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i. Many articles have recently appeared connected with one-sided approximation to func- 
tions, originating with the works of Freud [i] and Ganelius [2]. We formulate a result of 
Ganelius [2]: let T n be the set of all trigonometrical polynomials of order n, f a 2v-periodic 
function with k-th derivative f(k) of bounded variation, and let E~(f)L~ be the best one- 
sided approximation in Lp, l~p~oo, to the function f by tt v t r i g o n o m e t r i c a l l p o l y n o m i a l s  o f  
order n: 

. ~  (/)Lp =iIl[ (~:~(~)(x)--Q(x))Pdx) lip" ~O, Q~yroQ(x)</(x) < P(x,) 

for any x. Then (see [2]), 

~ if)L, < cl (k) V~/(~)/n TM, 

where Vbg denotes the variation of the function g on the interval [a, b], and the constant a 
c~(k) depends only on k (Ganelius introduced the precise constant c~(k), but we shall not be 
interested in this). 

Meir and Sharma [3] consider one-sided approximation by first and third degree splines, 
and Freud and Popov [4], having obtained an analog of Freud and Ganelius' results, gener- 
alized Meir and Sharma's result for splines of any degree. 

Denote by S~,z~ the set of all k-th degree splines on the interval [0, i] with nodes at 
the points ~ ~ {0 ~ xo~...~xn = I}  , i.e., s~Sk,~ n, if s ~C ~I [0, i] and s is an al- 
gebraic polynomialof degree k on the interval [Xi_~, xi] , i = i, 2, ..., n. The best one- 
sided approximation E~,z n (f)Lp in L~, bounded on the interval [0, i], to the function f by 
splines in Sk, m n is defined by thePformula 

I p \i/p 
Ek,z .  (f)Lp = i n f  (~o (S (x) - -  s (x)) dx) : S, s ~ S~,z., 

s (x) < I (x) < s (x), x ~ [o, 11. 

Freud and Popov [4] obtained the following result: 

�9 k + l  1 k)  El,- ~ . ( / )L ,~C2(k)An v o f (  , 

w h e r e  An = m a x I x ~ - - x ~ - l l ,  i = 1 . . . . .  n .  

Using this estimate and the estimates from [i], o-small type estimates were obtained 
in [4] for one-sided approximation by algebraic polynomials and splines. 

Babenko, Doronin, and Ligun (see [5-7]) considered one-sided approximations in Lp, 
I ~p ~ co, for certain classes of functions by trigonometrical polynomials and splints. The 
fundamental result of [5] for the class WrLp (f~ WrLp if ](r-l) is absolutely continuous and 
]I f(r)IIL~ ~ I)is the following: 

THEOREM A. For any p, i ~ p ~ oo, we have the relations 

s u p  ETn ' ( l )Lp  = Q(u-r), r =  t , 2  . . . . .  
t~VrLp 

sup E_l ,~,  ~ ([)% = O ( n - r ) ,  r = t ,  2 . . . . .  ~ = {x~ = iu/n, i = O, t . . . .  , 2 n } .  
]~_WrLp 

Institute of Mathematics, Bulgarian Academy of Sciences. Translated from Matematicheskie 
Zametki, Vol. 26, No. 5, pp. 791-804, November, 1979. Original article submitted December 2, 
1977. 

0001-4346/79/2656-0889507.50 �9 1980 Plenum Publishing Corporation 889 



As a corollary we have the following estimate, which we shall use in the future: 

If f(r-x) is an absolutely continuous function, then 

The aim o f  t h i s  a r t i c l e  i s  to  o b t a i n  a n a l o g s  f o r  E~( f )Lp  and B~,zn(~L p of  J a c k s o n ' s '  
well-known theorem for best one-sided approximations. We obtain these analogs by using the 
following modulus: 

where  ~ ~; x; 8) = sup I f  (t) - f (t') 1, 
of definition of the function f. 

T ~ ; 8 ) L  p = I1~ 6; z; a) llLp, 

,It--xl<a/2,.It'--z-i<a~, and t ,  t ' b e l o n g  to  t h e  domain 

As far as we know, moduli of this type were first used by Sendov [8] and Korovkin [9]. 
Dolzhenko and Sevast'yanov [i0] used this modulus for p = 1 for Hausforff approximations by 
p0intwise monotonic functions, and established several of its basic properties. Sendov [Ii] 
obtained estimates for the convergence of linear positive operators in Lp using this modulus. 

The results of this article were published at the Conference on the Constructive Theory 
of Functions in Blagoevgrad in 1977, and announced in [12]. 

2. We note several properties of the modulus w {f; 8)L v, I < p ~ oo. 

Let 

q; 6) = suP l f (x) - -  f (t) l: I x - t l < a ,  

where x, t belong to the domain of definition of the function f, be the continuity modulus 

of f. 

LEMMA 1.  "~ ~; 6)L. = ~ (f; 6). 

In connection with this lemma, we note that the case of uniform approximation of func- 
tions essentially coincides with one-sided approximation in L~. 

LEMMA 2 (See [i0]). T (f; 8)L--> 0 if and only if f is a Riemann-integrable function. 

LEMMA 3. If f and g are bounded functions, then 

LEMMA 4. For any 2~-periodic Riemann-integrable function f, we have the inequality 

Proof. 

O) ~;  8)Lp(,O,gJi) ~ T q;  6)Lp(0,2.). 

coq;o)L, = sup (I 1/(z+h)--l(x)lOdx'/P= 
o<h<.6 o 

= . ~  
o<h~<& k,Jo t 

--< (S:" , <(So 
LEMMA 5. For any Riemann-integrable function f and any %>0 

If k is an integer, then 

we have 

The proof of this lemma is essentially the same as the proof by Dolzhenko and Sevast'- 

yanov in [i0] for the case p = i. 

LEMMA 6. If f is a function bounded on [0, i], then 

x (f; n-~)L < 3X (]; n)/n, 
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where 

(1; n) = sup .~?_~ It (3?0 - l (x,_,) I, 
E n 

E n = {0 = x1<...<xn= l} is the variation modulus of the function f (see [13, 14]). 

where 

Proof. Write 

S q;  x; 6) = sup  / (t); It - -  xl < 8/2, 

J (1; x; 6) = inf  / (t); It - -  xl ~ 6/2. 

It follows from the definition of �9 (/; ~)L that 

I 'O ' ( l ;  X;/~-t) 437= 11 (S ( [ ; x ;  n - 1 ) -  J(S13?;n-1))037 = I: (I; n-1) L 
~0 IJ 0 

i = 2 n i iln (s([;x;n-,)_j([;x;n-1))dx ~--n-Z~=o(S(f;~i;n-il--J(f;~i;n-1)), 
i= l  ( i -Din 

~i ~ [Un, (i -6 l)In] . Let e > 0 and ~i, ~i be such that 

(I; ~i ;  n -x) < / (~i) -6 e/(2n), J if; ~i; n -1) > l ~i) -- e / (an). S 

T h e n  f r o m  (2 )  we h a v e  

We s p l i t  up  t h e  sum i n  ( 3 )  a s  f o l l o w s :  

:~,:_-, I s (~,) - / (~)1 = Y,:=o 2 ,  I / ($ , -D - s (_~,-D I. 

For n> 4, 

(2) 

(3) 

~1 I  (r~-D - l (~-D I < ~ (I; n), 

since the number of points occurring in the last sum is not greater than [2n13] + 2~n, and 

m a x  (~3i-j, ~_3i-~) < ra in  (-~3i+3-j, ~_3i+3-j). 

~ , ~ ,  IS (~1) - S (~,) I 4 3~ (/; n). 

If V~[<oo, then for any ~ > 6 we have the inequality 

Let f be a 2~-periodic and absolutely continuous function. Then 

"~ (1; t>)L,~ < 6 II I '  I1%. 

Thus 

LEMMA 7 (See [i0]). 

(1; 8)L < BY'of. 
LEI~IA 8.  

x 

' X l (x) - -  l (Y) = S y l  ( ) dt ,  

= max I~"  m a ,  l ( t )  - l ( r )  I /--x1~6/2 I t -x l~<8l '~  t 
t'--x146 / z It'--xl~<61~ 

1' (u) a~ < .,,:-~i~ I S' (t) I at _~/~ IS' (x - ")1 d,,. 

Proof. Since 

we obtain 

(1; x; 6) = 

T h u s  

I p6/s  
�9 = t,o(s; < L d. - -  8 , r  li .. 
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3. We now consider one-sided approximations. We first prove two lemmas. 

.I LEMMA 9. Let f be a 2~-periodic function, /~ Lp (0, 2~), f(t)dt =0, and 0 
a polynomial T ~ Tn such that T (x) >11 f (x) for x E [0, 2~]. Then there exists 

R E Tn such  t h a t  R ( x ) )  o I(t) dt, x ~ [0, 2n] and 

(S:= [R (x) - I : f ( t ) d t r d x ) V P  ~<--~-, 

where ~ ----Ill - TIIL~,(o, 2=). 
Proof. Let 

n 
T (x) = ao + ~'~=1 (a~ cos kx -+. bk sin kx). 

SX Set  T(x) ---- T ( x ) - - a  o, g(x)---- o(l(t)--P(t))dt.  The f u n c t i o n  g (x)  can be  w r i t t e n  

O1 (x - -  t) g' (t) dt = g (x)= A + ~ do 

Dt (x --  t) ([ (t) - -  Y~ (t)) dt = = A + - E -  jo 

= A +--~-do DI(u)(T(x--  u ) - - / (x - -u) )du ,  

where  D,(u) = u -- ~, u ~ [0, 2~), DI (u + 2~) = D, (u). 

Using [ 2 ] ,  we s e e  t h a t  t h e r e  e x i s t s  ? E T, such t h a t  ? (u) ~> D~ (u) f o r  

where c is 

Set 

I "  (? (tt) - -  D1 (tt)) du ~< + ,  
0 

an absolute constant. 

Q (z) = A + -E" o u (x - -  t) q (t) - -  T (t)) dt, 

,R(x)... = ~ : r ( t ) d t  .+ Q (x) ,  

Clearly, Q ET., R ETn. We have 

let there exist 

a polynomial 

R(x) - -  f ( t )d t=  (T( t ) - - / ( t ) )d t+Q(x)=Q(x)  ' g(x)=--~-j.  ?(x--t)(f(t)--T(t))dt-- 

t ~" D1 (x - -  t) ( !  (t) - -  P (t)) dt = -E- . ~ (u) (T ( x - -  u) - -  f (x - -  u)) du - -  

u E [0, 2h i  and  

(4) 

Here we 

t . )  - -  / (x  - -  . ) )  d .  = E , -E-j0 (7(u)- -  DI (u)) (T (x --  u ) - - / ( x - -  u ) ) d u >  0. 

a r e  u s i n g  t h e  f a c t  t h a t  and t h u s  

On the other hand, 

.2~ ~, D, (tt) T (x - -  u)du = ~'~o D1 (u) T (x - -  u) du. 

using [4] we obtain 
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2" 2" ' ( ~ 2 t ~ l i : " ( ~ ( . )  D I ( / / ) ) ( T (  x " ) -  
(go l ~ ( x ) = - g ? ( ' ) ~ ' P = ) " ~ = ( i o i Q ( x ) - ' ( = ) l ' ~ ' ) " ~ = ~ - , ~ o  - - 

- , ( ' - ' , ,  I" ,x) . , .  < § $7 (~176 _ , ( x _ o ,  ,. , . )" ' ,o=+ I7,  0.(', ' 

Thus R satisfies the requirements of the lemma. 

LEMMA 10. Let the function f have integrable bounded 
[0, i]. Then for any k, k~i, we have the inequality 

Proof (See [4]). 
such that 

derivative f' on the interval 

Ek' ~n (f)Lp < (k -4- t) AnEk_l, ~n (ff)Lp, 

E ,  -- {0 = X o < . . .  < ~ =  = t} ,  A= = m a x [ x , - - x i - x l ,  

Clearly we may assume that f(O) = O. 

s (z) > l '  (z) ;> z (z), z ~ [o, 11, 

II s - t IIL,~(o,, < ~ - , .  =,, (.f')Lp + e, e > O. 

Let s ~ S~_x,zn, l ~ S~-x,~n be  

(5) 

Set 

i = 0, t . . . . .  

(Pi (x) = - - J r ,  ~i (=j) 

( z -  t)h-~, z > t, 
(x t ) ~ - l =  O, - x < t ,  

n - -  k; mi (x) ---- (x - -  xi) (x - -  Xi+l) . . . (Z - -  Xi+k ). 

It is known (see, 

i_= V i ( x ) d x =  t .  

and  c o n s i d e r  t h e  

We have s* ~ S~.~n ~ 

e . g .  , [ 4 ] )  t h a t  Ti (x) > 0 f o r  x ~ (x~, xi+~), ~i (x)-~-0 f o r  x ~ ( x ~ ,  xi+~), and 

C l e a r l y ,  ~i ~ S~--1,zn- S e t  

As = (s (x) - -  ] '  (x)) dx > /0 ,  B~ = (/ '  (x) - -  l (x)) dx > / 0  t, X~ 

s p l i n e s  

s* (x) y : s  ( t )dt  _ n - ~ - ,  x = --~_z,=o A,~o~,+l( t)dt ,  

~n--k--i x 

l * ~  S~.z a I f  Xio < x < xi,+l, t h e n  s i n c e  f ( O )  = O, we h a v e  

We many 

s *  (x )  - -  o / '  (t)  dt  = s *  (x )  - -  / (x)  = o (s (t)  - -  ] '  ( t))  dt - -  >~=o Ai o ~+1 (t) dt = 

= _ _  ~ _ _  7 ,  ' ~  7 , , ~  --4=o ~'~ ~,=~+' (s (t) ]' (t)) dt -}- ~ (s (t) - - / '  (t)) dt --i=o As -- ,=,~ A, So q~'+' (t) dt = 

_ x ' ~  ~ d t )  ~ 0 

(~,> o, o < f ~,+.(,)., <,) 

prove analogously that Z*  (~</(X). 

(6) 
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Set s(x) = 0, l(x) -- 0 for x < 0. Then 

- -  - - n f k - - 1  ~: dtl" d ~}'" < ,,," 

{ l : l  (/ - (k+, )  A,. + o). 

�9 dt I p" ",1Iv e(h'+a)An,,,1 
~  < L  /)o! : ~ - - ( k + ~ ) A . + 0 - -  

~(k@-l)A n 
--  l (x -- (k + i ) A,, + t)lP dx}VV dt % Jo (B~-L~,, (f)Lp + e') dt = (k + i ) 5~ (Bk-~,~n (f')Lp + e). (7) 

The statement of the Lemma follows from (6) and (7). 

THEOREM i. If f is a bounded function on the interval [0, i], then 

Eo,::, (/)L v < 2'~ (1; A,~)L,, 5 ~< p < ~ .  

Proof. Let ~, = {0 ----X0<...<xn = 5}, A n = max lxi--xi_al. Set 

sz n (x) = sup / (t), x ~ [xi_1, x O, sz,~ (5) ----- lira sz,, (x), 
tE[xi-t, x i ]  = ~ t  

(8)  
l::,,(x) = in[ l(t) ,  x~.[x~-t ,  xi), /~,~(5)= l im/~n(x  ). 

t~[xi-1, x i ]  ~ , , - 1  

It follows from (8) (see the notation of Lemma 6) that 

l ( x ) < ~ . ( z ) < S ( t ,  x; 2An), 

] (x) ~> lz,, (x) ~ J O t, x; 2An). (9) 

Since szn ~ So,zn, lz n E So,zn, and 

if. x; 8) = s (I, x; 8) - j if, x; 8), 

u s i n g  Lemma 5,  f rom (9) we have 

0~. (t),~ < {S.I'~. (~) z~.(~)I,d~} ' ~  < 

<{f:i 
Let f have integrable bounded k-th derivative f(k) on the interval [0, I]. THEOREM 2. 

Then (5 < p  < ~ )  

E~,z~ (])Lp -.< 2 (k + i)! (A.)~ ff(~); A.)Lp. 

P r oo f .  In  f a c t ,  u s i n g  Lemma 10 k t imes  in  s u c c e s s i o n  and a p p l y i n g  Theorem 1 co f ( k )  
we obtain 

J~k,~ n (/)Lp "~ (k -Jr- 1) AnJ~k-1, ~n ff')Lp < . . "  ~ (k ~-5)! (An)k J~o. E n ([(k))Lp <2  (k'*~-5)! (An)kT if(k); An)Lp," 

From t h e  p r o p e r t i e s  of  t he  modulus �9 (f; 8)Lp and Theorem 2, we have t h e  f o l l o w i n g .  

COROLLARY 1. I f  f has  i n t e g r a b l e  bounded k - t h  d e r i v a t i v e  f ( k ) ,  ,then 

a) B~.z. ff)c < 2 (k + l)! (a.) k ~ ff(~); ~ ) ,  

b) (Freud--Popov Theorem [4]) 

Ek,z. (~)L ~ 2(k  + 5)[ (~)k*lY~/(~). 

COROLLARY 2 (Babenko--Ligun Theorem [ 5 ] ) .  I f  [~(k+l) HLp < oo, t h e n  

n "~-I --, i = 0, . . . 
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THEOREM 3. Lef f be a 2~-periodic bounded function. Then 

E~ q)Lp < c~ q; n-1)Lp, t < p < OO, 

w h e r e  c i s  an  a b s o l u t e  c o n s t a n t .  

Proof. Set x i = i~/n, i = 0, ..., 2n, Yi = '(xi-~ + xi)/2' 
and define 2~-periodic functions S n and Jn as follows: 

�9 9,, (x) = 

&(x)  = 

Clearly, we have 

i = l ,  

sup I ( t )  for x = y l ,  i = t ,  . . . .  2n, 
t~t=t-x, ::il ' 

max {S,, (Yi), Sn (Yi+x)} for x : x i, i : t . . . . .  2n, 
s . (o )  = s .  (2n), 
linear and continuous for x ~ [Xi_l, Yd 
and x E i y o z d ,  i = t  . . . . .  2n, 

inf it(t) for x = y i ,  t = t  . . . .  ,2n,  
z~[xt.-x, =i] 
min {.fn (Yi), J,~ (Yt+l)} for x = xi, i = t . . . . .  2n, 
J .  (0) = J .  (2~), 

linear and continuous for x ~ [Xi_x, Yi] 
and x ~ [ y i ,  xi], i = i . . . . .  2n. 

..., 2n, Y2n+1 =Yl 

Jn  (x) ~< f (x) ~< S .  (x), x ~ [0, 2n]. (10) 

' J'(x) of S n and Jn exist at each point of the interval [0, 2v] The derivatives Sn(X) and n 
except the points xi, i = 0, ..., 2n, Yi, i = i, ..., 2n. Moreover, using the definitions 
of the functions S n and Jn, we immediately have 

IS~ (x)l -~< 2n~-1~ (], x; 4nn-X), x =/= x~, Yi, (11) 

I J~ (~1 ~< 2na-X~ (], x; 4 ~ n - l ) ,  x :/= xi ,  Yi 

(e.g., if z E(yi, xl), then as S n is linear we have 

I Sn (x) l ~< 2n~"lS, ,  (Yi§ - -  S n  (Yi) I < 2na-'(o (1, x; 4z/n)), 

and moreover, 

It follows from (ii) that 

0 ~< S .  (x) --  g .  (x) ~< co (], x; 2u/n). (12) 

Moreover, (12) gives 

II S~,lkv(o,~:~) < 2nu -1 x (]; 4:~/n)zp, 
II J~,11%(o,2~) ~ 2nrt-lr (1; 4~t/n)Lp. 

(13) 

11S. -- J.Ilmp < �9 if; 2:#n)r. v. (14) 

Using (i) for r : i, we obtain from (13) 

E T (S.)L~..< C (i) �9 q; 4~ / . ) ~ ;  E T (Z.)Lp < C (t) �9 q; 4n/a)L~. 

The f o l l o w i n g  i n e q u a l i t y  i s  o b v i o u s :  

~T (/)L,~ < E T (S.)L, + II S .  - s .  I1% + E .  ~ (J.)Lp. 

Using  Lemma 5,  f rom ( 1 4 ) - ( 1 6 )  we o b t a i n  

E~ (])L v ~< 2C (1) X (/; 4~t/n)m v -4- X (1; 2n/n)zv~< cX (/; n-1)L v. 

Thus, Theorem 3 is proved. 

(15) 

(16)  
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Using Lemma 9 and Theorem 3, we obtain the following. 

THEOREM 4. Let f be a 2~-periodic function which has integrable bounded k-th deri- 
vative f(k). Then 

j~T (])Lp < C/r (ilk); n-1)gp, t < p < co, 

where c > 0 is an absolute constant. 

COROLLARY. For the corresponding restrictions on the function f, we have the estimates: 

a) E T (/)c < c~ (k) n - ~  (/~>; n-D, 
b) I~T. U)L < C4 (k)x (/<~); n) n-~-~, 
c) E~ (1)L < c~ (k) n-~-~ V~:~/~, 
d) E T U)L~ < c~ (k)n-~-~ ll/~§ ~. 

Remark. We can define moduli Tk(f; ~)Lp by analogy with the k-th continuity moduli 

~k(f; ~)Lp. Generalizations of Theorems i and 3 were obtained in [16] for the moduli Tk(f ; 

~)Lp' analogous to the generalization of Jackson's theorem for mk(f; 6)Lp, obtained by 

Stechkin [15]. We also note that using Tk(f ; ~)L-' in [17] inversetheorems were obtained 
for one-sided trigonometricalapproximations in Lp~ ~p~oo. 
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