 =0, ..., 2n, y5, 1 =1, ..., 2n. Moreover, using the definitions
of the functions S, and J,, we immediately have

lS (.’E)l x 2"'“—10) (fr x; 4“"'_1)’ z 9& Zis Yis

(1)
Wa @] < 2nn7% (f, @ 4nn™), o 2,
(e.g., if z& (yi, %)), then as S, is linear we have
IS'n (IH § ZHJTA‘ISH (yi+1) - S'n (yt) l < 2nn_l(‘) (f1 z; 45‘:/”))’
and moreover,
08, (@) — T (@) < o(f, z; 2a/n). (12)
It follows from (11) that
”S ”Lp(o om) << 21 (fy 4n/n)L (13)
”J “Lp(o oy << 2nn 't (fy lm/n)L
Moreover, (12) gives
180 — Jalle, < 7 (s 2n/m)s,. (14)
Using (i) for r = 1, we obtain from (13)
EL S, <cUW)t(fsanm), En (T, <c () v (fs 4njn)g,. (15)
The following inequality is obvious: ‘
BT (e, < En (Sw)iy + S — Tnlle, + Ex Tu)r,e (16)

Using Lemma 5, from (14)-(16) we obtain

BL (N, <2 (1) T (fi dnjm)e,, + T (f 20im), < et (fi n 7)), -

Thus, Theorem 3 is proved.
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Using Lemma 9 and Theorem 3, we obtain the following.

THEOREM 4. Let f be a 2n-periodic function which has integrable bounded k-th deri-

vative £(K). Then

BT (o, < dnu (O w), 1<p< oo,

where ¢ > 0 is an absolute constant.

COROLLARY. For the corresponding restrictions on the function f, we have the estimates:

2) En (N < ¢5 (k) n%0 (f®; n),
B) En (e < ¢a (k)% (f9; n) n¥-1,
) En (N < ¢y (B) nb1V7f®,

O En (), < cs (R)n—r-t || fEs)]|p .

Remark . We can define moduli Ty (f; 6)LP by analogy with the k—-th continuity moduli

wi (£3 5)Lp- Generalizations of Theorems 1 and 3 were obtained in [16] for the moduli Ty (f;

G)Lp, analogous to the generalization of Jackson's theorem for wk(f' G)L , obtained by

- Stechkin [15]. We also note that using tk(f; &)y , in [17] 1nversetheorems were obtained
for one-sided trigonometricalapproximations in Ly, 1< p << oo.

10.

11.

12.

13.

14.

15.

16.

17.
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